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1  Gaussian approximation of binomial distribution

Using Stirling approximation for large n, we have:
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By substituting these into the expression for Pip(n, r):
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That we can simplify as:
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We expand 147 /nb around 1 which gives an approximate Gaussian form (for large n, r is typically
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much smaller than n).
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For a one-dimensional random walk with n steps, each of length b the mean square displacement

is:

(r*) = nb* (8)
So
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where K is a normalization constant.

Moreover,
400
/ Pip(n,r)dr=1 (10)
So,
K = L (11)
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Finally,
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2 Spring constant of freely jointed chain

For F, < 1,
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Then,
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3 Entropic filament
a)
i) ;
d
Ky = ET = Eﬂé—4 = 6.136 - 10"2Jm
ii) Assuming room temperature 7' = 300K,
Ry 9
=— =1482-1
&p T 8 0"m

b) Floppy if L, > &,
i) For d = 10nm, £, = 23.7mm and L, > 23.7mm.
ii) For d = 0.4nm, §, = 60.7nm and L, > 60.7nm.
The atomic radius of Fe is around 0.1 nm, so d > 0.1nm
c) & = lpm, L, = 10pum
(rLY = nb? = 26 L, — 2621 — e~ He/) = 1.8 1071 m?
Then <T§€> = 4.24pm.
By comparison, for the ideal chain <?"ge> = 2§, L. =2-107"m? and <r§e> = 4.47um.

d) Consider pure shear and assume affine deformation

R=(x,y,2) = 7= (rg,ry,rs)
(r2) = A2 (2%)
(ry) =2 ")
(r2) = (="

Here, (2?) = (y?) = (2%) = snb?. Then,

(AF(r)) = %kBT (A2 422 2).



For volume conservation, A, = A, A, = % Then

@F&»:%@T(V+§?—®.

Given a straing, A = 1 4+ ¢, with ¢ < 1. Then,

(AF(r)) = %k:BT {(1 +)? +
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This is the energy difference per whisker. For bulk energy per volume

Afbulk = p<AF(7’)> = 262pk'BT,
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with p the number of whiskers per volume. Here each whisker takes up a volume of V;, ~ <(T§e> 1/2) /10°.
Then

N. V/V,
~— = =1/V,.
P~ v /
For a pure shear with A =1+ ¢
Epp = €
Ey=1=—1l~l-e—1=—¢
€,, =0

For an isotropic material

1 > K
U= (&‘k - §5jk:€zz) + 55121 = :uez?k = 2u52,

Where we have used the fact that ¢ = 0. Then,
2ue? = 28%pkpT, 1 = pkgT.
At room temperature 7' = 300K, kg = 1.38 - 1072 JK 1,
4.14-107%
SRNIRE
4 An entropic spring at work
¢, = 53nm, d = 44nm, h = 55nm.
a) The curvature is K = 1/(d/2) = 2/d. Then the bending energy is
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For DNA, L, = nb = 34pm and Ky, = §,kpT". Then,

1 4
Up = 5&kpT Loy = 1862kpT = 7.71 10718
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b)
1
H = Uy + Ujyso = §€pkaLcﬁ +pTh7

where Uyyso = pV. Imposing dH = 0,
0H  4&,kpTL. 2md
—_— = h pu— .
ad g =l

4 26 kpTL,
= ~ 89kPa.
P=Zan~ B ¢

5 Forces on ideal chain

__ 3kpT,. __ 3kpT
Remember [’ = w2 L= 51T

a) i) 23
3-300-1.38-10"
Fs ectrin — = 2. -1 _13N.
pect 2-15-1072-100- 109 65-10

Fioetin = 2.05 - 1071°N.
Frubutin = 1.55 - 107N,

ii) is just 3 times i).
b) 150 nm > L,

6 Ideal chain with numbers

a)
(ree) =0 and +/(rZ) = by/n = 70.7Tnm (13)
b) . y
ST kT B
K, = = = 2.48107°N
= ¢ L. b2 810 /m (14)

= 64.5nm (15)

F
F=qF =1610"Y%10°=1610"NAz =
K,
7 Kuhn segment and persistence length
For a polymer of N segments, each segment of length [, the squared end-to-end distance (R?) is
related to the persistence length by the equation:

(R?) = 2L§, (16)

where L = N1 is the total contour length of the chain.



As a matter of fact, the end-to-end vector R of the polymer chain can be written as an integral
over the chain’s tangent vectors:
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Thus,
L
(R?) ~ 262 — = 26,L (19)
&p
And in the case of a freely jointed chain with Kuhn length b the end-to-end distance is given by:
(R*) = Nb? (20)
where N = %is the number of Kuhn segments.
Finally,
2¢,L = Nb?> = Lb (21)
(If L #0)
b=2¢, (22)
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