Differential equations of movement

m Consider an infinitely small cube subjected to a force represented
by the vector:

m Stress is not uniform. The variation of the stress between two
opposite sides is linear and

dO’ij = &ckaij dCL‘k; @

m Newton 2nd law of motion taking into account internal forces f* is Credit: [N]

f'(x,t) + f(x,t) = p(x)ii(x, t) dedydz

where p(x) is the material density, it = Ji;u is the acceleration, drdydz is the volume of
the cube.
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@ Introduce an admissible (avoid divergence of integral) virtual displacement

5’&1 (X)
du(x) = | duz(x)
5U3 (X)

® Multiply the differential equation by du’ and integrate it over the spatial domain £.
/ 5uT (VICVu + £) dQ = / pouTii d0
Q Q

® Apply the divergence theorem to the first term:

— / (Véu)l CVudQ + / du’ NTCVudl + /
Q r Q
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