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Problem set 1 - solutions

Problem 1

The integral formulation associated with the matrix differential equation is∫ ℓ

0

δuT
[
∇T

σC (∇uu) + f
]
dx =

∫ ℓ

0

δuTMü dx

where δu = {δu2, δθ3}T denotes the vector of generalized virtual displacements. Let us write the
differential operator ∇σ relative to the constraints in the form of the following sum

∇σ = (∂x)I+ J

where I is the identity matrix of order 2 and J is given by the matrix

J =

[
0 1
0 0

]
.

Then the previous integral equation becomes∫ ℓ

0

δuT [∂x(C∇uu)] dx+

∫ ℓℓ

0

δuT (JTC∇uu+ f) dx =

∫ ℓ

0

δuTMü dx.

Integration by parts of the first integral and grouping of common-factor terms leads to the following
expression∫ ℓ

0

[δuTJT − ∂x(δu)
T ]C∇uu dx+

∫ ℓ

0

δuT f dx+
[
δuTC∇uu

]ℓ
0
=

∫ ℓ

0

δuTMü dx.

In accordance with the definition of the differential operator ∇σ for generalized displacements, and
given the essential and natural boundary conditions respectively at x = 0 and x = ℓ, the weak
formulation of the problem consists in finding the solution u ∈ U which satisfies the equation∫ ℓ

0

(∇uδu)
T C (∇uu) dx+

∫ ℓ

0

δuTMü dx =

∫ ℓ

0

δuTfdx+ δuT(ℓ)̂f ∀δu ∈ V

where the function classes U and V are defined as follows

U =
{
u = {u2, θ3}T | u2(·, t) ∈ H1(]0, ℓ[); θ3(·, t) ∈ H1(]0, ℓ[);u2(0, t) = θ3(0, t) = 0

}
,

V =
{
δu = {δu2, δθ3}T | δu2 ∈ H1(]0, ℓ[); δθ3 ∈ H1(]0, ℓ[); δu2(0) = δθ3(0) = 0

}
.

Thanks to the elimination of the ∇σ derivation operator during integration by parts, the weak form
of transverse beam vibrations is close to that of three-dimensional elastodynamics (albeit with the
usual adaptations), whereas the analogy between the two strong formulations was more delicate.
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A final remark regarding the initial conditions, u(x, 0) = u0 and u̇(x, 0) = v0, is necessary. To
reformulate these conditions in terms of an integral equation, we multiply them by the virtual
displacement δu and the mass matrix M, followed by integration over the interval [0, ℓ]. This
procedure follows a strategy similar to that used in deriving the integral form of the governing
equations.
As a result, we obtain the following two conditions, which must be coupled with the weak form
derived earlier:

∫ ℓ

0

δuTMu
∣∣∣
t=0

dx =

∫ ℓ

0

δuTMu0 dx,∫ ℓ

0

δuTMu̇
∣∣∣
t=0

dx =

∫ ℓ

0

δuTMv0 dx.

Here, u0 and v0 represent the vectors of initial generalized displacements and initial generalized
velocities, respectively.

Problem 2

To derive the weak form, let δu3 ∈ H1(Ω) be an arbitrary test function (virtual transversal dis-
placement) such that δu3 = 0 on Γ. Multiply the strong form equation by δu3 and integrate over
the domain Ω: ∫

Ω

(
S∇2u3 + p− ρü3

)
δu3 dΩ = 0.

Using the divergence theorem to handle the term involving ∇2u3, we obtain:

−
∫
Ω

S(∇δu3)
T∇u3 dΩ +

∫
Γ

S
∂u3

∂n
δu3 dΓ +

∫
Ω

pδu3 dΩ−
∫
Ω

ρü3δu3 dΩ = 0.

Since δu3 = 0 on Γ, the boundary term vanishes, resulting in the weak form:

−
∫
Ω

S(∇δu3)
T∇u3 dΩ +

∫
Ω

pδu3 dΩ =

∫
Ω

ρü3δu3 dΩ,

for all δu3 ∈ H1
0 (Ω), where H1

0 (Ω) denotes the space of Sobolev functions that are zero on Γ.
The initial conditions, expressed in integral form, are:∫

Ω

ρu3(x, y, 0)δu3(x, y) dxdy =

∫
Ω

ρu03(x, y)δu3(x, y) dxdy

and ∫
Ω

ρu̇3(x, y, 0)δu3(x, y) dxdy =

∫
Ω

ρu̇03(x, y)δu3(x, y) dxdy.

Remark: Notice that the integration is performed solely with respect to the spatial variables,
excluding the time variable. Consequently, the initial conditions concerning the configuration of
the structure at time t = 0 require separate treatment. At this stage, it may not be immediately
apparent why these conditions are expressed in this particular form. However, when we proceed to
discretise the weak form, this specific representation of the initial conditions will prove to be highly
advantageous and essential for the subsequent formulation.
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