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1 Gaussian approximation of binomial distribution
Using Stirling approximation for large n, we have:
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By substituting these into the expression for P1D(n, r):
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That we can simplify as:

P1D(n, r) ≈
√
n(n

2
)n

√
2π

√
n+r/b

2
(n+r/b

2
)
n+r/b

2

√
n−r/b

2
(n−r/b

2
)
n−r/b

2

(3)

log(P1D(n, r)) ≈
1

2
log(n) + n log(n/2)− 1

2
log(2π)− 1

2
log

(
n+ r/b

2

)
− 1

2
log

(
n− r/b

2

)
−

(
n+ r/b

2

)
log

(
n+ r/b

2

)
−
(
n− r/b

2

)
log

(
n− r/b

2

)
≈
(
n+

1

2

)
log(n)− 1

2
(n+ 1) log

(
n+ r/b

2

n− r/b

2

)
+

r

2b
log

(
n− r/b

n+ r/b

)
− 1

2
log(2π)− n log(2)

(4)

1



We expand 1±r/nb around 1 which gives an approximate Gaussian form (for large n, r is typically
much smaller than n).
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For a one-dimensional random walk with n steps, each of length b the mean square displacement
is:

⟨r2⟩ = nb2 (8)

So,
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where K is a normalization constant.
Moreover, ∫ +∞

−∞
P1D(n, r)dr = 1 (10)
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Finally,
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2 Spring constant of freely jointed chain
For Fz ≪ 1,
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Then,

⟨RZ⟩ ≃ nb

[
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+
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]
and

FZ =
3kbT
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⟨RZ⟩ .

3 Entropic filament
a)
i)

κb = EI = E
πd4

64
= 6.136 · 10−12Jm

ii) Assuming room temperature T = 300K,

ξp =
κb

kbT
= 1.482 · 109m

b) Floppy if Lc ≥ ξp.

i) For d = 10nm, ξp = 23.7mm and Lc ≥ 23.7mm.
ii) For d = 0.4nm, ξp = 60.7nm and Lc ≥ 60.7nm.
The atomic radius of Fe is around 0.1 nm, so d > 0.1nm

c) ξp = 1µm, Lc = 10µm〈
r⃗2ee

〉
= nb2 = 2ξpLc − 2ξ2p(1− e−Lc/ξp) = 1.8 · 10−11m2

Then
√〈
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〉
= 4.24µm.

By comparison, for the ideal chain
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〉
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r⃗2ee

〉
= 4.47µm.

d) Consider pure shear and assume affine deformation
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Here, ⟨x2⟩ = ⟨y2⟩ = ⟨z2⟩ = 1
3
nb2. Then,
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For volume conservation, λx = λ, λy =
1
λ

. Then
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Given a strain ε, λ = 1 + ε, with ε ≪ 1. Then,
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This is the energy difference per whisker. For bulk energy per volume

∆fbulk = ρ⟨∆F (r)⟩ = 2ε2ρkBT,

with ρ the number of whiskers per volume. Here each whisker takes up a volume ofVw ∼
(
⟨r2ee⟩

1/2
)3

/106.
Then

ρ ∼ Nc

V
=

V/Vw

V
= 1/Vw.

For a pure shear with λ = 1 + ε
εxx = ε
εyy =

1
1−ε

− 1 ≃ 1− ε− 1 = −ε

εzz = 0

For an isotropic material
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)2
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2
ε2ll = µε2ik = 2µε2,

Where we have used the fact that εll = 0. Then,

2µε2 = 2ε2ρkBT, µ = ρkBT.

At room temperature T = 300K, kB = 1.38 · 10−23JK−1,

µ =
4.14 · 10−15

⟨r2ee⟩
3/2

4 An entropic spring at work
ξp = 53nm, d = 44nm, h = 55nm.

a) The curvature is K = 1/(d/2) = 2/d. Then the bending energy is

Ub =
1

2
κbLc

1

R2
=

1

2
κbLcK

2.
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For DNA, Lc = nb = 34µm and κb = ξpkBT . Then,
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b)
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where Uiuso = pV . Imposing dH = 0,
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=
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4
h = 0.
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4
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5 Forces on ideal chain
Remember F = 3kBT

nb2
x = 3kBT

2ξbLc
x.

a) i)

Fspectrin =
3 · 300 · 1.38 · 10−23

2 · 15 · 10−9 · 100 · 10−9
= 2.65 · 10−13N.

Factin = 2.05 · 10−16N.

Ftubulin = 1.55 · 10−14N.

ii) is just 3 times i).
b) 150 nm > Lc

6 Ideal chain with numbers
a)

⟨ree⟩ = 0 and
√

⟨r2ee⟩ = b
√
n = 70.7nm (13)

b)

Ksp =
3kbT

2ξpLc

=
3kbT

nb2
= 2.4810−6N/m (14)

c)

F = qE = 1.610−19 ∗ 106 = 1.610−13N∆x =
F

Ksp

= 64.5nm (15)

7 Kuhn segment and persistence length
For a polymer of N segments, each segment of length l, the squared end-to-end distance ⟨R2⟩ is

related to the persistence length by the equation:

⟨R2⟩ = 2Lξp (16)

where L = Nl is the total contour length of the chain.
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As a matter of fact, the end-to-end vector R⃗ of the polymer chain can be written as an integral
over the chain’s tangent vectors:
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Thus,

⟨R2⟩ ≈ 2ξ2p
L

ξp
= 2ξpL (19)

And in the case of a freely jointed chain with Kuhn length b the end-to-end distance is given by:

⟨R2⟩ = Nb2 (20)

where N = L
b

is the number of Kuhn segments.
Finally,

2ξpL = Nb2 = Lb (21)

(If L ̸= 0)
b = 2ξp (22)

6


	Gaussian approximation of binomial distribution
	Spring constant of freely jointed chain
	Entropic filament
	An entropic spring at work
	Forces on ideal chain
	Ideal chain with numbers
	Kuhn segment and persistence length

