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Problem set 10 - solutions

Problem 1

1. Unconstrained and constrained degrees of freedom. The bar is clamped at node 1, hence
the corresponding displacement is constrained to zero: di(t) = 0. The unknown degrees of freedom
are the displacements along the longitudinal axis at the unconstrained nodes 2 and 3, which are

collected in the vector 0
do(t
t) =
Qf( ) |fi3 (0}

To proceed, the global stiffness and mass matrices are partitioned accordingly, yielding:
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The differential equations governing the forced response of the bar is then written, taking into
account the essential boundary condition at the clamped end, as follows:
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The structure is initially at rest, thus the initial conditions are:
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2. Exact solution. To determine the dynamic behavior of the bar under the action of an external
load, we first evaluate the solution of equation without the right-hand side (free response), which
will then allow us to apply the modal superposition method using the modal parameters obtained
in the first step.
We solve the generalized eigenvalue problem : Kyp; = \;\M;p;, for ¢ = 1,2. To simplify computa-

tions let:
16 -8 4 0
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with Ky = % and M, = 235 We solve: (K; — AM;)p = 0. The characteristic polynomial is:
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This simplifies to a quadratic in A:
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which reduces to:
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Solving this yields the eigenvalues:
E E E E

and corresponding natural frequencies:

E E
wp = 1.5672 | — and wy = 4.42094 | —.
pl? pl?

Substituting the eigenvalues into the generalized eigenvalue problem allows us to extract the mode
shapes p; and py, which we then normalize with respect to the diagonal mass matrix M.

1 [1.0066 1 [-0.6976
PL= 0 139520 P2 547 | 2.0133

Let P = [pl pg} be the modal matrix of eigenvectors normalized with respect to My:
P'M,;P =1

The modal parameters are now known. The modal superposition technique can be employed to
determine the time response of the bar to a given excitation. We introduce the change of variables:

qy(t) = Pzs(t),
which transforms the governing system into a set of uncoupled equations:

Zs(t) + Azys(t) = Plry(t)

where A = diag(w?, w3). Since ry(t) = {58)] , we have:
= PTry(t) = | 72| o(¢
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The system decouples into two second-order scalar differential equations: (i = 1,2):
The exact solution, using Duhamel’s integral or Laplace transforms, is:

() = = /0 pid(t — 7) sin(w;r) dr

Wi

= —piz sin(wit).
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Returning to the physical coordinates via qy(t) = Pz;(t), we obtain the full dynamic response:

qy(t) = pr21(t) + p2za(t).

Explicitly, the displacements at nodes 2 and 3 are:

1
do(t) = 2 1;]: 2 Gin(wt) + 2 2:}: = sin(wat) = \/p_E(O.8958 sin(1.5672) — 0.3178 sin(4.4209 1))
2
ds(t) = (P12) sin(wit) + (p22)” sin(wst) = ——=(1.2431sin(1.5672¢) + 0.9168 sin(4.4209t))
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3. Average acceleration Newmark method. Recall from the previous section that the modal
equations are:

1
2(t) = 13952W5<)

E 1
T 2(t) = 20133\/W5(t)

At t = 0, the bar is at rest 2,(0) = 2,(0) = 0 and 29(0) = 22(0) = 0, thus zi) = zl = 0 and
(0) = zé = (. Based on the geometric and material properties of the bar and the definition of the
tlme excitation function, the problem reduces to step-by-step iteration using the following dynamic

relations:
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and for every time step index k > 1:

3% 4 (8105.7)22% = 0,

(2)
” +(22866.2)224F) = 0.

We begin by completing the initial phase of the Newmark’s scheme: that is computing the acceler-
ations at the initial time step using dynamic equations (1). Since the initial modal coordinates are
zero, the initial modal accelerations become:

50 = 15747 — (8105.7)%2\% = 15747
50 = 22723 — (22866.2)%21") = 22723
To compute the modal displacements, velocities, and accelerations at t = At, we employ the two

kinematic relations associated with the Newmark average acceleration method, which for each
1 =1, 2 take the form:
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here kK = 1,2,... denotes the time step index. It is clear that due to the implicit nature of the
resolution method, the modal accelerations from the dynamic equations (2), can only be extracted
after being inserted into the kinematic relations (3).
At the first iteration of the process, the prediction, obtained from the truncated kinematic relations
(3) (displacements and modal velocities) using the values from the initial step, yields the following
result:

2 = 20 L A9 4 0.25A25 = 0.25 - (1074)2 - 15747 = 0.39368 - 10~

2 = z§ +0.5At:% = 0.5 (107%) - 15747 = 0.78737

2 =200 4 A2 4 0.25A25 = 0.25 - (1074)2 - 22723 = 0.56808 - 10~

2D = 20 4 05A2:Y = 0.5 (1074 - 22723 = 1.1362

This predictions 21(1) and éfl) are then substituted into the dynamic equations (2) and kinematic

equations (3), to yield the following implicit relations:
5 = —(8105.7)22 = —(8105.7)2(21 4 0.25A¢2:1)
50 = —(22866.2)%28" = —(22866.2)%(2" + 0.5A¢:Y)

Solving for the accelerations gives:

A = [(3105.77220"] / [1 4025 (8105.7) - AF?

= [—(8105.7)* - 0.39368 - 107*] / [1 4 0.25 - (8105.7)* - (10~*)?]
= —2221.6516

FOop [—(22866.2)225”] /14025 (22866.2)% - At’]
= [—(22866.2)* - 0.56808 - 107*] / [1 + 0.25 - (22866.2)* - (10~*)?]
= —12874.1985
It is then possible to correct the kinematic predictions ,251) and 51-(1) by incorporating the above
values to complete the equations and obtain the modal displacements and velocities at the first
time step:

) +0.25 A% 5 = 0.39368 - 107 4 0.25 - (1074 - (—2221.6516) = 3.3813 - 10

0= 2§

2D =20 o5 A5 =0.78737 4+ 0.5 - 107 - (—2221.6516) = 0.6763

2V =51 4025 A 5D = 0.56808 - 107 + 0.25 - (1074)% - (—12874.1985) = 0.49245 - 10~
A =20y 05 z(l) =1.1362+ 0.5-107* - (—12874.1985) = 0.4925



