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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission

6

Classical structural
elements

Bars and trusses Project 2 statement
7 Beams
8 Frames and grids
9 Kirchhoff-Love plates Project 2 submission
10 Kirchhoff-Love plates Project 3 statement
11 Reissner-Mindlin plates

12 Analysis of free and
forced vibrations

Modal analysis methods
13 Transient analysis Project 3 submission



Summary

General information

Mini-project 3 comments

Recap week 12

Analysis of forced vibrations

Direct integration methods

Recommended readings

(N) Neto et al., Engineering Computation of Structures (chap. 2.6)

(P) Petyt, Introduction to finite element vibration analysis (chap. 12)

(G) Gmür, Dynamique des structures (§5.1 and 5.2)



General end-of-course information



Final examination

Date: 26 June

Location: Room CE1104

Duration: 2 hours and 30 minutes

Permitted materials: Open-book, electronic devices are not allowed
(calculator excluded)

Avoid unnecessary
stress!

Preparation recommendations:

Thoroughly review all assigned problem sets.

Do the mock exam, provided by 6 June.

Attend the Q&A session: 18, 19, or 20 June.

Use Ed-discussion forum or drop by my office (ME
A2 390) if you have any questions.
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CAPE evaluation survey

MODÈLE

MODÈLE

F2282U0P1PL0V0 14.03.2024, Page 1/1

evasys Standard Questionnaire in English.

Cocher : Veuillez utiliser un stylo ou un marqueur fin. Ce questionnaire sera traité automatiquement.

Corriger: Remplissez complètement la case faussement cochée, puis cochez votre nouveau choix.

1. This questionnaire will allow the teacher or teaching team, and the section, to know your opinion on the course.

1.1 Please, indicate your section:
AR CGC DH
EL GC GM
IF IN MA
MT MTE MX
NX PH QSE
SC SIE SV
UNIL Other

Merci d'évaluer les affirmations suivantes. / Please rate the following statements.
Tout à fait d'accord - D'accord - Pas d'accord - Pas du tout d'accord

Strongly agree – Agree – Disagree – Strongly disagree

Strongly agree Agree Disagree Strongly di-
sagree

No opinion

1.2 I find this course interesting.
1.3 I think the course is well organized.
1.4 It was clear to me during the course what I should

know and be able to do by the end of it.

1.5 The course activities (exercises, labs, projects,
readings, etc.) helped me learn.

1.6 I could get advice and useful feedback on my work
during the semester.

1.7 I find that the class climate enabled me to
participate, contribute, or ask questions.

1.8 I find the workload appropriate given the course’s
weighting in credits/coefficients.

2. Please, give your general appreciation and comments on the course.

Strongly agree Agree Disagree Strongly di-
sagree

No opinion

2.1 Overall, I think this course is good.
2.2 Your comments on this course:DRAFT

Please complete the in-depth evaluation survey!
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Student assistant (AE) needed !

The course will be offered in the Fall semester.

We are seeking one, possibly two, teaching
assistants (AEs) to support the course through:
• Assistance with exercise sessions
• Supervision of student mini-projects

Semester projects

Structural assembly FE model validation via
experimental modal analysis

Neural networks meet finite elements

Master projects

In collaboration with D-Orbit (topic to be
finalized)
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Mini-project 3 comments



A priori error estimates for eigenvalues and eigenvectors

Using principles from Rayleigh and Courant-Fischer, asymptotic error estimates
can be established for eigenvalues and frequencies for conformal elements.

Error estimates:
λi ≤ λh

i ≤ λi + ch2(m−k+1)λm+1
i

ωi ≤ ωh
i ≤ ωi + c̄h2(m−k+1)ω2m+1

i

λh
i and ωh

i are the approximated eigenvalues and frequencies

λi and ωi are the exact eigenvalues and frequencies,

h represents the characteristic mesh size,

m is the degree of the highest complete polynomial used,

c and c̄ are constants independent of h,

k denotes the highest derivative order appearing in the weak form.
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Abaqus file for mode shape visualization of thick and thin plates

Go to Moodle week 11
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Recap week 12



Free vibrations of non-rotating conservative systems

The discretization of linear three-dimensional elastodynamics, as well as the
analysis of vibrations in beams and plates via FEM, all lead to a system of ODE:

Mq̈(t) +Kq(t) = r(t),

xi

qi
Γ

Γu

qk1

qk2

qk3

Free vibration: no external forcing is applied, i.e.
r(t) = 0.

Generalized nodal displacements:

q(t) = [q1(t), . . . ,qn(t)]T .

Boundary conditions: qk = q̂k for all k such
that xk ∈ Γu.

Initial conditions: q(0) = u0 and q̇(0) = v0
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Free undamped
discrete vibration

problem:

Mq̈(t) +Kq(t) = 0

Ansatz:

q(t) = αp cos(ωt+ φ)

Generalized
eigenvalue problem:

(K− ω2M)p = 0

Solving the eigenvalue problem:

Eigenvalues (natural frequencies squared):
λj = ω2

j are the roots of the characteristic
polynomial:

det(K− ω2M) = 0.

Eigenvectors (modal shapes): pj are the
solution of the equation

(K− λjM)pj = 0.
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Rigid body modes

In the semi-discrete weak form obtained via finite element discretization:

The mass matrix M is symmetric and strictly positive definite.

The stiffness matrix K is symmetric and positive semi-definite:

Kp = 0 for certain nonzero vectors p.

Consequently, the eigenvalues ω2
j of the generalized eigenvalue problem are all real

and non-negative:
0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωn.

Rigid body modes: zero eigenvalues (i.e., ωj = 0) correspond to rigid body
motions, where the system undergoes displacement without internal deformation.
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Orthonormalization of mode shapes

Let pi and pj two eigenvectors corresponding to the eigenvalues λi and λj , then

pT
i Mpj = δij and pT

i Kpj = ω2
i δij

where δij represent Kronecker symbol.

Consequences: if we organize the modal vectors pi in a so-called modal matrix P:

P =
[
p1 p2 . . . pn

]
then

PTMP = I and PTKP = Λ

where I is the identity matrix of order n and Λ the spectral matrix:

Λ = diag(λ1, . . . , λn) = diag(ω2
1, . . . , ω

2
n).
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Subspace iteration method

Goal: compute the first m≪ n eigenpairs (pi, λi) of the generalized eigenproblem.

Inputs:

K, M: stiffness and mass matrices

P(0) ∈ Rn×q: initial guess (matrix with q > m linearly independent vectors)

σ: spectral shift (optional)

ε: convergence tolerance

Output:

Approximated eigenvectors: P(k) = [p
(k)
1 , . . . ,p

(k)
q ]

Approximated eigenvalues: Λ(k) = diag(λ
(k)
1 , . . . , λ

(k)
q )

Algorithm:

1 If K is singular, use shift: set Kσ = K+ σM
2 For k = 1, 2, . . . until convergence:

• Do steps 1, 2a, 2b and 2c
• Check convergence
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Subspace iteration steps

1 Step 1: Simultaneous inverse iteration on q > m vectors: fund the (n× q)

matrix P(k) such that
KP(k) = MP(k−1)

2 Step 2a: Compute projected stiffness and mass matrices:

K(k) = (P(k))TKP(k), M(k) = (P(k))TMP(k)

3 Step 2b: Solve (q × q) generalized eigenvalue problem: Find the modal
matrix and the spectral matrix such that

K(k)Z(k) = M(k)Z(k)Λ(k)

4 Step 2c: Orthogonalization:

P(k) = P(k)Z(k)
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Subspace algorithm - step 1

Suppose that the Step 1 is replace by a simultaneous inverse iteration on m
eigenvectors:

P(k) = (K−1M)P(k−1) = · · · = (K−1M)kP0

Define the subspace S(k) of rank q, spanned by the vectors {p(k)
i }.

P(k) = [p
(k)
1 , . . . ,p

(k)
q ] forms a non-orthogonal basis of S(k).

% All columns of P(k) tend toward p1

% Collinearity if no orthogonalization is applied !

Orthogonalization of vectors p
(k)
i at each iteration

Use, for instance, Gram-Schmidt method (Note: this step is computationally
expensive)

Recap week 12 Transient analysis 15 / 34



Subspace algorithm - step 2a

Orthogonalization by minimization of the Rayleigh quotient:

R(w(k)) =
(w(k))TKw(k)

(w(k))TMw(k)

Let w(k) = P(k)z(k)

Projected Rayleigh’s quotient:

R(w(k)) =
(z(k))TK(k)z(k)

(z(k))TM(k)z(k)

where
K(k) = (P(k))TKP(k), M(k) = (P(k))TMP(k)
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Subspace algorithm - step 2b

Minimization of the Projected Rayleigh’s quotient (generalized eigenvalue
problem of dimension q × q)

Stationary condition:

δR(w(k)) = 0 ⇒ K(k)z(k) = λ(k)M(k)z(k)

Solve via transformation method (e.g., Jacobi method):

K(k)Z(k) = M(k)Z(k)Λ(k)

Ritz vectors and values:

Z(k) = [z
(k)
1 , . . . , z(k)q ], and Λ(k) = diag(λ

(k)
1 , . . . , λ(k)

q )
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Subspace algorithm - step 2c

Update the modal matrix:
P(k) = P(k)Z(k)

Orthogonality check:
(P(k))TMP(k) = I
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Analysis of forced vibrations



Forced vibrations of non-rotating conservative systems

The discretization of linear three-dimensional elastodynamics, as well as the
analysis of vibrations in beams and plates via FEM, all lead to a system of ODE:

Mq̈(t) +Kq(t) = r(t), ∀t ∈ [0, T ]

xi

qi
Γ

Γu

qk1

qk2

qk3
Generalized nodal displacements:

q(t) = [q1(t), . . . ,qn(t)]T .

Excitation (force) vector: r(t) ̸= 0

Boundary conditions: qk = q̂k for all k such
that xk ∈ Γu.

Initial conditions: q(0) = u0 and q̇(0) = v0

Interest in finding the temporal response q(t) of the structure.
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Modal basis

q(t) z(t)
Change of basis

q(t) = Pz(t) =

n∑
i=1

pizi(t)

z: vector of modal coordinates

P: modal matrix

pi: eigenvector of order i

zi: modal coordinate of order i

Insertion of the change of basis in the forced regime equation:

MPz̈(t) +KPz(t) = r(t)

PTMPz̈(t) +PTKPz(t) = PTr(t)
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Decoupling of the forced regime

Accounting for the orthogonality of eigenmodes

PTMP = I and PTKP = Λ

I: identity matrix

Λ = diag(ω2
1, . . . , ω

2
i , . . . , ω

2
n): diagonal matrix of eigenvalues,

Decoupling of the forced regime system:

PTMPz̈(t) +PTKPz(t) = PTr(t)

z̈(t) +Λz(t) = s(t)

Projected initial conditions: z(0) = PTMu0 and ż(0) = PTMv0.

s(t) = PTr(t): projection of r(t) onto the modal basis P.
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Exact solution

Component-wise form of the decoupled forced regime: (i = 1, 2, . . . , n)

z̈i(t) + ω2
i zi(t) = si(t)

zi(0) = pT
i Mu0

żi(0) = pT
i Mv0

Exact solution by Laplace transform (convolution or Duhamel’s integral):

q(t) =

n∑
i=1

pi

(
1

ωi

∫ t

0
si(t− τ) sin(ωiτ) dτ

)

+

n∑
i=1

pi

(
pT
i Mu0 cos(ωit) +

1

ωi
pT
i Mv0 sin(ωit)

)
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Direct integration methods



Finite difference method for time integration

Solve dynamic equilibrium equations by replacing time derivatives with
discrete approximations.

Time domain [0, T ] is discretized into Nt equal intervals ∆t = T/Nt:

tk = k∆t k = 0, . . . Nt.

Displacement, velocity, and acceleration are approximated within each time
step tk.

u0

v0

t = 0

z(k)

ż(k)

z̈(k)

t = tk

z(k+1)

ż(k+1)

z̈(k+1)

t = tk+1 t = T
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Approximate solution via the finite difference method

General kinematic scheme (for second-order differential equation):[
z
(k)
i

ż
(k)
i

]
=

q∑
j=1

αj

[
z
(k−j)
i

ż
(k−j)
i

]
+∆t

q∑
j=0

βj

[
ż
(k−j)
i

z̈
(k−j)
i

]
, k = 1, 2, . . . ; k ≥ q

z
(k)
i , ż

(k)
i , z̈

(k)
i : component i of displacement, velocity, and acceleration at time

step k,

q, αj , βj for j = 1, . . . , q: given constants,

∆t = tk − tk−1: time step,

k: time step index.
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Types of time integration schemes

Single-step methods (q = 1):

Use only the state at the previous time step to compute the current time step.

Widely used due to balance between accuracy and efficiency.

Example: Newmark methods are commonly used in finite element software.

Multi-step methods (q > 1):

Use multiple previous time steps to compute the current time step.

Examples: Houbolt’s method, Wilson-θ method, Park’s algorithm,

Explicit vs Implicit (β0):

Explicit: β0 = 0, current values are computed directly from known past values.

Implicit: β0 ̸= 0, require solving equations at each time step.
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Classification of finite difference methods

General kinematic scheme:[
z
(k)
i

ż
(k)
i

]
=

q∑
j=1

αj

[
z
(k−j)
i

ż
(k−j)
i

]
+∆t

q∑
j=0

βj

[
ż
(k−j)
i

z̈
(k−j)
i

]
, k = 1, 2, . . . ; k ≥ q

q = 1 : one-step scheme → Newmark method(s)

• β0 = 0 : explicit scheme z
(k)
i ← z

(k−1)
i , ż

(k−1)
i

• β0 ̸= 0 : implicit scheme z
(k)
i ← z

(k−1)
i , ż

(k−1)
i , z̈

(k)
i

q > 1 : multi-step scheme → Park, Houbolt, Wilson, ...
• β0 = 0 : explicit scheme
• β0 ̸= 0 : implicit scheme
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Newmark’s one-step method (t = 0)

Resolution of dynamic equations using a one-step Newmark’s methods:

Initial conditions:

z
(0)
i = pT

i Mu0

ż
(0)
i = pT

i Mv0

Dynamic equation:

z̈
(k)
i + ω2

i z
(k)
i = s

(k)
i

Computation of initial acceleration:

z̈
(0)
i = −ω2

i z
(0)
i + s

(0)
i
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Newmark’s one-step method (t = tk−1 to t = tk)

Kinematic scheme for one-step Newmark’s methods:[
z
(k)
i

ż
(k)
i

]
= α1

[
z
(k−1)
i

ż
(k−1)
i

]
+∆t

(
β0

[
ż
(k)
i

z̈
(k)
i

]
+ β1

[
ż
(k−1)
i

z̈
(k−1)
i

])
(k = 1, 2, . . .)

α1, β0, and β1: parameters characterizing the different variants of the schemes.

To compute α1, β0, and β1 we use Taylor expansion with integral remainder:

zi(tk)︸ ︷︷ ︸
z
(k)
i

= zi(tk−1)︸ ︷︷ ︸
z
(k−1)
i

+∆t żi(tk−1)︸ ︷︷ ︸
ż
(k−1)
i

+

∫ tk

tk−1

(tk − τ)z̈i(τ) dτ

żi(tk)︸ ︷︷ ︸
ż
(k)
i

= żi(tk−1)︸ ︷︷ ︸
ż
(k−1)
i

+

∫ tk

tk−1

z̈i(τ) dτ
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First-order integral remainder approximation

Taylor series for acceleration:
let β ∈]0, 1/2[ a constant, then

× (1− 2β) z̈i(tk−1) = z̈i(τ)− (τ − tk−1)
...
z i(τ) + . . .

× 2β z̈i(tk) = z̈i(τ) + (tk − τ)
...
z i(τ) + . . .

⇒ (1− 2β)z̈i(tk−1) + 2βz̈i(tk) ≈ z̈i(τ)

t

z̈i(tk−1)

z̈i(tk)
z̈i(τ)

tk−1 tkτ

...
z i(τ)

Notice that terms in
...
z i(τ) and higher are neglected because they are multiplied in

displacement by ∆t3, and in velocity by ∆t2.
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Taylor formula with integral remainder for modal displacements

Integral quadrature in Taylor expansion:∫ tk

tk−1

(tk − τ)z̈i(τ) dτ =

∫ tk

tk−1

(tk − τ)
[
(1− 2β)z̈

(k−1)
i + 2βz̈

(k)
i

]
dτ

= . . .

= ∆t2
[(

1

2
− β

)
z̈
(k−1)
i + βz̈

(k)
i

]

Kinematic scheme for displacements:

z
(k)
i = z

(k−1)
i +∆tż

(k−1)
i +∆t2

[(
1

2
− β

)
z̈
(k−1)
i

]
+ β∆t2z̈

(k)
i
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First-order integral remainder approximation

Taylor series for acceleration: let γ ∈]0, 1[ a second constant, then

⇒ (1− γ)z̈i(tk−1) + γz̈i(tk) ≈ z̈i(τ)

Integral quadrature in Taylor expansion:∫ tk

tk−1

z̈i(τ) dτ =

∫ tk

tk−1

[
(1− γ)z̈

(k−1)
i + γz̈

(k)
i

]
dτ = ∆t

[
(1− γ) z̈

(k−1)
i + γz̈

(k)
i

]

Kinematic scheme for velocity:

ż
(k)
i = ż

(k−1)
i +∆t

[
(1− γ) z̈

(k−1)
i

]
+ γ∆tz̈

(k)
i
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Newmark’s one-step method (t = tk−1 to t = tk)

Stability control parameter β: 0 ≤ β ≤ 1/4

Numerical dissipation parameter γ: 1/2 ≤ γ ≤ 3/4.

Kinematic scheme for displacement:

z
(k)
i = z

(k−1)
i +∆tż

(k−1)
i +∆t2

[(
1

2
− β

)
z̈
(k−1)
i

]
+ β∆t2z̈

(k)
i

Kinematic scheme for velocity:

ż
(k)
i = ż

(k−1)
i +∆t

[
(1− γ) z̈

(k−1)
i

]
+ γ∆tz̈

(k)
i

Dynamic equation:

z̈
(k)
i + ω2

i z
(k)
i = s

(k)
i
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Average acceleration method (Trapezoidal rule)

Special case:

β =
1

4
and γ =

1

2

Then for tk−1 ≤ τ ≤ tk we have

z̈i(τ) =
z̈i(tk−1) + z̈i(tk)

2 t

z̈i(tk−1)

z̈i(tk)

z̈i(τ)

tk−1 tkτ

Kinematic schemes for displacement and velocity:

z
(k)
i = z

(k−1)
i +∆tż

(k−1)
i +

1

4
∆t2

(
z̈
(k−1)
i + z̈

(k)
i

)
ż
(k)
i = ż

(k−1)
i +

1

2
∆t
(
z̈
(k−1)
i + z̈

(k)
i

)
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“The person who learns the most in any classroom is the teacher.”

— James Clear

Please complete the in-depth evaluation survey!
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