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(Credit: Noé Jiménez)

Linear: infinitesimally small defor-
mations relative to the solid’s size.

Elasticity: deformable material
that returns to its original shape and
size when the forces causing the de-
formation are removed.

Dynamics: study bodies in motion
under the influence of the mechan-
ical actions applied to them (time-
dependent problems).

https://nojigon.webs.upv.es/simulations_plate.php
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Underlying hypothesis and notations



Hypothesis and notations

Inertial orthonormal reference frame O(x, y, z).
Sometimes will use O(x1, x2, x3).

Continuous three-dimensional deformable finite
(compact) body with volume Ω and surface Γ.

Material: continuous and homogenous.

Deformations: small (proportional to stress).

Continuous and derivable time-dependent
(unknown) displacement field:

u(x, t) =

u1(x, t)
u2(x, t)
u3(x, t)


where x ∈ Ω̄ and t ∈ [0, T ].

x

y

z

Ω

Γu
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Stress and strain tensors

Stress tensor

σ(x, t) =


σ11(x, t)
σ22(x, t)
σ33(x, t)
σ23(x, t)
σ31(x, t)
σ12(x, t)


Credit: [N]

Strain tensor

ε(x, t) =


ε11(x, t)
ε22(x, t)
ε33(x, t)
2ε23(x, t)
2ε31(x, t)
2ε12(x, t)


Stress expresses the internal forces that neighboring particles of a material exert on each
other (SI units of Pascal.)

Strain is defined as relative deformation, compared to a reference position configuration (SI
units of meter per meter.)

First index specifies the normal of the surface on which the stress/strain is acting, the second
index specifies the direction of the stress/strain.

if i ̸= j then σij = τij (shear stress) and 2εij = γij (engineering shear strain).

Symmetric tensors: τij = τji (Cauchy’s stress theorem) and γij = γji.
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The stress-strain curve

Credit: Fidelis
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Generalised Hooke’s law

The constitutive stress-strain relationship of linear elasticity is given by the
Hooke’s law:

σ(x, t) = C ε(x, t) and ε(x, t) = Sσ(x, t)

where C is called the stiffness material matrix and S = C−1.
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1 - Anisotropic materials

No symmetry: these materials have properties that vary with direction. Their
strength, stiffness, and conductivity differ depending on the axis of measurement.

S =


s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66


Most of the elements are non-zero, the matrix is considered dense.

21 independent constants (symmetry).
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2 - Orthotropic materials

3 planes of symmetry: a special case of anisotropic materials where properties
vary along three mutually perpendicular directions. These materials have three
different principal material properties along three axes.

S =


1/E1 −ν21/E2 −ν31/E3 0 0 0

−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G31 0
0 0 0 0 0 1/G12


Ei is the Young’s modulus along axis Oxi.

Gij is the shear modulus in direction Oxi on the plane whose normal is Oxj .

νij is the Poisson’s ratio that corresponds to a contraction in direction Oxj
when an extension is applied in direction Oxi.
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3 - Isotropic materials

∞ planes of symmetry: these materials have identical properties in all
directions. Their mechanical and physical properties do not change regardless of
the direction in which they are measured.

S =


1/E −ν/E −ν/E 0 0 0
−ν/E 1/E −ν/E 0 0 0
−ν/E −ν/E 1/E 0 0 0

0 0 0 1/G 0 0
0 0 0 0 1/G 0
0 0 0 0 0 1/G


E is the Young’s modulus, G is the shear modulus, and ν is the Poisson’s ratio.

Only two independent constants since E = 2G(1 + ν).
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Strain-displacement relationship

Both normal strain and shear strain can be regarded as a rate of displacement variation and
angle per unit length.

The components of strain can be obtained by derivatives of the displacements for small
deformation in solids.

The strain-displacement relation can be written in the three equivalent forms as follows:

a) ε(x, t) = ∇u(x, t)

b)



ε11
ε22
ε33
2ε23
2ε31
2ε12

 =



∂x 0 0
0 ∂y 0
0 0 ∂z
0 ∂z ∂y
∂z 0 ∂x
∂y ∂x 0


u1
u2
u3



c) εii = ∂xiui and 2εij = ∂xiuj + ∂xjui

Credit: [N]
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Equilibrium equations of motion



Differential equations of movement

Consider an infinitely small cube subjected to a force represented
by the vector:

f(x, t) =

f1(x, t)
f2(x, t)
f3(x, t)

 .

Stress is not uniform. The variation of the stress between two
opposite sides is linear and

dσij = ∂xk
σij dxk

Newton 2nd law of motion taking into account internal forces f i is

f i(x, t) + f(x, t) = ρ(x)ü(x, t) dxdydz

Credit: [N]

where ρ(x) is the material density, ü = ∂ttu is the acceleration, dxdydz is the volume of
the cube.
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Differential equations of movement

The equilibrium equation of elastodynamics in matrix form is:

∇Tσ(x, t) + f(x, t) = ρ(x)ü(x, t)

Using the strain-displacement relation we can write it in terms of the
displacement filed:

∇TC∇u(x, t) + f(x, t) = ρ(x)ü(x, t)
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Boundary conditions

Boundary conditions are appointed for each point on the solid surface Γ = Γu ∪ Γσ.

Prescribed displacement:

u = û sur Γu×]0, T [

where û = {û1, û2, û3}T is the given displacement prescribed on Γu.

Prescribed surface force:

NTσ = f̂ sur Γσ×]0, T [

where f̂ = {f̂1, f̂2, f̂3}T is the given surface load prescribed on Γσ

and

NT =

n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0



Ω

Γu
û

Γσ

f̂ f̂

f̂

n1, n2 and n3 being the direction cosines for the outward-pointing normal n to the
boundary Γσ.
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Initial conditions

The initial conditions are set at t = 0:

Imposed initial displacement field:

u(x, 0) = u0(x) ∀x ∈ Ω

Imposed initial velocity field:

u̇(x, 0) = v0(x) ∀x ∈ Ω
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Continuum mechanical modelling

Credit: A. Öchsner - PDE for classical structural members
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Strong formulation of equilibrium equations



Strong form of elastodynamics

Given a deformable solid Ω with boundary Γ, and

stiffness material matrix C and material density ρ,

vector of body load f applied on Ω,

prescribed boundary displacement û on Γu and surface load f̂ on Γσ,

prescribed initial (at t = 0) displacement u0 and initial velocity v0.

find the displacement u ∈ C2(Ω̄× [0, T ],R3) such that

∇TC∇u(x, t) + f(x, t) = ρ(x)ü(x, t) ∀(x, t) ∈ Ω×]0, T [

u(x, t) = û(x, t) ∀(x, t) ∈ Γu×]0, T [

NTC∇u(x, t) = f̂(x, t) ∀(x, t) ∈ Γσ×]0, T [

u(x, 0) = u0(x) ∀x ∈ Ω

u̇(x, 0) = v0(x) ∀x ∈ Ω
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Example 1: longitudinal vibrations of bars



Strong form for longitudinal vibrations of bars

Kinematic assumptions:

The bar cross-section is infinitely rigid in its own plane, remaining plane after deformation.

Loads, which are uniform in every cross-section, can only be applied axially.

The influence on the axial movement of the bar of lateral displacements due to the Poisson
effect is negligible (σ22 = σ33 = 0). Thus the bar can undergo only axial stress σ11, which is
uniform in every cross-section.

dxx

ℓ

E,A, ρ

u1

A cross-sectional area

E Young’s modulus

ρ material density

ℓ length

x axial coordinate

u1(x, t) axial displacement

N1(x, t) normal stress

dx

N1 +
dN1
dx

dxN1

ρAü1dx
Equilibirum equation:

N1 + ∂xN1dx−N1 = ρAü1dx

Stress-strain-displacement relation:

N1 = Aσ11 = EAε11 = EA∂xu1
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Strong form for longitudinal vibrations of bars

x

ℓ

E,A, ρ

A cross-sectional area

E Young’s modulus

ρ material density

ℓ length

x axial coordinate

u1(x, t) axial displacement

Find u1 ∈ C2([0, l]× [0, T ]) such that

EA∂2
xxu1(x, t) = ρAü1(x, t) ∀(x, t) ∈]0, ℓ[×]0, T [

boundary conditions:

u1(0, t) = 0 ∀t ∈]0, T [
EA∂xu1(ℓ, t) = 0 ∀t ∈]0, T [

initial conditions:

u1(x, 0) = u0(x) ∀x ∈]0, ℓ[
u̇1(x, 0) = v0(x) ∀x ∈]0, ℓ[
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Disclaimer - exact or closed-form solution

The strong form for longitudinal vibrations of a bar admits an exact solution in
the following decoupled form

u1(x, t) =

∞∑
k=1

vk(x)ϕk(t)

where

vk(x) = sin
(π(2k + 1)

2ℓ
x
)

ϕk(t) = ak sin(ωkt) + bk cos(ωkt)

ωk =
π(2k + 1)

2ℓ

√
E

ρ

ak and bk depends respectively on the initial conditions u0 and v0.

k represents a mode of vibration (k = 1 first or fundamental mode).
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Weak formulation of equilibrium equations



Road to weak formulation

Strong formulations lead to strong solutions in the sense that they require
strong continuity in the field variables.

The weak form is often expressed as an integral equation that requires weaker
continuity on the variables.

The weak form of the elastodynamics problem can be obtained using the
Virtual Work Principle.

Through the following steps, we can obtain a weak form for a set of differential
equations:

1 Multiply each differential equation by an appropriate arbitrary function

2 Integrate over the space domain of the problem.

3 Reduce the order of the involved derivatives using the divergence theorem.

4 Apply the boundary conditions reasonably.
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Derivation of weak formulation

1 Introduce an admissible (avoid divergence of integral) virtual displacement:

δu(x) =

δu1(x)
δu2(x)
δu3(x)


2 Multiply the differential equation by δuT and integrate it over the spatial domain Ω.∫

Ω

δuT (∇TC∇u+ f) dΩ =

∫
Ω

ρδuT ü dΩ

3 Apply the divergence theorem to the first term:

−
∫
Ω

(∇δu)TC∇u dΩ+

∫
Γ

δuTNTC∇u dΓ +

∫
Ω

δuT f dΩ =

∫
Ω

ρδuT ü dΩ

4 Use the boundary conditions: NTC∇u = f̂ on Γσ and impose δu = 0 on Γu

−
∫
Ω

(∇δu)TC∇u dΩ+

∫
Γσ

δuT f dΓ +

∫
Ω

δuT f dΩ =

∫
Ω

ρδuT ü dΩ
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Functional spaces

To ensure the integrals remain finite, we impose that:

u ∈ U and δu ∈ V

U =
{
u(·, t) ∈ H1(Ω,R3) | u(·, t) = û on Γu ∀t ∈]0, T [

}
V =

{
v ∈ H1(Ω,R3) | v = 0 on Γu

}
Recall that H1(Ω) is the Sobolev space defined as

H1(Ω) =
{
w ∈ L2(Ω,R3) |

∫
Ω
(∇w)T∇w dΩ < ∞

}
.

Note that the difference between spaces U and V is that only the functions in
U are time-dependent.

The spaces are designed to incorporate only the displacement boundary
condition on Γu.
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Weak form of elastodynamics

Given Ω, Γ, C, ρ, f , û, f̂ , u0, v0 as in the previous slide, find the displacement
u ∈ U such that that for any virtual displacement δu ∈ V we have∫

Ω
(∇δu)TC∇u dΩ+

∫
Ω
ρ δuT ü dΩ =

∫
Γσ

δuT f̂ dΓ +

∫
Ω
δuT f dΩ,

∫
Ω
ρ δuTu

∣∣
t=0

dΩ =

∫
Ω
ρ(δu)Tu0 dΩ,∫

Ω
ρ δuT u̇

∣∣
t=0

dΩ =

∫
Ω
ρ(δu)Tv0 dΩ.

 Initial conditions
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Example 1: longitudinal vibrations of bars



Strong form for longitudinal vibrations of bars (reminder)

x

ℓ

E,A, ρ

A cross-sectional area

E Young’s modulus (isotropic bar)

ρ material density

ℓ length

x axial coordinate

u1(x, t) axial displacement

Find u1 ∈ C2([0, ℓ]× [0, T ]) such that

EA∂2
xxu1(x, t) = ρAü1(x, t) ∀(x, t) ∈]0, ℓ[×]0, T [

boundary conditions:

u1(0, t) = 0 ∀t ∈]0, T [
EA∂xu1(ℓ, t) = 0 ∀t ∈]0, T [

initial conditions:

u1(x, 0) = u0(x) ∀x ∈]0, ℓ[
u̇1(x, 0) = v0(x) ∀x ∈]0, ℓ[
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Derivation of weak form for longitudinal vibrations of bars

1 Define the virtual displacement δu1(x) so that δu1 ∈ H1(]0, ℓ[) and δu1(0) = 0.

2 Multiply the differential equation by the virtual displacement and integrate it over
the intreval ]0, ℓ[. ∫ ℓ

0

EA
∂2u1

∂x2
δu1 dx =

∫ ℓ

0

ρAü1δu1 dx.

3 Use the integration by parts formula on the left hand side:

−
∫ ℓ

0

EA∂xu1 ∂x(δu1) dx+
[
EA∂xu1δu1

]ℓ
0
=

∫ ℓ

0

ρAü1δu1 dx.

4 Make use of the boundary condition EA∂xu1(ℓ, t) = 0 to simplify

−
∫ ℓ

0

EA∂xu1 ∂x(δu1) dx =

∫ ℓ

0

ρAü1δu1 dx.
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Weak form for longitudinal vibrations of bars

Find u1 ∈ U such that ∀δu1 ∈ V we have∫ ℓ

0
EA∂xu1 ∂x(δu1) dx+

∫ ℓ

0
ρAü1δu1 dx = 0,

∫ ℓ

0
ρAu(x, 0)δu1(x) dx =

∫ ℓ

0
ρAu0(x)δu1(x) dx,∫ ℓ

0
ρAu̇(x, 0)δu1(x) dx =

∫ ℓ

0
ρAv0(x)δu1(x) dx.

 Initial conditions

U =
{
u1(·, t) ∈ H1(]0, ℓ[) | u1(0, t) = 0 ∀t ∈]0, T [

}
V =

{
δu1 ∈ H1(]0, ℓ[) | δu1(0) = 0

}
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Example 2: transversal vibrations of beams



Strong form for transversal vibrations of beams

Kinematic assumptions:

The analysis will be restricted to the dynamic behavior of the beam in the O(x, y) plane.

A normal cross-section to the neutral fiber remains planar after deformation, but not
necessarily orthogonal to it

Shear deformations ε12 of sections are taken into account (Timoshenko or thick beam).

p

x

y
ℓ

V̂ M̂

E,A, ρ, I

Model parameters:

A cross-sectional area

E Young’s modulus

ρ material density

I moment of inertia

ℓ length

Loads:

M̂ bending moment
at free end

V̂ shear force at
free end

p distributed
transversal load

Variables:

u1(x, t) axial displacement u2(x, t) transversal displacement
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Strong form for transversal vibrations of beams

Introduce an auxiliary variable θ3(x, t) representing the total rotation of the
section around the Oz axis.

u1

u2

−θ3

x

y

u1 = −yθ3

Strain-displacement relationships

ε11 = ∂xu1 = −y∂xθ3

ε12 = ∂xu2 + ∂yu1 = ∂xu2 − θ3
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Equilibirum equations of motion

ρIθ̈3dx
dx

pdx

ρAü2dx

M M + ∂xMdx

V V + ∂xV dx
∂xV + p = ρAü2

∂xM + V = ρIθ̈3

Since σ11 = Eε11 and σ12 = kGε12, where the constant k is the shear correction factor (parabolic
distribution of tangential stresses)

V =

∫
A

σ12 dA = kGAε12 = kGA(∂xu2 − θ3)

M = −
∫
A

yσ11 dA = −
∫
A

yEε11 dA = EI∂xθ3
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Strong form for transversal vibrations of beams

The strong form for transversal vibrations of beams consists of finding the
functions u2 ∈ C2([0, ℓ]× [0, T ]) and θ3 ∈ C2([0, ℓ]× [0, T ]) such that the following
equilibirum equations, boundary and initial conditions are satisfied.

Equilibirum equations

∂x
(
kGA(∂xu2 − θ3)

)
+ p = ρAü2

∂x
(
EI∂xθ3

)
+ kGA(∂xu2 − θ3) = ρIθ̈3

In matrix form:(
∂x 0
1 ∂x

)
︸ ︷︷ ︸

∇T
σ

(
kGA 0
0 EI

)
︸ ︷︷ ︸

C

(
∂x −1
0 ∂x

)
︸ ︷︷ ︸

∇u

(
u2

θ3

)
︸ ︷︷ ︸

u

+

(
p
0

)
︸︷︷︸

f

=

(
ρA 0
0 ρI

)
︸ ︷︷ ︸

M

(
ü2

θ̈3

)
︸ ︷︷ ︸

ü

∇T
σC∇uu+ f = Mü
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Boundary and initial conditions

Boundary conditions

u2(0, t) = 0 ∀t ∈]0, T [
θ3(0, t) = 0 ∀t ∈]0, T [

kGA
(
∂xu2(ℓ, t)− θ3(ℓ, t)

)
= V̂ ∀t ∈]0, T [

EI∂xθ3(ℓ, t) = M̂ ∀t ∈]0, T [
In matrix form:

u(0, t) = 0 ∀t ∈]0, T [
C∇uu(ℓ, t) = f̂ ∀t ∈]0, T [

Initial conditions

u2(x, 0) = u0(x) ∀x ∈]0, ℓ[
θ3(x, 0) = θ0(x) ∀x ∈]0, ℓ[

u̇2(x, 0) = v0(x) ∀x ∈]0, ℓ[
θ̇3(x, 0) = ϕ0(x) ∀x ∈]0, ℓ[

In matrix form:
u(x, 0) = u0 ∀x ∈]0, ℓ[
u̇(x, 0) = v0 ∀t ∈]0, ℓ[
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