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Problem set 1 - solutions

Problem 1

The integral formulation associated with the matrix differential equation is
¢ ¢
/ ou’ [VIC (V,u) +f] dz = / du” Mii dx
0 0

where du = {0us, 593}T denotes the vector of generalized virtual displacements. Let us write the
differential operator V, relative to the constraints in the form of the following sum

V,=(0,)1+J
where I is the identity matrix of order 2 and J is given by the matrix
0 1
J= { 0l } |
Then the previous integral equation becomes

¢ 7 ¢
/ du’ [0, (CV,u)] dzx + / Su’(J'CV,u+f)dr = / du” Mii dz.
0 0 0

Integration by parts of the first integral and grouping of common-factor terms leads to the following
expression

¢ ¢ p ¢
/ [6u”J" — 0,(6u)"|CV, udr + / oulfdr + [5uTCVuu]O = / du M dz.
0 0 0

In accordance with the definition of the differential operator V, for generalized displacements, and
given the essential and natural boundary conditions respectively at x = 0 and x = ¢, the weak
formulation of the problem consists in finding the solution u € U which satisfies the equation

/O e (V,ou)" C(V,u)dz + /0 e ou'Miidr = /O e ou'fde 4+ ou'(Of VoéueV
where the function classes & and V are defined as follows
U = {u = (s, 053" | us(-, 1) € HY()0,€]); 05(-,1) € H(J0, ]); us(0, 1) = 05(0,) = o} ,
= {au = {Sus, 505} | Sus € HY(]0,£]); 805 € H'(]0, £]); 5u2(0) = 504(0) = o} .
Thanks to the elimination of the V, derivation operator during integration by parts, the weak form

of transverse beam vibrations is close to that of three-dimensional elastodynamics (albeit with the
usual adaptations), whereas the analogy between the two strong formulations was more delicate.
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A final remark regarding the initial conditions, u(z,0) = ug and u(z,0) = v, is necessary. To
reformulate these conditions in terms of an integral equation, we multiply them by the virtual
displacement du and the mass matrix M, followed by integration over the interval [0,¢]. This
procedure follows a strategy similar to that used in deriving the integral form of the governing
equations.

As a result, we obtain the following two conditions, which must be coupled with the weak form

derived earlier:
¢
/ du"™Mu
0

l
/ du'Mu
0

Here, uy and vq represent the vectors of initial generalized displacements and initial generalized
velocities, respectively.

t

¢
dx:/ dutMu, dz,
—0 0

¢
dx:/ dutMv, dzx.
0 0

t=

Problem 2

To derive the weak form, let dus € H'(Q) be an arbitrary test function (virtual transversal dis-
placement) such that duz = 0 on I'. Multiply the strong form equation by duz and integrate over
the domain €2:

Q

Using the divergence theorem to handle the term involving V2us, we obtain:

— / S(Véuz) Vuz dQ + /
Q

r

59U 50 ar + / pous dS) — / piigdug A = 0.
871 Q Q

Since dug = 0 on I', the boundary term vanishes, resulting in the weak form:

Q Q Q

for all duz € H}(Q), where HJ(€2) denotes the space of Sobolev functions that are zero on T'.
The initial conditions, expressed in integral form, are:

/pU3(w,y,0)5U3(l’,y) dwdy:/pu()s(ﬂf,y)Ms(w,y) dzdy
Q Q

and
/ pug(l‘, Y, 0)5U3($, y) dl‘dy = / /)7103@7 y)5u3<x7 y) dl’dy
Q Q

Remark: Notice that the integration is performed solely with respect to the spatial variables,
excluding the time variable. Consequently, the initial conditions concerning the configuration of
the structure at time ¢ = 0 require separate treatment. At this stage, it may not be immediately
apparent why these conditions are expressed in this particular form. However, when we proceed to
discretise the weak form, this specific representation of the initial conditions will prove to be highly
advantageous and essential for the subsequent formulation.



