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Transient analysis
Analysis of free and forced vibrations

ME473 Dynamic finite element analysis of structures

Stefano Burzio circular membrane: 1=1, m=2-Mode
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Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodynamics FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission
6 Bars and trusses Project 2 statement
7 Beams
8 Classical structural | Frames and grids
9 elements Kirchhoff-Love plates Project 2 submission
10 Kirchhoff-Love plates Project 3 statement
11 Reissner-Mindlin plates
12 Analysis of free and | Modal analysis methods
13 forced vibrations Transient analysis Project 3 submission




Summary
m General information
m Mini-project 3 comments
m Recap week 12
m Analysis of forced vibrations

m Direct integration methods

Recommended readings

(N) Neto et al., Engineering Computation of Structures (chap. 2.6)
(P) Petyt, Introduction to finite element vibration analysis (chap. 12)
(G) Gmiir, Dynamique des structures (§5.1 and 5.2)



General end-of-course information



Final examination

Date: 26 June
Location: Room CE1104

m Duration: 2 hours and 30 minutes

m Permitted materials: Open-book, electronic devices are not allowed
(calculator excluded)

Preparation recommendations:

Thoroughly review all assigned problem sets.

Do the mock exam, provided by 6 June.
Attend the Q&A session: 18, 19, or 20 June.

Use Ed-discussion forum or drop by my office (ME
A2 390) if you have any questions.

Avoid unnecessary
stress!
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Please complete the in-depth evaluation survey!
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General end-of-course information

Student assistant (AE) needed !

m The course will be offered in the Fall semester.

m We are seeking one, possibly two, teaching
assistants (AEs) to support the course through:

® Assistance with exercise sessions
® Supervision of student mini-projects

Semester projects

m Structural assembly FE model validation via
experimental modal analysis

m Neural networks meet finite elements
Master projects

m In collaboration with D-Orbit (topic to be
finalized)
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Mini-project 3 comments



A priori error estimates for eigenvalues and eigenvectors

Using principles from Rayleigh and Courant-Fischer, asymptotic error estimates
can be established for eigenvalues and frequencies for conformal elements.

Error estimates:
Ai < )\;L < )‘l + ch?(m—k‘i—l))\;n-‘rl

= )\? and wzh are the approximated eigenvalues and frequencies
m \; and w; are the exact eigenvalues and frequencies,

h represents the characteristic mesh size,

m is the degree of the highest complete polynomial used,

c and ¢ are constants independent of h,

k denotes the highest derivative order appearing in the weak form.
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Abaqus file for mode shape visualization of thick and thin plates

» Go to Moodle week 11
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hhttps://moodle.epfl.ch/mod/folder/view.php?id=1335288

Recap week 12




Free vibrations of non-rotating conservative systems

The discretization of linear three-dimensional elastodynamics, as well as the
analysis of vibrations in beams and plates via FEM, all lead to a system of ODE:

Mq(t) + Kq(t) = r(t),

Free vibration: no external forcing is applied, i.e.
r(t) =0.

m Generalized nodal displacements:

q(t) = [ql (t)a ooc¢ 7qn(t)]T'

m Boundary conditions: q* = ¢* for all k such
that x;, € I'y,.

m Initial conditions: q(0) = up and q(0) = vy
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Free undamped
discrete vibration
problem:

Mq(t) + Kq(t) = 0

}

Ansatz:

q(t) = ap cos(wt + )

'

Generalized

eigenvalue problem:

(K — w?M)p =0

Recap week 12

Solving the eigenvalue problem:

Eigenvalues (natural frequencies squared):

Aj = wjz are the roots of the characteristic

polynomial:

det(K — w?M) = 0.

Eigenvectors (modal shapes): p; are the
solution of the equation

(K - AjM)pj =0.

Transient analysis
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Rigid body modes

In the semi-discrete weak form obtained via finite element discretization:
m The mass matrix M is symmetric and strictly positive definite.

m The stiffness matrix K is symmetric and positive semi-definite:
Kp =0 for certain nonzero vectors p.

Consequently, the eigenvalues w]2- of the generalized eigenvalue problem are all real

and non-negative:
0 <w <wy << wy.

Rigid body modes: zero eigenvalues (i.e., w; = 0) correspond to rigid body
motions, where the system undergoes displacement without internal deformation.
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Orthonormalization of mode shapes

Let p; and p; two eigenvectors corresponding to the eigenvalues A\; and A;, then
piTij = 0;; and pZ-TKpj = w?éij
where 6;; represent Kronecker symbol.
Consequences: if we organize the modal vectors p; in a so-called modal matrix P:
P:[pllpzl...ﬁpn]
then

PMP=1 and PTKP=A

where I is the identity matrix of order n and A the spectral matrix:

A = diag(\1, ..., \,) = diag(w?, ..., w?).

n
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Subspace iteration method

Goal: compute the first m < n eigenpairs (p;, A;) of the generalized eigenproblem.

Inputs:
m K, M: stiffness and mass matrices
m P(O) ¢ R"*4: initial guess (matrix with ¢ > m linearly independent vectors)
m o: spectral shift (optional)
m c: convergence tolerance

Output:

m Approximated eigenvectors: P(F) = [pgk), .. ,pgk)]

m Approximated eigenvalues: A*) = diag(/\gk), . )\((lk))
Algorithm:

@ If K is singular, use shift: set K, = K+ ocM

® For £k =1,2,... until convergence:

® Do steps 1, 2a, 2b and 2c
® Check convergence
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Subspace iteration steps

@ Step 1: Simultaneous inverse iteration on ¢ > m vectors: fund the (n x q)
matrix P(*®) such that

KP® = Mmpk-1

® Step 2a: Compute projected stiffness and mass matrices:
K® = PEYTKP®E, M® = P®)'MP®)

® Step 2b: Solve (g x q) generalized eigenvalue problem: Find the modal
matrix and the spectral matrix such that

KE zE&) — npk)z (k) A (k)
® Step 2c: Orthogonalization:

P — pk)zk)
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Subspace algorithm - step 1

Suppose that the Step 1 is replace by a simultaneous inverse iteration on m
eigenvectors:

P® = (K'M)P*D = ... = (K"IM)*P,

Define the subspace S®*) of rank ¢, spanned by the vectors {pgk)}.
Pk) = [pgk), . ,pgk)] forms a non-orthogonal basis of S®).

X All columns of P®) tend toward P1
X Collinearity if no orthogonalization is applied !

(k)

m Orthogonalization of vectors p,”’ at each iteration

m Use, for instance, Gram-Schmidt method (Note: this step is computationally
expensive)
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Subspace algorithm - step 2a

m Orthogonalization by minimization of the Rayleigh quotient:

(NT R (k)
@)y ) L)
ROW™) = (G0 "W ®
m Let wib) = P(#)z(k)
m Projected Rayleigh’s quotient:
Rl (2 TK ) z(k)
(W) = Loy T ® 20

where

K® = PO)TKP®), MK = (P®)'MP®
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Subspace algorithm - step 2b

m Minimization of the Projected Rayleigh’s quotient (generalized eigenvalue
problem of dimension ¢ x q)

Stationary condition:
SR(wk) =0 = K®) Z () — \F)pg(F) 4 k)
m Solve via transformation method (e.g., Jacobi method):
K®7zE) — k)7 () A (F)
m Ritz vectors and values:

Zk) — [zgk), e zgk)}, and AP = diag()\gk), e )\gk))
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Subspace algorithm - step 2c

m Update the modal matrix:

m Orthogonality check:
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Analysis of forced vibrations




Forced vibrations of non-rotating conservative systems

The discretization of linear three-dimensional elastodynamics, as well as the
analysis of vibrations in beams and plates via FEM, all lead to a system of ODE:

M(t) + Kq(t) =r(t), Vi€ [0,T]
m Generalized nodal displacements:

q(t) =[q"(t),...,q" ()"

m Excitation (force) vector: r(t) # 0

m Boundary conditions: q* = §* for all k such
that x5 € I'y,.

m Initial conditions: q(0) = uy and q(0) = vy

Interest in finding the temporal response q(¢) of the structure.
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Modal basis

Change of basis
q(t) z(t)

q(t) =Pz(t) = Y piz(t)
=l

m z: vector of modal coordinates m p;: eigenvector of order ¢

m P: modal matrix m z;: modal coordinate of order ¢

Insertion of the change of basis in the forced regime equation:
MPz(t) + KPz(t) = r(t)
PTMP%(t) + PTKPz(t) = PTr(t)
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Decoupling of the forced regime

Accounting for the orthogonality of eigenmodes

PTMP=1 and P'KP=A
m I: identity matrix

2

m A = diag(w?,...,w?,...,w?): diagonal matrix of eigenvalues,

Decoupling of the forced regime system:

PTMPz(t) + z(t) = PTr(t)

m Projected initial conditions: z(0) = PTMug and z(0) = PTMyvy.
m s(t) = PTr(t): projection of r(¢) onto the modal basis P.

Analysis of forced vibrations Transient analysis
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Exact solution

Component-wise form of the decoupled forced regime: (i =1,2,...,n)

Zz(t) - w,?zi(t) = Si(t)
z;(0) = piTMuo
#(0) = pf Mvg

Exact solution by Laplace transform (convolution or Duhamel’s integral):
)= pi(— [ sit—7)sin(wir)d
q(t) 2 jof (wi /o si(t — 7) sin(w;T) T>

n
1
+ Z pi <pZTMu0 cos(w;t) + ;piTMvo sin(wit))
i=1 ‘

Analysis of forced vibrations Transient analysis
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Direct integration methods




Finite difference method for time integration

m Solve dynamic equilibrium equations by replacing time derivatives with
discrete approximations.

m Time domain [0, 7] is discretized into IV; equal intervals At = T'/N;:
tr = kAt k=0,...Ng.

m Displacement, velocity, and acceleration are approximated within each time

step 1.
7 (k) 7 (k+1)
1o (k) 2(k+1)
Vo 7 (k) 5 (k+1)
[ ) t t @ @ t @
t=0 t =ty t=tpt1 t=T

Direct integration methods Transient analysis 23 / 34



Approximate solution via the finite difference method

General kinematic scheme (for second-order differential equation):

(k q (k 7)

q 5 (k=)
| +ard B ;‘(H) . k=1,2,...; k>gq

(k) (k) (k)

m 2 7, % % : component i of displacement, velocity, and acceleration at time
step k,
m g, aj, B for j =1,...,¢: given constants,

At = t}, — tj_1: time step,

k: time step index.
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Types of time integration schemes

Single-step methods (¢ = 1):
m Use only the state at the previous time step to compute the current time step.
m Widely used due to balance between accuracy and efficiency.
m Frample: Newmark methods are commonly used in finite element software.
Multi-step methods (¢ > 1):
m Use multiple previous time steps to compute the current time step.
m Ezamples: Houbolt’s method, Wilson-0 method, Park’s algorithm,
Explicit vs Implicit (8y):
m Explicit: Byp = 0, current values are computed directly from known past values.

m Implicit: By # 0, require solving equations at each time step.
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Classification of finite difference methods

General kinematic scheme:

2® q (k=)
(k) Z% ?k i)

m ¢ =1 : one-step scheme — Newmark method(s)

“ Z(kfl) .(kfl)

in(k_l), 7(k 1)7%(1@)

® 5y =0: explicit scheme zi(k)
® By # 0 : implicit scheme

m ¢ > 1 : multi-step scheme — Park, Houbolt, Wilson, ...
® 5y =0 : explicit scheme
® By # 0 : implicit scheme
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Newmark’s one-step method (¢ = 0)

Resolution of dynamic equations using a one-step Newmark’s methods:

m Initial conditions:

0
zi( ) — piTMuo

.(0
zi( ) = p;FMVQ

m Dynamic equation:
sz) + w?zgk) = sgk)
Computation of initial acceleration:

NOSYRUINC
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Newmark’s one-step method (¢t = t;_; to t = ;)
Kinematic scheme for one-step Newmark’s methods:

20 A=) £(B) 56
(/C) = (k; 1) +At ,B() Z(k +B] (k; 1) (k: 1,2,)

m a1, Bo, and [: parameters characterizing the different variants of the schemes.

m To compute aq, By, and B; we use Taylor expansion with integral remainder:

2i(ty) = 2zi(tp—1) +AL Z;(tg—1) +/i/l“ (ty, — 7)(T) dr
—— N —r ——

o f}l 1

2 26D 5D
th
Z(tk) = Zi(te—1) +/ zi(T)dr
S N—~—— Jt}_,
5 (k) (k1)

Direct integration methods Transient analysis

28 / 34



First-order integral remainder approximation

Taylor series for acceleration: )

let 5 €]0,1/2[ a constant, then Zi(tx)
x(1=28)  E(teo) = H(1) — (7 —tae1) 55(7) + ... 4(r)
x 2f3 Zi(tr) = Z(m)+ (k. — 1) Z(7) + . ..

Zi(th—1)

Notice that terms in Z';(7) and higher are neglected because they are multiplied in
displacement by At3, and in velocity by At

Direct integration methods Transient analysis 29 / 34



Taylor formula with integral remainder for modal displacements

Integral quadrature in Taylor expansion:

/ﬂ (ty — 7)2i(7)dT = /tk (ty —7) [(1 _ 25)5§k_1) n 2»85,@} i

t—1 tp—1
1 _

Kinematic scheme for displacements:

)

2P = 27D L ArsF Y 4 A K - 3) 5 ”} + A2z

%
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First-order integral remainder approximation

Taylor series for acceleration: let v €]0,1[ a second constant, then
= (1 — ’y)éi(tk_l) + ’yéi(tk) ~ ZZ(T)

Integral quadrature in Taylor expansion:

g2 t
/ 5(r) dr = / (1= 75 950 dr = At [(1 = 7) 557D + 95

tr—1 tk—1

Kinematic scheme for velocity:

;01 4 A {(’1 ~7) 5?’“*”} + Atz
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Newmark’s one-step method (¢t = t;_; to t = ;)

Stability control parameter 5: 0 < < 1/4
Numerical dissipation parameter v: 1/2 <~ < 3/4.

m Kinematic scheme for displacement:

i %

2P = 2D LAY 4 A2 K; _ 6) 2§k1)] + BAs®
m Kinematic scheme for velocity:

50 = 5D 4 A [(1 ) zi(’“‘”} +yatz®

3 K3

m Dynamic equation:

) 4 2l = o
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Average acceleration method (Trapezoidal rule)

Special case:

1 d 1 Z?(tk) ************** 4‘
B — Z aln v = 5 " :
Zi(T) oo ‘ ‘
Then for ¢, < 7 < t), we have | | |
. B éi(tk,ﬂ + zz(tk) Zi(tk—l) ***T | :
Zi(T) = 5 ! : ! .
th—1 T tr

Kinematic schemes for displacement and velocity:

2 D) gD At2< (D) | 500)

3 ’L

£ = 57D 4 At( #0 150)

7
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[ ATTENTION

“The person who learns the most in any classroom is the teacher.”
— James Clear

Please complete the in-depth evaluation survey!
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