
ARTICLES
PUBLISHED ONLINE: 30 OCTOBER 2011 | DOI: 10.1038/NPHYS2127

Criticality and isostaticity in fibre networks
Chase P. Broedersz1,2, Xiaoming Mao3, Tom C. Lubensky3* and Frederick C. MacKintosh1*

Disordered fibre networks are the basis of many man-made and natural materials, including structural components of living
cells and tissue. The mechanical stability of such networks relies on the bending resistance of the fibres, in contrast to
rubbers, which are governed by entropic stretching of polymer segments. Although it is known that fibre networks exhibit
collective bending deformations, a fundamental understanding of such deformations and their effects on network mechanics
has remained elusive. Here we introduce a lattice-based model of fibrous networks with variable connectivity to elucidate
the roles of single-fibre elasticity and network structure. These networks exhibit both a low-connectivity rigidity threshold
governed by fibre-bending elasticity and a high-connectivity threshold governed by fibre-stretching elasticity. Whereas the
former determines the true onset of network rigidity, we show that the latter exhibits rich zero-temperature critical behaviour,
including a crossover between various mechanical regimes along with diverging strain fluctuations and a concomitant diverging
correlation length.

Fibrous networks form materials ranging from paper and
felt1,2 to exotic carbon nanotube structures3,4. Interconnected
networks of filamentous proteins also appear in numerous

biological contexts5–7, including both intracellular mesh-works of
actin and microtubules and extracellular matrices of fibrin and
collagen8. Owing to the collective nature of the softest network
deformation modes, the mechanics of such systems depends not
only on the elastic properties of the constituent fibres but also
sensitively on network connectivity.

It has been known since Maxwell that systems with pairwise,
spring-like forces acting between nodes only become rigid above the
isostatic connectivity threshold, where the number of constraints
arising from such central-force (CF) interactions just balances
the number of internal degrees of freedom9,10. However, below
this CF threshold determined by stretching interactions, networks
can be stabilized by extra interactions11,12, including those arising
from fibre bending. Indeed, naturally occurring filamentous
networks are known to be rigid at a connectivity below the
CF isostatic threshold, suggesting an important role of bending.
Nevertheless, the degree to which fibre bending, rather than CF
interactions, dominates macroscopic mechanics remains a subject
of considerable debate2,13–22.

Here, we develop both a simulation model and an effective-
medium theory, with fibre stretching and bending interactions, to
study bond-diluted lattice-based filamentous networks in two and
three dimensions (2D and 3D). These networks consist of straight
fibres with both stretching and bending rigidity, connected by freely
hinged crosslinks enabling free relative rotation of connected fibres.
Because the constituent filaments resist stretch and compression,
they generate effective central forces directed along the line between
crosslinks; and because they resist bending, they generate torques
favouring parallel alignment of consecutive segments along a single
fibre. We investigate a broad range of network connectivities that
covers both the CF isostatic threshold, which marks the onset
of network rigidity in the absence of fibre bending stiffness, and
a lower-connectivity network rigidity threshold with bending17,18.
These two thresholds mark rigidity–percolation transitions, placing
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our model in a broad class of rigidity–percolation models, either
with central forces only11,23 or with extra bending forces24,25,
including those used to model network glasses10,26,27. In contrast to
those models, here the bending forces act only along a single fibre
rather than between fibres.

Our model exhibits non-mean field critical behaviour near the
CF isostatic point, like rigidity percolation models but unlike12
packed spheres near the jamming transition28–30. Of particular
interest is our finding of a bending-induced crossover at the CF
isostatic point, not studied in other rigidity–percolation models
and absent from previously studied fibre-network models17–20,22.
This bending-induced crossovermarks the transition between three
distinct mechanical regimes: bending dominated, stretching domi-
nated and bend–stretch coupled. The latter regime is characterized
by an anomalous power-law dependence of network elasticity
both on filament bending and stretching rigidities. These results
demonstrate that the fibre’s bending rigidity acts as a field that takes
the network away from the CF critical point. As further evidence
for this critical point, we also find divergent strain fluctuations and
a diverging correlation length at the CF isostatic point; on length
scales smaller than this correlation length, a continuum elastic
description of the network breaks down.

Lattice-based model for fibre networks
We use a combination of simulations and an effective-medium
theory to study the elasticity of disordered fibre networks composed
of straight and stiff filaments. The network is organized on a
bond-diluted triangular lattice in 2D and a face-centred-cubic
(fcc) lattice in 3D, as illustrated in Fig. 1a–c. Undiluted, these
networks have coordination number z = 6 (triangular lattice) and
z = 12 (fcc), placing them well above the CF isostatic threshold
connectivity, zCF = 2d , in d dimensions9,10,12. In contrast to our
model, most previous models for network glasses10,27,31,32 and
stiff-fibre networks17–20,33 have maximum coordination number 4.
We explore the effects of network connectivity—both above and
below zCF—by removing filament segments between vertices with
a probability 1− p.
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Figure 1 | Fibre networks arranged on lattices in 2D and 3D. a,b, A small
section of a sheared diluted triangular network near isostaticity with
relatively stiff filaments (κ = 101 in units of µ`2

0; a) and floppy filaments
(κ = 10−5; b). The deviation of the local deformation from a uniform
deformation is indicated by colour, where blue corresponds to a uniform or
affine deformation and red corresponds to a highly non-affine deformation.
c, An example of a small section of the diluted fcc network at p=0.7. To
probe the mechanical properties of this network we shear the 111 plane
(shown on top) along the direction of one of the bonds in this plane. d,
Schematic representation of two crosslinked fibre segments indicating
bond stretching (δ`ij) between network nodes and angular deflection
(1θijk) along consecutive segments on the same fibre. The crosslinks
themselves are freely hinged. e, Schematic representation of a deformed
section of the network. The arrows indicate the deformation of nodes ui

with respect to the undeformed reference state.

The mechanical energy of the network can be expressed in terms
of the stretching and bending contributions of the constituent
fibres. The mechanical response of such a fibre is determined by its
stretching (that is, Young’s) modulus, µ (units of energy/length),
and bending rigidity, κ (energy× length). For small deformations,
the extension of a fibre segment between vertices i and j is
δ`ij = (uj−ui) · r̂ij to leading order in ui, the displacement field of
the vertices (Fig. 1d,e). Here, r̂ij is the unit vector oriented along
the i–j bond in the undeformed reference state. Adding all energy
contributions resulting from such bond stretching for neighbouring
vertices up to quadratic order in the displacementsui, we arrive at

Estretch=
1
2
µ

`0

∑
〈ij〉

gij
(
uij ·r̂ij

)2
where `0 is the lattice spacing, uij = uj − ui and gij = 1 for
present bonds and gij = 0 for removed bonds. Importantly, the
fibres in this model consist of straight chains of segments with
a rest-length `0. Thus, to calculate the bending contributions
to the network’s energy, we only consider the change in angle,

1θijk = θjk− θij , for consecutive segments ij and jk along the same
fibre in the lattice (Fig. 1d). To leading order, the angular deflection
1θijk = (ujk −uij)× r̂ij , which enables us to express the network’s
bending energy as

Ebend=
1
2
κ

`30

∑
〈ijk〉

gijgjk
[(
ujk−uij

)
× r̂ij

]2
Here, the summation extends only over coaxial neighbouring
bonds. Unlike bond-bending34 and network-glass models10,27,31,32,
the crosslinks at each vertex are freely hinged. Thus, we do not
consider crosslinks here that either contribute an extra longitudinal
compliance, fix a preferred bond angle or lead to bundling5,7,16.

Continuous rigidity transitions
To investigate the mechanical response of these fibre networks, we
calculate the shear modulus G numerically for networks of size W
(see Methods), as shown in Fig. 2a,b. For κ = 0 (dashed line) the
network develops a non-zero macroscopic shear modulus G that
grows continuously from zero as (p−pCF)fCF above theCF threshold,
pCF, where pCF = 0.651, fCF = 1.4± 0.1 in 2D, and pCF = 0.473,
fCF=1.6±0.2 in 3D; the value for the rigidity exponent, fCF, in 2D is
consistentwith previouswork35. However, when κ is increased from
zero, the rigidity threshold decreases discontinuously to a lower
value, pb, which seems to be independent of κ for κ > 0; again, G
grows as a power law, G∼ (p− pb)fb in the vicinity of pb, where
pb= 0.445, fb= 3.2±0.4 in 2D and pb= 0.268, fb= 2.3±0.2 in 3D.
These values for the bending-rigidity threshold, pb, are consistent
with a floppy-mode-counting argument that includes the con-
straints originating from fibre bending interactions (Supplementary
Information). The power-law behaviour of the shear modulus
indicates a second-order rigidity transition at both pCF and pb.

The CF threshold marks a crossover between distinct elastic
regimes. For p > pCF, G approaches a nearly κ-independent
stretching-dominated limit with G∼ µ. In contrast, for p< pCF,
G falls off, reaching a bending-dominated limit with G ∼ κ .
Interestingly, near pCF, we find a crossover between stretching- and
bending-dominated regimes that is characterized by an inflection
in G and a strong dependence on the bond occupation probability
p, or equivalently, network connectivity. This suggests that the
CF isostatic point controls a crossover between the various elastic
regimes of fibre networks.

Effective-medium theory and critical crossover
To gain further insight into our model, we characterize the
mechanical behaviour of the fibre network, including the crossover
near the CF isostatic point, using an analytic approach. In
particular, we develop a variation of the effective-medium
theory (EMT) for fibre networks with both stretching and
bending interactions36. This EMT is a mean-field theory that
accounts for the disorder in the network by mapping the
system to an effective uniform network. The parameters of this
effective medium, such as the bending and stretching rigidity
of the fibres, are determined by a self-consistency condition
on the displacement field on disorder average (see Methods).
Conceptually, this amounts to the requirement that the replacement
of a single bond in the effective network results in a local
distortion of the deformation field, which should average to
zero over the full distribution of possible bond replacements.
An EMT approach of this form is widely used in the study
of disordered systems37–39, and works remarkably well for the
elasticity of disordered lattice models11,40,41. Here we go beyond
those EMT models by including non-central fibre bending
interactions (see Methods).

Our EMT calculation of the shear modulus G in 2D captures the
essential features of the network’s mechanical response obtained
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Figure 2 |Mechanics and non-affine strain fluctuations. a,b, The shear modulus, G, in units of µ/`d−1

0 as a function of the bond occupation probability, p,
for a range of filament bending rigidities, κ , for a two-dimensional triangular lattice (a) and a three-dimensional fcc lattice (b). The numerial results for
κ =0 are shown as dashed grey lines. The EMT calculations for a two-dimensional triangular lattice are shown as solid lines in a. c,d, The non-affinity
measure, 0, is shown as a function of p for various values of κ for a two-dimensional triangular lattice (c) and a three-dimensional fcc lattice (d). The
values of κ in units of µ`2

0 are 100 (green), 10−3 (cyan), 10−4 (red) and 10−6 (blue).

in our numerical simulations, including the existence of separate
CF and bending thresholds, as shown in Fig. 2a. The EMT predicts
pCF= 2/3 and pb≈ 0.56, including a power-law growth of G above
the bending threshold with mean-field rigidity exponents fb = 1,
and a continuous crossover between stretching- and bending-
dominated behaviour in the vicinity of pCF. In particular, for small

1p= p−pCF

the EMT provides an analytic crossover form for G that highlights
the crucial role the CF critical point plays in the bending-
induced crossover:

G=
µ

`d−10

|1p|fCF G±
( κ

µ`20
|1p|−φ

)
(1)

with mean-field exponents12 fCF= 1 and φ= 2, as shown in Fig. 3a.
This scaling form is analogous to that found in random resistor42–44
and CF spring networks11 with two types of resistor (or spring)
present with respective probabilities p and 1− p. The universal
scaling function G±(y) consists of two branches that together
characterize the three regimes of the elastic response of the network.
In particular, when y� 1, G+(y)∼ const. and G−(y)∼ y , implying
a stretching regime, G∼ (µ/`d−10 )|1p|f , above the transition, and
a bending regime, G∼ (κ/`d+10 )|1p|f−φ , below the transition. By
contrast, in the limit y � 1, G must become independent of 1p
because G is neither zero nor infinite at the transition (1p= 0),
implying a bend–stretch coupled regime, G∼ `1−d−2f /φ0 κ f /φµ1−f /φ ,
with fCF/φ= 1/2 in the EMT theory.

Our simulations, in both 2D and 3D, indicate a second-order
transition (Fig. 3b), characterized by the scaling behaviour in
equation (1), but with critical exponents fCF and φ (φ= 3.0±0.2 in
2D and φ= 3.6±0.3 in 3D) that differ frommean-field predictions
(see Table 1). In contrast, spring networks in isostatic configu-
rations near jamming seem to exhibit mean-field behaviour12.
Furthermore, in the vicinity of pCF, we find a broad crossover

regime with an anomalous scaling G ∼ κxµ1−x (Fig. 3c), where
x = fCF/φ = 0.50±0.01 (2D) and x = 0.40±0.01 (3D). This is in
contrast to previousMikado fibre networkmodels in 2Dwith z<4,
where only pure bending and stretching regimes were identified17,18.
Interestingly, an anomalous bend–stretch regime similar to what
we find here may actually appear when the stretch moduli of the
polydisperse segments in such 2D networks are assumed to depend
strongly on bond length45. Our results for the scaling behaviour
of the shear modulus (see equation (1)), including the anomalous
scaling of G with κ demonstrated in Fig. 3c, show that κ acts as a
field in the critical-phenomenon sense, which takes the system away
from criticality and restores network rigidity.

Strain fluctuations and correlation length
To investigate the nature of the various mechanical regimes, we
examine the local deformation field in our simulations. Several
methods have been proposed to quantify the deviation from a
uniform (affine) strain field17,46,47. Here we use a measure for this
non-affinity given by

0=
1

N`20γ 2

∑
i

[
ui−u

(aff)
i

]2
whereu(aff)

i is the affine displacement of vertex i andN is the number
of vertices. This quantity varies over eight orders of magnitude,
indicating non-affine fluctuations that depend strongly on both κ
and p, as shown in Fig. 2c,d. For nonlinear networks (high κ), we
find amonotonic increase in non-affine fluctuations as the network
is diluted down to pb, where 0 exhibits a peak; this may suggest a
divergence of 0 at the bending-rigidity threshold, consistent with
the existence of a critical point. In addition, for smaller values of
κ , a second peak in 0 develops at pCF (Fig. 2c,d.). Importantly,
the development of this peak coincides with the appearance of a
crossover between the stretching and bending regimes (Fig. 2a–d).

The critical phenomena we observe in the mechanical behaviour
indicate a divergence of the non-affine fluctuations at pCF of the
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Figure 3 | Scaling analysis of the mechanics and anomalous elasticity. a,b, Scaling of the shear modulus, G, in the vicinity of the isostatic point with the
scaling form G|1p|−f

=G±(κ|1p|−φ), with G in units of µ/`d−1
0 and the bending rigidity, κ , in units of µ`2

0, for a diluted triangular lattice over a broad range
of filament bending rigidities (κ in units of µ`2

0: 10−1 black, 10−2 magenta, 10−3 cyan, 10−4 red, 10−5 purple and 10−6 blue) for the EMT calculations (a)
and the simulations (b). The asymptotic form of the scaling function for low κ is shown as a dashed grey line in a. The scaling for the numerical data on a
three-dimensional fcc lattice is shown as an inset in b. The EMT exponents are fCF= 1, φ= 2. In contrast, numerically we obtain fCF= 1.4±0.1,
φ= 3.0±0.2 (2D) and fCF= 1.6±0.2 φ= 3.6±0.3 (3D). The scaling for the numerical data is carried out with respect to the isostatic point of the finite
system pCF(W)=0.651 (2D, W= 200) and pCF(W)=0.473 (3D, W= 30). c, The shear modulus as a function of κ close to the isostatic point for a
triangular lattice (p=0.643, blue circles) and an fcc lattice (p=0.47, red squares). At low κ there is a bending-dominated regime Gbend∼ κ ; at
intermediate κ there is a regime in which stretching and bending modes couple strongly with G∼µ1−xκx, where x=0.50±0.01 (2D) and x≈0.40±0.01
(3D). The EMT calculation for κ/µ�|1p|φ is shown as a solid blue line.

form 0 = 0±|1p|−λCF , similar to that of spring networks in a
jammed configuration12. To investigate the nature of the cusp in
0 at pCF we exploit the finite size of the fibre network, W , in our
simulations48. In particular, we anticipate an emergent correlation
length ξ = ξ±|1p|−νCF—diverging at pCF for vanishing κ—which
is associated with the divergent strain fluctuations. However, this
divergence of ξ is limited by the system size, thereby suppressing
the divergence of 0. More specifically, the suppression of the
divergent correlation length ξ is predicted to result in a system-size-
dependent shift of 1p by an amount 1p∗, which is determined by
W ' ξmax = ξ±|1p∗|−νCF . Indeed, we find that the location of the
peak in 0 shifts towards higher p with increasing W according to
pCF(W )= pCF+bW −1/νCF , with pCF= 0.659±0.002, b=−0.3±0.1
and νCF = 1.4± 0.2 (Supplementary Information); these values
for νCF and pCF are consistent with previous results on pure CF
networks where κ=0 (refs 35,49). In addition, the amplitude of the
maximum in 0 increases with system size (Fig. 4a), in quantitative
accord with the expected finite-size scaling 0max ∼ |1p∗|−λCF ∼
W −λCF/νCF . Moreover, we find a good collapse of the simulation data
with 0 =W λCF/νCF F0,±(|1p|W 1/νCF) over a range of system sizes,
with λCF/νCF=1.6±0.2 and νCF=1.4±0.2, as shown in Fig. 4b.

The shear modulus also exhibits such finite-size scaling (Supple-
mentary Information) according toG=W −fCF/νCF FG,±(|1p|W 1/νCF),
consistent with the presence of a diverging correlation length ξ ,
as shown in Fig. 4c. We obtain a good collapse of the elasticity
data using fCF/νCF= 0.9±0.1, along with νCF determined from the
finite-size scaling of 0 (Fig. 4b and Supplementary Information);
these findings are consistent with the value of fCF obtained from the
scaling in Fig. 3. This finite-size scaling analysis for both the strain
fluctuations and the shear modulus at pCF provides evidence for the
existence of a diverging correlation length.

We find analogous finite-size scaling behaviour in the vicinity
of the fibre-bending threshold pb. In particular, the non-affinity
parameter 0 diverges at the bending threshold pb when κ > 0,
and both 0 and G exhibit finite-size scaling at pb, enabling us
to extract a correlation length. The associated critical exponents
we calculate are λb = 1.8 ± 0.3, νb = ±0.2 and fb = 3.2 ± 0.4
(fb = 1 in our EMT) for small κ . This places our fibre model,
along with the two-dimensional model (fb ' 3; refs 17,18) in a

Table 1 |Critical exponents.

Exponent 2D sim. 2D EMT 3D sim.

fCF 1.4±0.1 1 1.6±0.2
φ 3.0±0.2 2 3.6±0.3
νCF 1.4±0.2
λCF 2.2±0.4
fb 3.2±0.4 1 2.3±0.2
νb 1.3±0.2
λb 1.8±0.3

different universality class from bond-bending models, for which
fb = 3.97 (ref. 34). In summary, at both the CF stretching and
bending thresholds, we find critical behaviour that is accompanied
by divergent non-affine fluctuations and a scale-dependent shear
modulus, implying a breakdown of continuum elasticity below the
divergent length scale ξ .

The undiluted triangular and fcc lattices we study have a
coordination number greater than 2d , the Maxwell CF isostatic
threshold. These networks consist of infinitely long straight
filaments. Cutting bonds as we do introduces both finite-length
polymers, and lower connectivity, down to the CF threshold and
below. As a result, our model exhibits two thresholds at pCF
and pb (Fig. 5), in contrast to previous Mikado models in 2D
(refs 17,18,20) and network glass models27, which only exhibit the
bending-rigidity threshold. Cytoskeletal and extracellular networks
can have z as low as 3 (for example, in branched networks) and
as high as 6 (in the case of actin–spectrin networks), although they
typically have a local connectivity near z = 4, where two filaments
are connected by a crosslink, well below the naive CF threshold.
However, in such networks there can be rigid crosslinks that fix a
preferred angle5,7,16 or significant internal stresses, originating from
the network gelation process14, both of which can shift the bending-
rigidity threshold to lower connectivity values22. Moreover, for
networks with straight fibres such as those considered here but
with z ≤ 4, internal stresses generated by molecular motors can
induce a transition from a bending- to a stretching-dominated
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as a zero-temperature critical point.

network elasticity33. We conjecture that such systems may exhibit
a stress-reduced CF threshold and a concomitant stretch–bend
crossover behaviour analogous to what we observe here, including
anomalous scaling for the network elasticity (Fig. 5). In addition,
we expect that our results for the crossover behaviour will apply
to bond-bending models on similar lattices to ours for rigidity
percolation10,27,31,32 and network glasses that include bending forces
between bond pairs at each network node.

Finally, from the perspective of critical phenomena more
generally, the kind of crossover behaviour we find here is in contrast
to most thermal systems, where a field or coupling constant leads to
a crossover from one critical system to another, such as from the
Heisenberg model to the Ising model48. In such systems, there is a
continuous evolution of the critical point that is governed by the
crossover exponent φ. Interestingly, we find no such continuous
evolution with varying bending rigidity, but rather a discontinuous
jump in the critical point pc as soon as κ becomes non-zero,
consistentwith observations in bond-bending25 andBornmodels24.

Methods
Simulations. The mechanical response of the network is determined in our
simulations by applying a shear deformation with a strain γ . This is realized by
translating the horizontal boundaries to which the filaments are attached, after
which the internal degrees of freedom are relaxed by minimizing the energy using
a conjugate-gradient algorithm. To reduce edge effects in our simulation, periodic
boundary conditions are employed at all boundaries. The shear modulus of the
network is related to the elastic energy through G= (2/V )(E/γ 2) for a small strain
γ , where V is the area/volume of the system. In these simulations we have used
system sizes ofW 2

≈ 40,000 (2D) andW 3
≈ 30,000 (3D) unless stated otherwise,

and we use strains no larger than γ = 0.05.

EMT. The EMT maps the diluted random network to an undiluted uniform
effective medium (EM) in which all the fibres have a stretching modulus µm

and a bending rigidity κm, which are determined self-consistently as outlined
below. In our theory, κ is a property of the filament connecting neighbouring sites
rather than a site-associated rigidity that connects next-nearest-neighbour sites.
Following standard EM procedures11,41, an arbitrary bond is either replaced with
probability p by a bond of stretching modulus µ and bending rigidity κ or removed
with probability 1−p. The phonon Green function GV after this replacement is
calculated perturbatively from the uniform EM Green function G, treating the
replaced bond as a scattering potentialV on the EMHamiltonian,

GV
=G+GTG

where the Tmatrix represents all multiple-scattering contributions from the chosen
bond39. The EMT self-consistency condition requires that the disorder-averaged
Green function is equal to that of the unperturbed EM, implying

pT(µ,κ)+ (1−p)T(0,0)= 0 (2)

which provides us with a set of equations from which µm and κm can be
determined for given p.

In the EMT scattering potential V , the stretching term is simply proportional
to µ−µm if the bond is occupied and −µm if it is removed. The bending terms,
however, must be treated differently because replacing a single bond generates two
bending terms, both of which involve second-neighbour interactions. This can be
understood by considering four sites ijkl along a filament. If we replace bond jk,
two bending terms involving second neighbours ijk and jkl are generated in V . The
coefficients of these two bending terms can be found by considering a composite
filament connecting ijkl that is composed of rods with bending rigidity κs between
sites jk and κm between sites ij and kl , respectively, where κs = κ if the bond is
occupied and κs = 0 if it is removed. A direct calculation of the minimum bending
energy yields the effective bending rigidity

κc= 2
(
1
κs
+

1
κm

)−1
(3)

and thus the coefficient of the two bending terms in the scattering potential V ,
involving ijk and jkl , is given by κc−κm.
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To close the EMT self-consistency equation (2), a third-neighbour coupling λm

1
2
λm

∑
〈ijkl〉

[(
ujk−uij

)
× r̂ij

]
·
[(
ukl−ujk

)
× r̂kl

]
must be introduced to the EM and to V accordingly. Thus the EM is characterized
by three parameters (µm,κm,λm), determined by the self-consistency equation (2).
We obtained asymptotic solutions to this equation for small κ in the vicinity of the
CF isostatic point, in which the EM shear modulus G=

√
3µm/4 can be written as

a scaling function of the form of equation (1) with

G±(y)'
3
2

(
±1+

√
1+4Ay/9

)
where A' 2.413.

For κ/µ`20�|1p|φ , to leading order, the value for µm reduces to 3µ|1p|
for 1p> 0, and (A/3`20)κ|1p|−1 for 1p< 0. For κ/µ`0� |1p|φ we find
µm '

√
A`−10 µ1/2κ1/2. These three scaling regimes correspond to three different

slopes 0,1,1/2 in theG|1p|−f versus κ|1p|−φ plot, as shown in Fig. 3a.
EMTs for bond-diluted lattices with CF springs are straightforward because

the springs reside on an individual bond. In contrast, EMTs for lattices with
bending forces are less so because bending forces reside on two bonds whereas
the dilution procedure removes individual bonds one at a time. Our solution is to
treat a given bond as a filament segment with bending modulus κs. The effective
lattice bending modulus for neighbouring bonds with respective bending moduli
κb and κm is given by equation (3). This treatment enables us to unambiguously
remove one bond at a time. The resultant effective theory necessarily includes
third-neighbour coupling, in contrast to a previous EMT (ref. 36), which treated
the bending problem by removing two bonds at a time.
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