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(Credit: Noé Jiménez)

Linear: infinitesimally small defor-
mations relative to the solid’s size.

Elasticity:  deformable material
that returns to its original shape and
size when the forces causing the de-
formation are removed.

Dynamics: study bodies in motion
under the influence of the mechan-
ical actions applied to them (time-
dependent problems).


https://nojigon.webs.upv.es/simulations_plate.php
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Hypothesis and notations

m Inertial orthonormal reference frame O(z,y, 2).
Sometimes will use O(z1, 2, z3).

m Continuous three-dimensional deformable finite Y
(compact) body with volume 2 and surface T'.

m Material: continuous and homogenous. T
m Deformations: small (proportional to stress).

m Continuous and derivable time-dependent
(unknown) displacement field:

where x € Q and t € [0, T].
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Stress and strain tensors

Stress tensor o Strain tensor
0'11(X7 t) 611(X,t)
O'QQ(X7 t) 522(X7t)
o33(x,t) : e33(x,1)
o(x,t) = e(x,t) =
( ) 023 (X7 t) ( ) 2e93 (X7 t)
0—31(X7 t) 1 2631(X7 t)
012 (X7 t) Credit: [N] 2512 ()(7 t)

m Stress expresses the internal forces that neighboring particles of a material exert on each
other (SI units of Pascal.)

m Strain is defined as relative deformation, compared to a reference position configuration (SI
units of meter per meter.)

m First index specifies the normal of the surface on which the stress/strain is acting, the second
index specifies the direction of the stress/strain.

m if 1 # j then 0;; = 7;; (shear stress) and 2¢;; = 7;; (engineering shear strain).

m Symmetric tensors: 7;; = 7;; (Cauchy’s stress theorem) and ~;; = v;s.
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The stress-strain curve
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https://www.fidelisfea.com/post/stress-and-strain-what-are-they-and-what-is-their-relationship

Generalised Hooke’s law

The constitutive stress-strain relationship of linear elasticity is given by the
Hooke’s law:
o(x,t) = Ce(x,t) and e(x,t) =So(x,t)

where C is called the stiffness material matrix and S = C~1.
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1 - Anisotropic materials

No symmetry: these materials have properties that vary with direction. Their
strength, stiffness, and conductivity differ depending on the axis of measurement.

S11 S12 S13  S14  S15  S16
S§21 S22 823 S24  S25  S26
S — $31 832 S33 S34 S35 S36
S41  S42  S43 S44  S45  S46
S51 S52  S53 S54  S55  Ss6
S61  S62 S63 S64 S65 566

m Most of the elements are non-zero, the matrix is considered dense.

m 21 independent constants (symmetry).
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2 - Orthotropic materials

3 planes of symmetry: a special case of anisotropic materials where properties
vary along three mutually perpendicular directions. These materials have three
different principal material properties along three axes.

1/E1 —1/21/E2 —V31/E3 0 0 0
—Vlg/El l/Eg —V32/E3 0 0 0
S — 71/13/E1 71/23/E2 1/E3 0 0 0
0 0 0 1/Gys 0 0
0 0 0 0 1/Gsi 0

0 0 0 0 0 1/Gis

m F; is the Young’s modulus along axis Ox;.

m G;; is the shear modulus in direction Ox; on the plane whose normal is Ox;.

m v;; is the Poisson’s ratio that corresponds to a contraction in direction Oz;
when an extension is applied in direction Ox;.
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3 - Isotropic materials

oo planes of symmetry: these materials have identical properties in all
directions. Their mechanical and physical properties do not change regardless of
the direction in which they are measured.

1)E -v/E —v/E 0 0 0
-v/E 1/E —v/E 0 0 0
g_|-v/E -v/E 1/E 0 0 0
=1 o 0 0o 16 0 0
0 0 o 0 1/G 0
0 0 o 0 0 1/G

m F is the Young’s modulus, G is the shear modulus, and v is the Poisson’s ratio.

m Only two independent constants since F = 2G(1 + v).
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Strain-displacement relationship

m Both normal strain and shear strain can be regarded as a rate of displacement variation and

angle per unit length.
m The components of strain can be obtained by derivatives of the displacements for small

deformation in solids.
m The strain-displacement relation can be written in the three equivalent forms as follows:

a) e(x,t) = Vu(x,1)

€11 _833 0 0 1
€22 0 9, O u
£33 0 0 8z 1
b) = s
2823 0 8Z Gy u
2831 8z 0 8;,; 3
2612 _8y am 0 i
C) By = Bxlul and 287;]' = 8xiuj + 8Ijui

Credit: [N]
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Equilibrium equations of motion




Differential equations of movement

m Consider an infinitely small cube subjected to a force represented
by the vector:

X3

f1 (X, t)
f(x,t) = | fa(x,1)
f3 (Xv t)

m Stress is not uniform. The variation of the stress between two
opposite sides is linear and

dO’ij = 83%0'2‘]‘ dxk

m Newton 2nd law of motion taking into account internal forces f? is Credit: [N]

fi(x,t) + f(x,t) = p(x)ii(x,t) dvdydz

where p(x) is the material density, it = Oy u is the acceleration, dzdydz is the volume of
the cube.
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Differential equations of movement

m The equilibrium equation of elastodynamics in matrix form is:
Ve (x,t) + f(x,t) = p(x)ii(x, t)

m Using the strain-displacement relation we can write it in terms of the
displacement filed:

VvICVu(x,t) + f(x,t) = p(x)ii(x, t)
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Boundary conditions

Boundary conditions are appointed for each point on the solid surface I' =T', UT,.

m Prescribed displacement:

i

u=1 sur ', x]0, T T

where @t = {1, 1o, 03} 7 is the given displacement prescribed on T',,.
Iy
m Prescribed surface force:
T _ % f
Nio=t¢t sur I', x]0, T

where f = { fl, fz, fg}T is the given surface load prescribed on T',, ? ¢

and
ny 0 0 0 ns nNg

NT'=|0 ny, 0 ng 0 ng
0 On3n2n10

n1, ny and nz being the direction cosines for the outward-pointing normal n to the
boundary I',.
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Initial conditions

The initial conditions are set at ¢t = 0O:

m Imposed initial displacement field:
u(x,0) = up(x) Vx € Q
m Imposed initial velocity field:

u(x,0) = vo(x) Vx € Q
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Continuum mechanical modelling

/ displacements \
} continuum mechanical i
equilibrium modelling kinematics
. - ( constitutive \ __ o
measure for measure for

loading deformation
partial differential equation
solution
- analytical methods
- numerical methods
\ (FDM, FEM, FVM, BEM) /

Credit: A. Ochsner - PDE for classical structural members
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Strong formulation of equilibrium equations




Strong form of elastodynamics

Given a deformable solid 2 with boundary I', and
m stiffness material matrix C and material density p,
m vector of body load f applied on 2,
m prescribed boundary displacement @ on I',, and surface load f on |
m prescribed initial (at ¢ = 0) displacement ug and initial velocity vg.
find the displacement u € C?(Q x [0, T], R3) such that

VICVu(z,t) + f(x,t) = p(z)ii(z,t) V(x,t) € 2x]0,T[
u(z,t) = a(x,t) V(x,t) € T, x]0, T

NTCVu(z,t) = f(x,t) V(x,t) € Ty x]0, T

u(z,0) = up(x) Vx € Q

u(z,0) = vo(z) Vx € Q
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Example 1: longitudinal vibrations of bars




Strong form for longitudinal vibrations of bars

Kinematic assumptions:
m The bar cross-section is infinitely rigid in its own plane, remaining plane after deformation.
m Loads, which are uniform in every cross-section, can only be applied axially.

m The influence on the axial movement of the bar of lateral displacements due to the Poisson
effect is negligible (022 = 033 = 0). Thus the bar can undergo only axial stress 11, which is
uniform in every cross-section.

m A cross-sectional area
14 m E Young’s modulus
m p material density
| m { length
N m z axial coordinate
R E‘7 A, 1% m uj(x,t) axial displacement
T dx m Njp(xz,t) normal stress
pAidx
— AR Equilibirum equation: Stress-strain-displacement relation:
N, Ny + d—ldac
— N1+ 0, Nidx — N1 = pAﬁ,ld.’]J Ni = Ao11 = EAe11 = EAOu1
dx
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Strong form for longitudinal vibrations of bars

A cross-sectional area

E Young’s modulus

p material density

-
L]
-
€ m ¢ length
-
L]

x axial coordinate

uj (x, t) axial displacement

Find u; € C2([0,1] x [0,T]) such that

FEAD? ui(z,t) = pAiiy(x,t) V(z,t) €]0,£[x]0,T]

boundary conditions: initial conditions:
u1(0,t) =0 vt €]0, T ui(x,0) =up(x)  Vz €]0,/]
EAdyui(4,t) =0 YVt €], T U1 (z,0) = vo(x) Vz €]0,¢]
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Disclaimer - exact or closed-form solution

The strong form for longitudinal vibrations of a bar admits an exact solution in
the following decoupled form

u(z,t) = Y o)k (t)
k=1

where S
vg(x) = sin (7r(2€—|—)$>

or(t) = ag sin(wgt) + by cos(wt)

" _7m(2k+1) |E
b 20 P

m a; and b, depends respectively on the initial conditions ug and vyg.
m k represents a mode of vibration (k =1 first or fundamental mode).
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Weak formulation of equilibrium equations




Road to weak formulation

m Strong formulations lead to strong solutions in the sense that they require
strong continuity in the field variables.

m The weak form is often expressed as an integral equation that requires weaker
continuity on the variables.

m The weak form of the elastodynamics problem can be obtained using the
Virtual Work Principle.

Through the following steps, we can obtain a weak form for a set of differential
equations:

@ Multiply each differential equation by an appropriate arbitrary function
® Integrate over the space domain of the problem.
® Reduce the order of the involved derivatives using the divergence theorem.

® Apply the boundary conditions reasonably.
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Derivation of weak formulation

@ Introduce an admissible (avoid divergence of integral) virtual displacement:

ouq (x)
du(x) = | dus(x)
5U3(X)

® Multiply the differential equation by du” and integrate it over the spatial domain €.
/ du’ (VICVu + £)dQ = / pou’iidQ
Q Q
® Apply the divergence theorem to the first term:

f/Q(V(Su)TCVudQJr/

Su'NTCVudrl + /
T

Sul'fd0 = / pduliidQ
Q Q

@ Use the boundary conditions: N”CVu = f on I', and impose du =0 on I,

- / (Véu)'CvVudQ + / sulfdl + / dulfd0 = / pduliidQ
Q s Q Q
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Functional spaces

To ensure the integrals remain finite, we impose that:

uecld and oucVy
U={u(t)e H(Q,R? |u(,t) =@ onT, Vt€)0,T[}
V={ve H(QR?) |v=0onT,}

m Recall that H'(Q) is the Sobolev space defined as
HY Q) ={w e L*(Q,R?) | /(VW)TVW dQ < oo}
Q

m Note that the difference between spaces U and V is that only the functions in
U are time-dependent.

m The spaces are designed to incorporate only the displacement boundary
condition on I',,.
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Weak form of elastodynamics

Given Q, I, C, p, £, 1, f , Up, vg as in the previous slide, find the displacement
u € U such that that for any virtual displacement du € ¥V we have

/ (Vouw)'CVudQ + / pouTiid= [ ouTfdl + / ou’l'f dQ,
Q Q 9]

s
/ péuTu|t:0 dQ = / p(6u)Tug dQ,
Q Q

/QpéuTil|t_0dQ:/Qp(éu)TVon.

Initial conditions
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Example 1: longitudinal vibrations of bars




Strong form for longitudinal vibrations of bars (reminder)

A cross-sectional area

E Young’s modulus (isotropic bar)

p material density

-
L]
-
€ m ¢ length
-
L]

x axial coordinate

uj (x, t) axial displacement

Find u; € C2([0,¢] x [0,T]) such that

FEAD? uy(z,t) = pAiiy(x,t) V(z,t) €]0,£[x]0,T]

boundary conditions: initial conditions:
u1(0,t) =0 vt €]0, T ui(x,0) =up(x)  Vz €]0,/]
EAdyui(4,t) =0 YVt €], T U1 (z,0) = vo(x) Vz €]0,¢]

Example 1: longitudinal vibrations of bars Linear elastodynamics
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Derivation of weak form for longitudinal vibrations of bars

@ Define the virtual displacement duy(z) so that duy € H'(]0,£[) and du;(0) = 0.

® Multiply the differential equation by the virtual displacement and integrate it over
the intreval |0, £].

¢
/ EA (5u1 dm—/ pAuouy dx.
0

® Use the integration by parts formula on the left hand side:
‘ . ¢
- / EA8yuy 0, (6u1) dz + [EADyu1duy] ) = / pAu1buy da.
0 0
@ Make use of the boundary condition EAJ,uq(¢,t) = 0 to simplify

¢ ¢
EA0uy 0, (0uy) do :/ pAuouy dz.
0
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Weak form for longitudinal vibrations of bars

Find u; € U such that Véu; € V we have

0 0
EA0,uy 0;(duy) dx + / pAii1dur dxr = 0,
0

¢ ¢
/ pAu(x,0)duy (x) de = / pAug(z)ou (z) dr,
0 0

Initial conditions

l l
/ pAU(z,0)0uy (z) do = / pAvo(x)duy (z) d.
0 0

U= {u(t) e H(0,£]) | u1(0 t) =0Vt €0, T[}
V= {6u € Hl(}O ¢ | dui(0) =0}

Example 1: longitudinal vibrations of bars Linear elastodynamics
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Example 2: transversal vibrations of beams




Strong form for transversal vibrations of beams

Kinematic assumptions:
m The analysis will be restricted to the dynamic behavior of the beam in the O(z,y) plane.

m A normal cross-section to the neutral fiber remains planar after deformation, but not
necessarily orthogonal to it

m Shear deformations €12 of sections are taken into account (Timoshenko or thick beam).

y v Model parameters: Loads:

m A cross-sectional area m M bending moment

E Young’s modulus at free end

p
AAAbAAAAaabbbbbbbdaad,

m V shear force at

]
+VY]\/[ . m p material density free end
| } m [ moment of inertia ) .
N m p distributed
= ¢ length transversal load
E: A7 Ps I
m ui(x,t) axial displacement m uz(x,t) transversal displacement
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Strong form for transversal vibrations of beams

Introduce an auxiliary variable 65(x,t) representing the total rotation of the
section around the Oz axis.

=
¢ up = —ybs
e
/ P Strain-displacement relationships
Y A U2 €11 = Opu1 = —y0,03
D Ut €19 = Ogpug + 8yu1 = Oyug — 05
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Equilibirum equations of motion

pdx
Vit V4+0,Vdx

M< C: D M + 8, Mda O=V + 5 = pAiiy
! OuM +V = pl3

Atiad

pl G3dx

dx

Since 011 = Ee11 and 012 = kGe12, where the constant k is the shear correction factor (parabolic
distribution of tangential stresses)

V = / 012 dA = kGA€12 = kGA(@mug — 93)
A

M = —/ Yyoii dA = —/ yEé‘ll dA = E](‘,'),,;Og
A A

Example 2: transversal vibrations of beams Linear elastodynamics 30 / 32



Strong form for transversal vibrations of beams

The strong form for transversal vibrations of beams consists of finding the

functions us € C2([0,4] x [0,T]) and 5 € C?([0, ] x [0,T]) such that the following

equilibirum equations, boundary and initial conditions are satisfied.

0z (kG A(Dyus — 03)) + p = pAiis
82 (E10,05) + kG A(Oyus — 03) = plfs

In matrix form:

0, 0 kGA 0 0, —1 Usg n p\ _(pA O UQ
1 0, 0 EI 0 0, 03 0/ \0 pI)\6b;
vT C Vau u f M i

o

vIiCcV,u+f=Mi

Example 2: transversal vibrations of beams Linear elastodynamics
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Boundary and initial conditions

uz(0,8) =0 Yt €]0,T] kGA(Oyuz(l,t) — 03(0,1)) =V VYt €]0,T]
03(0,t) =0  Vt€]0,T] EI8,05(0,t) = M Vvt €]0, T
In matrix form:
u(0,t) =0  Vt€]o,T]
CV.u(lt)=f vt €0, T]
[Initial conditions
uz(x,0) =up(x)  Vz €]0,/] tg(x,0) =vo(xz)  Vz €]0,4]
03(x,0) = Op(x)  Vz €]0,¢] 03(x,0) = ¢o(xz)  Vx €]0,/]

In matrix form:
u(z,0) =up vz €]0, /]

W(z,0)=vo ¥t eo,4
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