

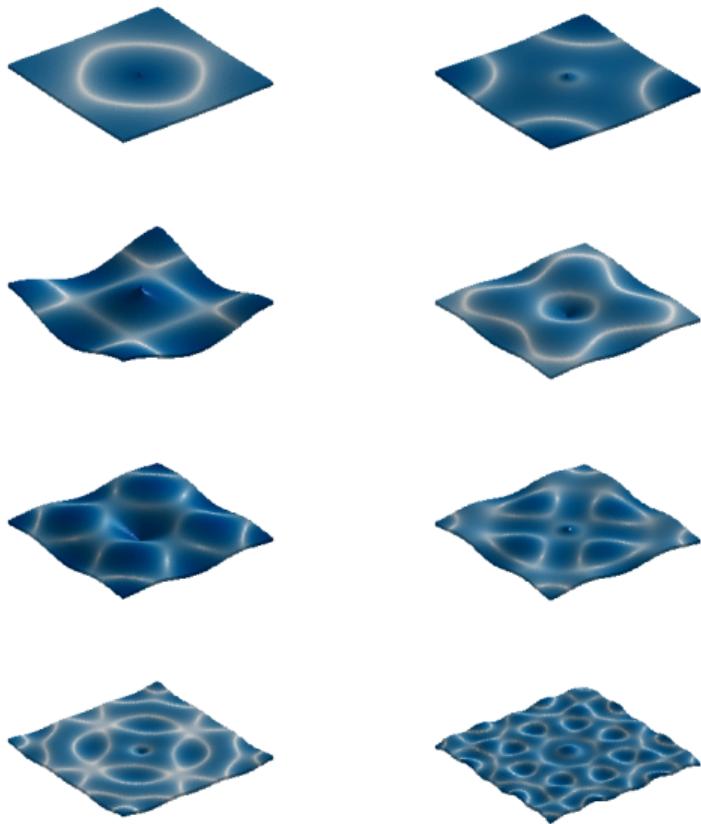
Linear elastodynamics

Strong and weak forms

ME473 Dynamic finite element analysis of structures

Stefano Burzio

2025



(Credit: Noé Jiménez)

Linear: infinitesimally small deformations relative to the solid's size.

Elasticity: deformable material that returns to its original shape and size when the forces causing the deformation are removed.

Dynamics: study bodies in motion under the influence of the mechanical actions applied to them (time-dependent problems).

Summary

- Underlying hypothesis and notations
- Equilibrium equations of motion
- Strong formulation of equilibrium equations
- Weak formulation of equilibrium equations
- Example 1: longitudinal vibrations of bars
- Example 2: transversal vibrations of beams

Recommended readings

- ① Gmür, Dynamique des structures (§2.1 and §2.2) ▶ [GM]
- ② Gmür, Méthode des éléments finis (§ 5.1 and § 5.2) ▶ [GM1]
- ③ Neto et al., Engineering Computation of Structures (§ 1.1, §1.3 and §2.1) ▶ [N]

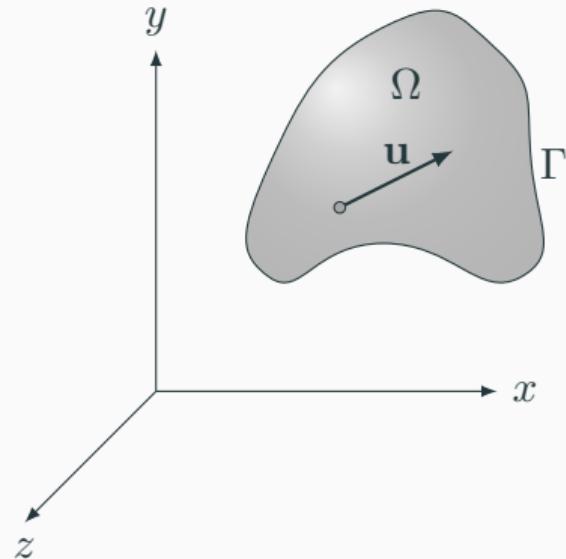
Underlying hypothesis and notations

Hypothesis and notations

- Inertial orthonormal reference frame $O(x, y, z)$. Sometimes will use $O(x_1, x_2, x_3)$.
- Continuous three-dimensional deformable finite (compact) **body** with volume Ω and surface Γ .
- **Material:** continuous and homogenous.
- **Deformations:** small (proportional to stress).
- Continuous and derivable time-dependent (*unknown*) **displacement field:**

$$\mathbf{u}(\mathbf{x}, t) = \begin{pmatrix} u_1(\mathbf{x}, t) \\ u_2(\mathbf{x}, t) \\ u_3(\mathbf{x}, t) \end{pmatrix}$$

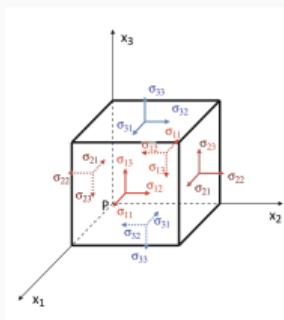
where $\mathbf{x} \in \bar{\Omega}$ and $t \in [0, T]$.



Stress and strain tensors

Stress tensor

$$\boldsymbol{\sigma}(\mathbf{x}, t) = \begin{pmatrix} \sigma_{11}(\mathbf{x}, t) \\ \sigma_{22}(\mathbf{x}, t) \\ \sigma_{33}(\mathbf{x}, t) \\ \sigma_{23}(\mathbf{x}, t) \\ \sigma_{31}(\mathbf{x}, t) \\ \sigma_{12}(\mathbf{x}, t) \end{pmatrix}$$



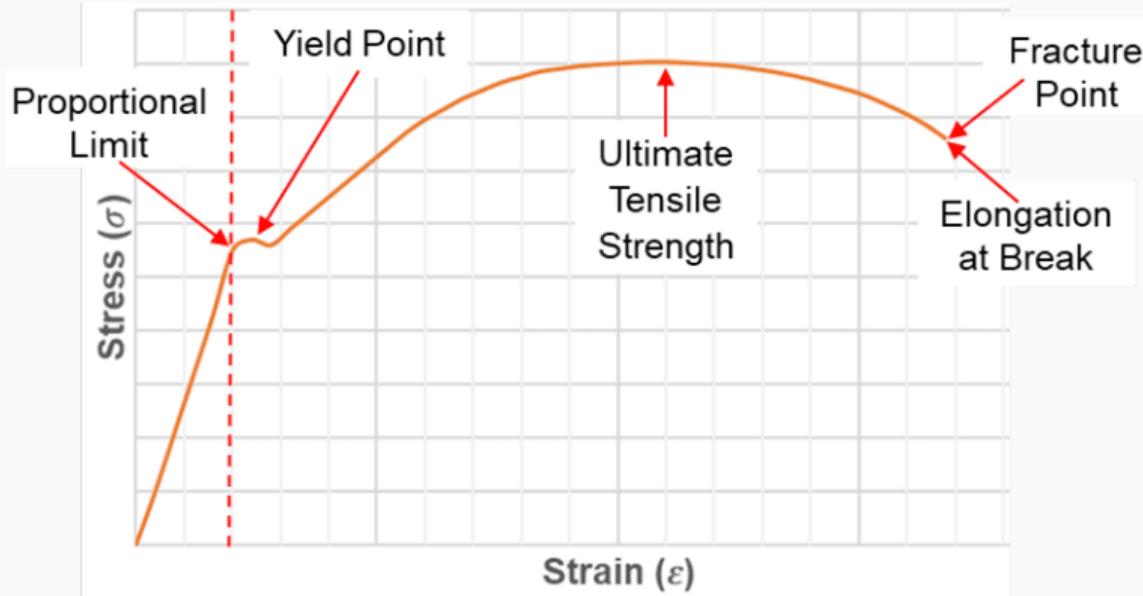
Credit: [N]

Strain tensor

$$\boldsymbol{\varepsilon}(\mathbf{x}, t) = \begin{pmatrix} \varepsilon_{11}(\mathbf{x}, t) \\ \varepsilon_{22}(\mathbf{x}, t) \\ \varepsilon_{33}(\mathbf{x}, t) \\ 2\varepsilon_{23}(\mathbf{x}, t) \\ 2\varepsilon_{31}(\mathbf{x}, t) \\ 2\varepsilon_{12}(\mathbf{x}, t) \end{pmatrix}$$

- Stress expresses the internal forces that neighboring particles of a material exert on each other (SI units of Pascal.)
- Strain is defined as relative deformation, compared to a reference position configuration (SI units of meter per meter.)
- First index specifies the normal of the surface on which the stress/strain is acting, the second index specifies the direction of the stress/strain.
- if $i \neq j$ then $\sigma_{ij} = \tau_{ij}$ (shear stress) and $2\varepsilon_{ij} = \gamma_{ij}$ (engineering shear strain).
- Symmetric tensors: $\tau_{ij} = \tau_{ji}$ (Cauchy's stress theorem) and $\gamma_{ij} = \gamma_{ji}$.

The stress-strain curve



Credit: Fidelis

Generalised Hooke's law

The constitutive stress-strain relationship of linear elasticity is given by the Hooke's law:

$$\boldsymbol{\sigma}(\mathbf{x}, t) = \mathbf{C} \boldsymbol{\varepsilon}(\mathbf{x}, t) \quad \text{and} \quad \boldsymbol{\varepsilon}(\mathbf{x}, t) = \mathbf{S} \boldsymbol{\sigma}(\mathbf{x}, t)$$

where \mathbf{C} is called the stiffness material matrix and $\mathbf{S} = \mathbf{C}^{-1}$.

1 - Anisotropic materials

No symmetry: these materials have properties that vary with direction. Their strength, stiffness, and conductivity differ depending on the axis of measurement.

$$\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & s_{13} & s_{14} & s_{15} & s_{16} \\ s_{21} & s_{22} & s_{23} & s_{24} & s_{25} & s_{26} \\ s_{31} & s_{32} & s_{33} & s_{34} & s_{35} & s_{36} \\ s_{41} & s_{42} & s_{43} & s_{44} & s_{45} & s_{46} \\ s_{51} & s_{52} & s_{53} & s_{54} & s_{55} & s_{56} \\ s_{61} & s_{62} & s_{63} & s_{64} & s_{65} & s_{66} \end{bmatrix}$$

- Most of the elements are non-zero, the matrix is considered dense.
- 21 independent constants (symmetry).

2 - Orthotropic materials

3 planes of symmetry: a special case of anisotropic materials where properties vary along three mutually perpendicular directions. These materials have three different principal material properties along three axes.

$$\mathbf{S} = \begin{bmatrix} 1/E_1 & -\nu_{21}/E_2 & -\nu_{31}/E_3 & 0 & 0 & 0 \\ -\nu_{12}/E_1 & 1/E_2 & -\nu_{32}/E_3 & 0 & 0 & 0 \\ -\nu_{13}/E_1 & -\nu_{23}/E_2 & 1/E_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/G_{23} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/G_{31} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/G_{12} \end{bmatrix}$$

- E_i is the Young's modulus along axis Ox_i .
- G_{ij} is the shear modulus in direction Ox_i on the plane whose normal is Ox_j .
- ν_{ij} is the Poisson's ratio that corresponds to a contraction in direction Ox_j when an extension is applied in direction Ox_i .

3 - Isotropic materials

∞ planes of symmetry: these materials have identical properties in all directions. Their mechanical and physical properties do not change regardless of the direction in which they are measured.

$$\mathbf{S} = \begin{bmatrix} 1/E & -\nu/E & -\nu/E & 0 & 0 & 0 \\ -\nu/E & 1/E & -\nu/E & 0 & 0 & 0 \\ -\nu/E & -\nu/E & 1/E & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/G & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/G & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/G \end{bmatrix}$$

- E is the Young's modulus, G is the shear modulus, and ν is the Poisson's ratio.
- Only two independent constants since $E = 2G(1 + \nu)$.

Strain-displacement relationship

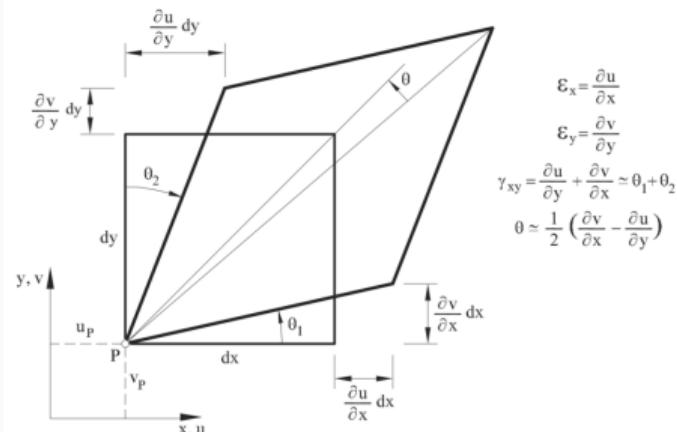
- Both normal strain and shear strain can be regarded as a rate of displacement variation and angle per unit length.
- The components of strain can be obtained by derivatives of the displacements for small deformation in solids.
- The strain-displacement relation can be written in the three equivalent forms as follows:

a) $\boldsymbol{\varepsilon}(\mathbf{x}, t) = \nabla \mathbf{u}(\mathbf{x}, t)$

b)

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{31} \\ 2\varepsilon_{12} \end{pmatrix} = \begin{bmatrix} \partial_x & 0 & 0 \\ 0 & \partial_y & 0 \\ 0 & 0 & \partial_z \\ 0 & \partial_z & \partial_y \\ \partial_z & 0 & \partial_x \\ \partial_y & \partial_x & 0 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$

c) $\varepsilon_{ii} = \partial_{x_i} u_i$ and $2\varepsilon_{ij} = \partial_{x_i} u_j + \partial_{x_j} u_i$



Credit: [N]

Equilibrium equations of motion

Differential equations of movement

- Consider an infinitely small cube subjected to a force represented by the vector:

$$\mathbf{f}(\mathbf{x}, t) = \begin{pmatrix} f_1(\mathbf{x}, t) \\ f_2(\mathbf{x}, t) \\ f_3(\mathbf{x}, t) \end{pmatrix}.$$

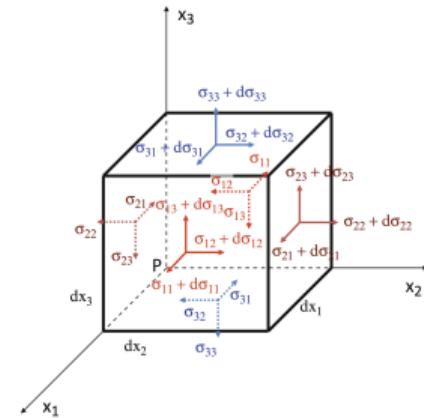
- Stress is not uniform. The variation of the stress between two opposite sides is linear and

$$d\sigma_{ij} = \partial_{x_k} \sigma_{ij} dx_k$$

- Newton 2nd law of motion taking into account internal forces \mathbf{f}^i is

$$\mathbf{f}^i(\mathbf{x}, t) + \mathbf{f}(\mathbf{x}, t) = \rho(\mathbf{x}) \ddot{\mathbf{u}}(\mathbf{x}, t) dx dy dz$$

where $\rho(\mathbf{x})$ is the material density, $\ddot{\mathbf{u}} = \partial_{tt} \mathbf{u}$ is the acceleration, $dx dy dz$ is the volume of the cube.



Credit: [N]

Differential equations of movement

- The equilibrium equation of elastodynamics in matrix form is:

$$\nabla^T \boldsymbol{\sigma}(\mathbf{x}, t) + \mathbf{f}(\mathbf{x}, t) = \rho(\mathbf{x}) \ddot{\mathbf{u}}(\mathbf{x}, t)$$

- Using the strain-displacement relation we can write it in terms of the displacement field:

$$\nabla^T \mathbf{C} \nabla \mathbf{u}(\mathbf{x}, t) + \mathbf{f}(\mathbf{x}, t) = \rho(\mathbf{x}) \ddot{\mathbf{u}}(\mathbf{x}, t)$$

Boundary conditions

Boundary conditions are appointed for each point on the solid surface $\Gamma = \Gamma_u \cup \Gamma_\sigma$.

■ Prescribed displacement:

$$\mathbf{u} = \hat{\mathbf{u}} \quad \text{sur } \Gamma_u \times]0, T[$$

where $\hat{\mathbf{u}} = \{\hat{u}_1, \hat{u}_2, \hat{u}_3\}^T$ is the given displacement prescribed on Γ_u .

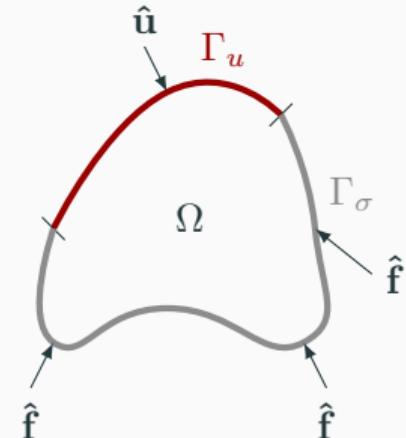
■ Prescribed surface force:

$$\mathbf{N}^T \boldsymbol{\sigma} = \hat{\mathbf{f}} \quad \text{sur } \Gamma_\sigma \times]0, T[$$

where $\hat{\mathbf{f}} = \{\hat{f}_1, \hat{f}_2, \hat{f}_3\}^T$ is the given surface load prescribed on Γ_σ and

$$\mathbf{N}^T = \begin{bmatrix} n_1 & 0 & 0 & 0 & n_3 & n_2 \\ 0 & n_2 & 0 & n_3 & 0 & n_1 \\ 0 & 0 & n_3 & n_2 & n_1 & 0 \end{bmatrix}$$

n_1, n_2 and n_3 being the direction cosines for the outward-pointing normal \mathbf{n} to the boundary Γ_σ .



Initial conditions

The initial conditions are set at $t = 0$:

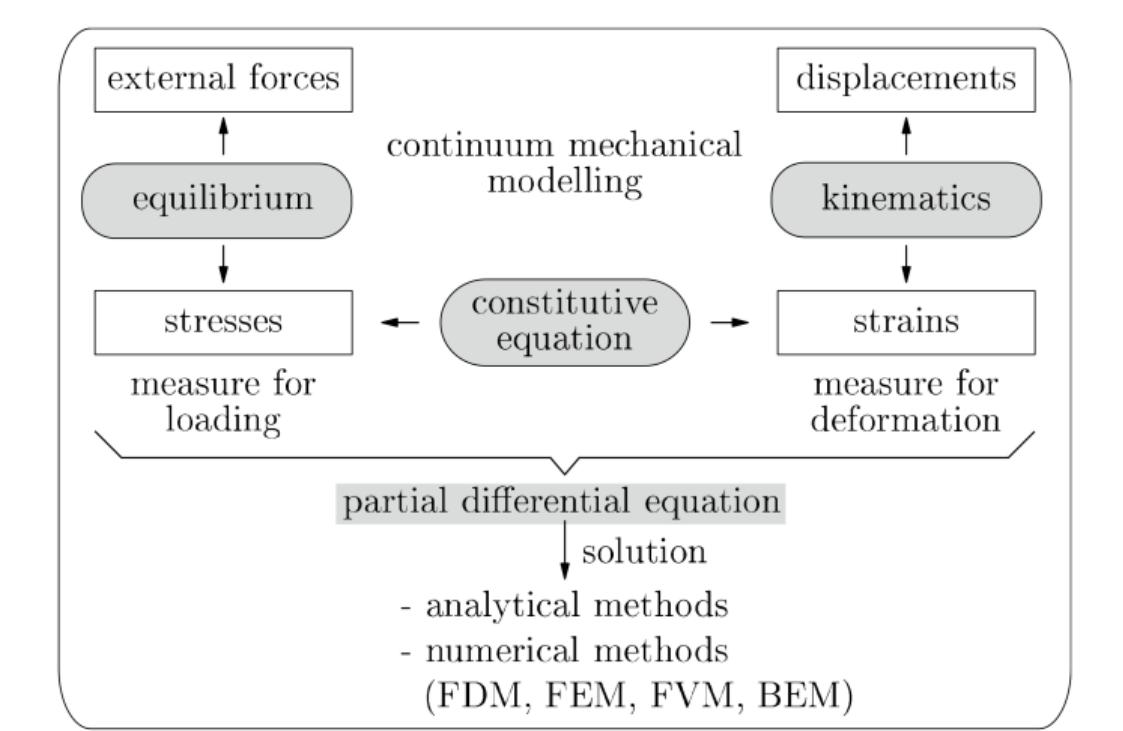
- **Imposed initial displacement field:**

$$\mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega$$

- **Imposed initial velocity field:**

$$\dot{\mathbf{u}}(\mathbf{x}, 0) = \mathbf{v}_0(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega$$

Continuum mechanical modelling



Credit: A. Öchsner - PDE for classical structural members

Strong formulation of equilibrium equations

Strong form of elastodynamics

Given a deformable solid Ω with boundary Γ , and

- stiffness material matrix \mathbf{C} and material density ρ ,
- vector of body load \mathbf{f} applied on Ω ,
- prescribed boundary displacement $\hat{\mathbf{u}}$ on Γ_u and surface load $\hat{\mathbf{f}}$ on Γ_σ ,
- prescribed initial (at $t = 0$) displacement \mathbf{u}_0 and initial velocity \mathbf{v}_0 .

find the displacement $\mathbf{u} \in C^2(\bar{\Omega} \times [0, T], \mathbb{R}^3)$ such that

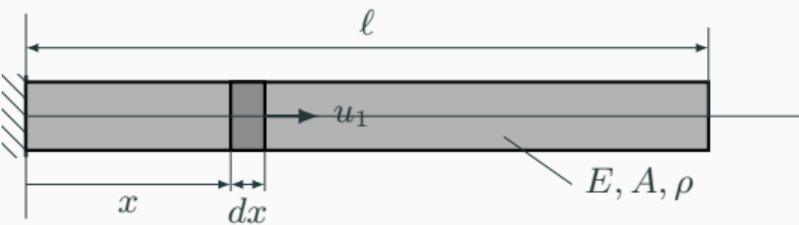
$$\begin{cases} \nabla^T \mathbf{C} \nabla \mathbf{u}(x, t) + \mathbf{f}(x, t) = \rho(x) \ddot{\mathbf{u}}(x, t) & \forall (\mathbf{x}, t) \in \Omega \times [0, T[\\ \mathbf{u}(x, t) = \hat{\mathbf{u}}(x, t) & \forall (\mathbf{x}, t) \in \Gamma_u \times [0, T[\\ \mathbf{N}^T \mathbf{C} \nabla \mathbf{u}(x, t) = \hat{\mathbf{f}}(x, t) & \forall (\mathbf{x}, t) \in \Gamma_\sigma \times [0, T[\\ \mathbf{u}(x, 0) = \mathbf{u}_0(x) & \forall \mathbf{x} \in \Omega \\ \dot{\mathbf{u}}(x, 0) = \mathbf{v}_0(x) & \forall \mathbf{x} \in \Omega \end{cases}$$

Example 1: longitudinal vibrations of bars

Strong form for longitudinal vibrations of bars

Kinematic assumptions:

- The bar cross-section is infinitely rigid in its own plane, remaining plane after deformation.
- Loads, which are uniform in every cross-section, can only be applied axially.
- The influence on the axial movement of the bar of lateral displacements due to the Poisson effect is negligible ($\sigma_{22} = \sigma_{33} = 0$). Thus the bar can undergo only axial stress σ_{11} , which is uniform in every cross-section.



- A cross-sectional area
- E Young's modulus
- ρ material density
- ℓ length
- x axial coordinate
- $u_1(x, t)$ axial displacement
- $N_1(x, t)$ normal stress

$$\rho A \ddot{u}_1 dx$$

A free body diagram of a small element of width dx with normal stress N_1 at the left and $N_1 + \frac{dN_1}{dx}dx$ at the right.

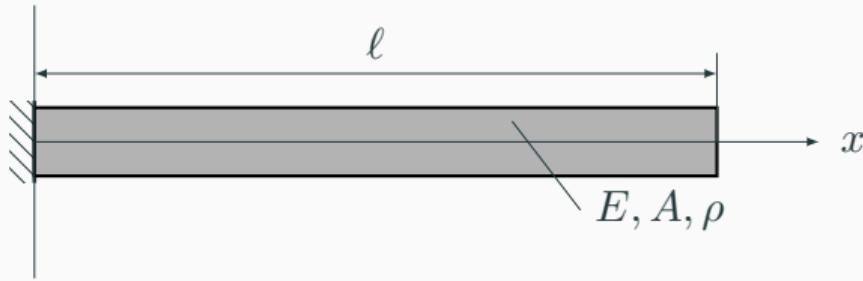
Equilibrium equation:

$$N_1 + \partial_x N_1 dx - N_1 = \rho A \ddot{u}_1 dx$$

Stress-strain-displacement relation:

$$N_1 = A\sigma_{11} = EA\varepsilon_{11} = EA\partial_x u_1$$

Strong form for longitudinal vibrations of bars



- A cross-sectional area
- E Young's modulus
- ρ material density
- ℓ length
- x axial coordinate
- $u_1(x, t)$ axial displacement

Find $u_1 \in C^2([0, l] \times [0, T])$ such that

$$EA\partial_{xx}^2 u_1(x, t) = \rho A \ddot{u}_1(x, t) \quad \forall (x, t) \in]0, \ell[\times]0, T[$$

boundary conditions:

$$u_1(0, t) = 0 \quad \forall t \in]0, T[$$

$$EA\partial_x u_1(\ell, t) = 0 \quad \forall t \in]0, T[$$

initial conditions:

$$u_1(x, 0) = u_0(x) \quad \forall x \in]0, \ell[$$

$$\dot{u}_1(x, 0) = v_0(x) \quad \forall x \in]0, \ell[$$

Disclaimer - exact or closed-form solution

The strong form for longitudinal vibrations of a bar admits an exact solution in the following decoupled form

$$u_1(x, t) = \sum_{k=1}^{\infty} v_k(x) \phi_k(t)$$

where

$$v_k(x) = \sin\left(\frac{\pi(2k+1)}{2\ell}x\right)$$

$$\phi_k(t) = a_k \sin(\omega_k t) + b_k \cos(\omega_k t)$$

$$\omega_k = \frac{\pi(2k+1)}{2\ell} \sqrt{\frac{E}{\rho}}$$

- a_k and b_k depends respectively on the initial conditions u_0 and v_0 .
- k represents a mode of vibration ($k = 1$ first or *fundamental* mode).

Weak formulation of equilibrium equations

Road to weak formulation

- Strong formulations lead to strong solutions in the sense that they require strong continuity in the field variables.
- The weak form is often expressed as an integral equation that requires weaker continuity on the variables.
- The weak form of the elastodynamics problem can be obtained using the *Virtual Work Principle*.

Through the following steps, we can obtain a weak form for a set of differential equations:

- ① Multiply each differential equation by an appropriate arbitrary function
- ② Integrate over the space domain of the problem.
- ③ Reduce the order of the involved derivatives using the divergence theorem.
- ④ Apply the boundary conditions reasonably.

Derivation of weak formulation

- ① Introduce an admissible (avoid divergence of integral) **virtual displacement**:

$$\boldsymbol{\delta}\mathbf{u}(\mathbf{x}) = \begin{pmatrix} \delta u_1(\mathbf{x}) \\ \delta u_2(\mathbf{x}) \\ \delta u_3(\mathbf{x}) \end{pmatrix}$$

- ② Multiply the differential equation by $\boldsymbol{\delta}\mathbf{u}^T$ and integrate it over the spatial domain Ω .

$$\int_{\Omega} \boldsymbol{\delta}\mathbf{u}^T (\nabla^T \mathbf{C} \nabla \mathbf{u} + \mathbf{f}) d\Omega = \int_{\Omega} \rho \boldsymbol{\delta}\mathbf{u}^T \ddot{\mathbf{u}} d\Omega$$

- ③ Apply the divergence theorem to the first term:

$$- \int_{\Omega} (\nabla \boldsymbol{\delta}\mathbf{u})^T \mathbf{C} \nabla \mathbf{u} d\Omega + \int_{\Gamma} \boldsymbol{\delta}\mathbf{u}^T \mathbf{N}^T \mathbf{C} \nabla \mathbf{u} d\Gamma + \int_{\Omega} \boldsymbol{\delta}\mathbf{u}^T \mathbf{f} d\Omega = \int_{\Omega} \rho \boldsymbol{\delta}\mathbf{u}^T \ddot{\mathbf{u}} d\Omega$$

- ④ Use the boundary conditions: $\mathbf{N}^T \mathbf{C} \nabla \mathbf{u} = \hat{\mathbf{f}}$ on Γ_{σ} and impose $\boldsymbol{\delta}\mathbf{u} = 0$ on Γ_u

$$- \int_{\Omega} (\nabla \boldsymbol{\delta}\mathbf{u})^T \mathbf{C} \nabla \mathbf{u} d\Omega + \int_{\Gamma_{\sigma}} \boldsymbol{\delta}\mathbf{u}^T \mathbf{f} d\Gamma + \int_{\Omega} \boldsymbol{\delta}\mathbf{u}^T \mathbf{f} d\Omega = \int_{\Omega} \rho \boldsymbol{\delta}\mathbf{u}^T \ddot{\mathbf{u}} d\Omega$$

Functional spaces

To ensure the integrals remain finite, we impose that:

$$\mathbf{u} \in \mathcal{U} \quad \text{and} \quad \boldsymbol{\delta}\mathbf{u} \in \mathcal{V}$$

$$\mathcal{U} = \{ \mathbf{u}(\cdot, t) \in H^1(\Omega, \mathbb{R}^3) \mid \mathbf{u}(\cdot, t) = \hat{\mathbf{u}} \text{ on } \Gamma_u \ \forall t \in]0, T[\}$$

$$\mathcal{V} = \{ \mathbf{v} \in H^1(\Omega, \mathbb{R}^3) \mid \mathbf{v} = 0 \text{ on } \Gamma_u \}$$

- Recall that $H^1(\Omega)$ is the Sobolev space defined as

$$H^1(\Omega) = \{ \mathbf{w} \in L^2(\Omega, \mathbb{R}^3) \mid \int_{\Omega} (\nabla \mathbf{w})^T \nabla \mathbf{w} \, d\Omega < \infty \}.$$

- Note that the difference between spaces \mathcal{U} and \mathcal{V} is that only the functions in \mathcal{U} are time-dependent.
- The spaces are designed to incorporate only the displacement boundary condition on Γ_u .

Weak form of elastodynamics

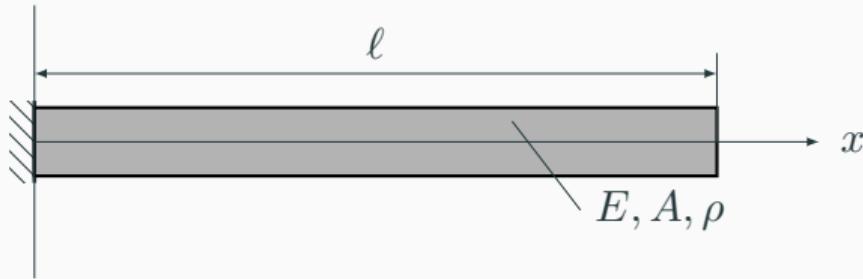
Given Ω , Γ , \mathbf{C} , ρ , \mathbf{f} , $\hat{\mathbf{u}}$, $\hat{\mathbf{f}}$, \mathbf{u}_0 , \mathbf{v}_0 as in the previous slide, find the displacement $\mathbf{u} \in \mathcal{U}$ such that for any virtual displacement $\boldsymbol{\delta}\mathbf{u} \in \mathcal{V}$ we have

$$\int_{\Omega} (\nabla \boldsymbol{\delta}\mathbf{u})^T \mathbf{C} \nabla \mathbf{u} d\Omega + \int_{\Omega} \rho \boldsymbol{\delta}\mathbf{u}^T \ddot{\mathbf{u}} d\Omega = \int_{\Gamma_{\sigma}} \boldsymbol{\delta}\mathbf{u}^T \hat{\mathbf{f}} d\Gamma + \int_{\Omega} \boldsymbol{\delta}\mathbf{u}^T \mathbf{f} d\Omega,$$

$$\left. \begin{array}{l} \int_{\Omega} \rho \boldsymbol{\delta}\mathbf{u}^T \mathbf{u} \Big|_{t=0} d\Omega = \int_{\Omega} \rho (\boldsymbol{\delta}\mathbf{u})^T \mathbf{u}_0 d\Omega, \\ \int_{\Omega} \rho \boldsymbol{\delta}\mathbf{u}^T \dot{\mathbf{u}} \Big|_{t=0} d\Omega = \int_{\Omega} \rho (\boldsymbol{\delta}\mathbf{u})^T \mathbf{v}_0 d\Omega. \end{array} \right\} \text{Initial conditions}$$

Example 1: longitudinal vibrations of bars

Strong form for longitudinal vibrations of bars (reminder)



- A cross-sectional area
- E Young's modulus (isotropic bar)
- ρ material density
- ℓ length
- x axial coordinate
- $u_1(x, t)$ axial displacement

Find $u_1 \in C^2([0, \ell] \times [0, T])$ such that

$$EA\partial_{xx}^2 u_1(x, t) = \rho A \ddot{u}_1(x, t) \quad \forall (x, t) \in]0, \ell[\times]0, T[$$

boundary conditions:

$$u_1(0, t) = 0 \quad \forall t \in]0, T[$$

$$EA\partial_x u_1(\ell, t) = 0 \quad \forall t \in]0, T[$$

initial conditions:

$$u_1(x, 0) = u_0(x) \quad \forall x \in]0, \ell[$$

$$\dot{u}_1(x, 0) = v_0(x) \quad \forall x \in]0, \ell[$$

Derivation of weak form for longitudinal vibrations of bars

- ① Define the virtual displacement $\delta u_1(x)$ so that $\delta u_1 \in H^1(]0, \ell[)$ and $\delta u_1(0) = 0$.
- ② Multiply the differential equation by the virtual displacement and integrate it over the interval $]0, \ell[$.

$$\int_0^\ell EA \frac{\partial^2 u_1}{\partial x^2} \delta u_1 \, dx = \int_0^\ell \rho A \ddot{u}_1 \delta u_1 \, dx.$$

- ③ Use the integration by parts formula on the left hand side:

$$- \int_0^\ell EA \partial_x u_1 \partial_x (\delta u_1) \, dx + [EA \partial_x u_1 \delta u_1]_0^\ell = \int_0^\ell \rho A \ddot{u}_1 \delta u_1 \, dx.$$

- ④ Make use of the boundary condition $EA \partial_x u_1(\ell, t) = 0$ to simplify

$$- \int_0^\ell EA \partial_x u_1 \partial_x (\delta u_1) \, dx = \int_0^\ell \rho A \ddot{u}_1 \delta u_1 \, dx.$$

Weak form for longitudinal vibrations of bars

Find $u_1 \in \mathcal{U}$ such that $\forall \delta u_1 \in \mathcal{V}$ we have

$$\int_0^\ell EA \partial_x u_1 \partial_x (\delta u_1) dx + \int_0^\ell \rho A \ddot{u}_1 \delta u_1 dx = 0,$$
$$\left. \begin{array}{l} \int_0^\ell \rho A u(x, 0) \delta u_1(x) dx = \int_0^\ell \rho A u_0(x) \delta u_1(x) dx, \\ \int_0^\ell \rho A \dot{u}(x, 0) \delta u_1(x) dx = \int_0^\ell \rho A v_0(x) \delta u_1(x) dx. \end{array} \right\} \text{Initial conditions}$$

$$\mathcal{U} = \{u_1(\cdot, t) \in H^1([0, \ell]) \mid u_1(0, t) = 0 \ \forall t \in]0, T[\}$$
$$\mathcal{V} = \{\delta u_1 \in H^1([0, \ell]) \mid \delta u_1(0) = 0\}$$

Example 2: transversal vibrations of beams

Strong form for transversal vibrations of beams

Kinematic assumptions:

- The analysis will be restricted to the dynamic behavior of the beam in the $O(x, y)$ plane.
- A normal cross-section to the neutral fiber remains planar after deformation, but not necessarily orthogonal to it
- Shear deformations ε_{12} of sections are taken into account (Timoshenko or thick beam).



Model parameters:

- A cross-sectional area
- E Young's modulus
- ρ material density
- I moment of inertia
- ℓ length

Loads:

- \hat{M} bending moment at free end
- \hat{V} shear force at free end
- p distributed transversal load

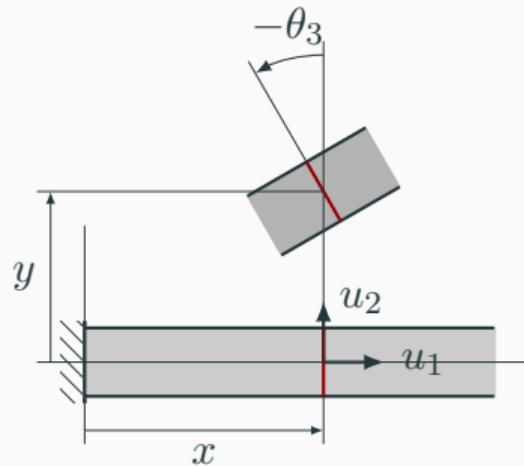
Variables:

- $u_1(x, t)$ axial displacement

- $u_2(x, t)$ transversal displacement

Strong form for transversal vibrations of beams

Introduce an auxiliary variable $\theta_3(x, t)$ representing the total rotation of the section around the Oz axis.



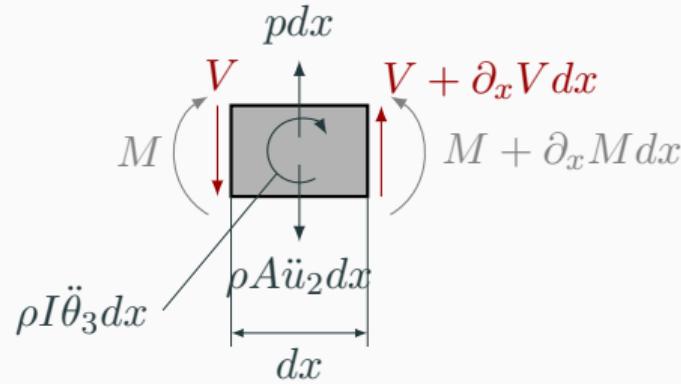
$$u_1 = -y\theta_3$$

Strain-displacement relationships

$$\varepsilon_{11} = \partial_x u_1 = -y \partial_x \theta_3$$

$$\varepsilon_{12} = \partial_x u_2 + \partial_y u_1 = \partial_x u_2 - \theta_3$$

Equilibrium equations of motion



$$\begin{aligned}\partial_x \mathbf{V} + p &= \rho A \ddot{u}_2 \\ \partial_x M + \mathbf{V} &= \rho I \ddot{\theta}_3\end{aligned}$$

Since $\sigma_{11} = E\varepsilon_{11}$ and $\sigma_{12} = kG\varepsilon_{12}$, where the constant k is the shear correction factor (parabolic distribution of tangential stresses)

$$\mathbf{V} = \int_A \sigma_{12} dA = kGA\varepsilon_{12} = kGA(\partial_x u_2 - \theta_3)$$

$$M = - \int_A y\sigma_{11} dA = - \int_A yE\varepsilon_{11} dA = EI\partial_x \theta_3$$

Strong form for transversal vibrations of beams

The strong form for transversal vibrations of beams consists of finding the functions $u_2 \in C^2([0, \ell] \times [0, T])$ and $\theta_3 \in C^2([0, \ell] \times [0, T])$ such that the following equilibrium equations, boundary and initial conditions are satisfied.

Equilibrium equations

$$\partial_x(kGA(\partial_x u_2 - \theta_3)) + p = \rho A \ddot{u}_2$$

$$\partial_x(EI\partial_x \theta_3) + kGA(\partial_x u_2 - \theta_3) = \rho I \ddot{\theta}_3$$

In matrix form:

$$\underbrace{\begin{pmatrix} \partial_x & 0 \\ 1 & \partial_x \end{pmatrix}}_{\nabla_{\sigma}^T} \underbrace{\begin{pmatrix} kGA & 0 \\ 0 & EI \end{pmatrix}}_{\mathbf{C}} \underbrace{\begin{pmatrix} \partial_x & -1 \\ 0 & \partial_x \end{pmatrix}}_{\nabla_u} \underbrace{\begin{pmatrix} u_2 \\ \theta_3 \end{pmatrix}}_{\mathbf{u}} + \underbrace{\begin{pmatrix} p \\ 0 \end{pmatrix}}_{\mathbf{f}} = \underbrace{\begin{pmatrix} \rho A & 0 \\ 0 & \rho I \end{pmatrix}}_{\mathbf{M}} \underbrace{\begin{pmatrix} \ddot{u}_2 \\ \ddot{\theta}_3 \end{pmatrix}}_{\ddot{\mathbf{u}}}$$

$$\nabla_{\sigma}^T \mathbf{C} \nabla_u \mathbf{u} + \mathbf{f} = \mathbf{M} \ddot{\mathbf{u}}$$

Boundary and initial conditions

Boundary conditions

$$\begin{aligned} u_2(0, t) &= 0 & \forall t \in]0, T[& kGA(\partial_x u_2(\ell, t) - \theta_3(\ell, t)) = \hat{V} & \forall t \in]0, T[\\ \theta_3(0, t) &= 0 & \forall t \in]0, T[& EI \partial_x \theta_3(\ell, t) = \hat{M} & \forall t \in]0, T[\end{aligned}$$

In matrix form:

$$\begin{aligned} \mathbf{u}(0, t) &= 0 & \forall t \in]0, T[\\ \mathbf{C} \nabla_u \mathbf{u}(\ell, t) &= \hat{\mathbf{f}} & \forall t \in]0, T[\end{aligned}$$

Initial conditions

$$\begin{aligned} u_2(x, 0) &= u_0(x) & \forall x \in]0, \ell[& \dot{u}_2(x, 0) = v_0(x) & \forall x \in]0, \ell[\\ \theta_3(x, 0) &= \theta_0(x) & \forall x \in]0, \ell[& \dot{\theta}_3(x, 0) = \phi_0(x) & \forall x \in]0, \ell[\end{aligned}$$

In matrix form:

$$\begin{aligned} \mathbf{u}(x, 0) &= \mathbf{u}_0 & \forall x \in]0, \ell[\\ \dot{\mathbf{u}}(x, 0) &= \mathbf{v}_0 & \forall t \in]0, \ell[\end{aligned}$$