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The percolation of rigidity in 2D central-force networks with no special symmetries (generic
networks) has been studied using a new combinatorial algorithm. We count the exact number of
floppy modes, uniquely decompose the network into rigid clusters, and determine all overconstrained
regions. With this information we have found that, for the generic triangular lattice with random bond
dilution, the transition from rigid to floppy occurs at pe., = 0.6602 * 0.0003 and the critical exponents

include » = 1.21 £ 0.06 and B8 = 0.18 £ 0.02.

PACS numbers: 61.43.Bn, 05.70.Fh, 46.30.Cn

The percolation of rigidity on random central-force net-
works has been studied over the past 12 years [1-10].
One of the most interesting findings has been that effec-
tive medium theory describes the behavior of the elas-
tic constants and the number of floppy modes remarkably
well [11,12], except very close to the phase transition from
rigid to floppy. The success of effective medium theory
has allowed complex situations, such as the floppy modes
and elastic behavior of 3D glasses like Ge,As,Se|—, to be
well characterized [1,13]. However, attempts to study the
critical behavior of central-force networks have not been
very satisfactory, and the question of the universality class
[5,6,8—10] remains unresolved. This question is funda-
mental in understanding the nature of the rigidity transi-
tion, and may have important implications as to how the
character of the glass transition is affected by the mean co-
ordination, as has been discussed recently via fragile and
strong glass formers [14].

In this Letter, we point out that many of these difficul-
ties arise because the wrong problem has been studied.
Using concepts from graph theory, we set up generic net-
works that are the set of all networks with a given topol-
ogy and no special symmetries. Real glasses are well
represented by generic networks. In generic networks all
infinitesimal floppy motions carry over to finite motions
[7,15]. A simple way to construct a generic network is to
take a regular lattice structure and randomly displace each
site location by a small amount, thereby eliminating the
presence of connected collinear bonds and parallel bonds.
Instead of these special geometries, we show in Figs. 1(a)
and 1(b) their generic counterparts.

As a paradigm model we have revisited the problem of
rigidity percolation on a bond-diluted triangular network
with central forces [2,11] but which is constructed to be
generic. Hence the topology is that of a triangular lattice,
but the bond lengths and bond angles are locally distorted.
This eliminates the diode problem where a pair of collinear
bonds can only be extended with a cost in energy, but can
be compressed with no cost in energy due to buckling [see
Fig. 1(a)]. The diode effect complicates studies because
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it leads to the breakdown of linear elasticity, which should
be reversible. Therefore, prior studies on the nonlinear
effects arising from geometrical singularities [7] should
be considered as a separate problem. Here we give the
first answers regarding the geometric nature of rigidity
percolation on generic networks and establish a framework
for further discussion.

We focus on the geometrical aspects of rigidity perco-
lation that have not been directly addressed before. Pre-
vious studies [3—-5,9] have used costly relaxation methods
where networks containing 10* sites already present a dif-
ficult numerical challenge. It is now possible to study net-
works containing up to 10 sites, using integer algorithms,
which give exact and unique answers to the geometric
properties of rigidity percolation. This is the first paper
on generic rigidity percolation, and many more studies

(b) (c)

FIG. 1. The shaded regions represent 2D rigid bodies. The
(closed, open) circles denote pivot joints that are members of
(one, more than one) rigid body. (a) Three noncollinear rods
connecting across a rigid body are generic with one internal
floppy mode. Collinear rods along the dotted line would
yield two infinitesimal floppy modes, but buckling can occur.
(b) Three generic bars connecting two rigid bodies form a rigid
structure. If the rods were parallel, it would not be rigid to
shear [16]. (c) Four distinct rigid clusters.
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and applications are suggested. Here we want to empha-
size the conceptual advantage of this new viewpoint.

Much understanding of the general phenomena of
central-force rigidity percolation can be obtained by
studying a network of bars and joints [1,7]. This is
because rigidity is a static concept, involving virtual
displacements. A collection of sites form a rigid clus-
ter when no relative motion within that cluster can be
achieved without a cost in energy. Conversely, the floppy
modes correspond to finite motions of the sample, which
do not cost energy.

The number of floppy modes in d dimensions is given
by the total number of degrees of freedom for N sites
minus the number of independent constraints. A key
quantity is the number of floppy modes per degree of
freedom, f, in the network. By defining the number of
redundant bonds per degree of freedom as n,, we can
write quite generally,

1
dN — (Nzp — dNn,
= (3Nzp n)=1__p_+nr’ (1)
dN p*

f

where p* = 2d/z and z is the lattice coordination.
Neglecting the redundant bonds, as first done by Maxwell
[17], we find that f is linear in the bond concentration,
p, and goes to zero at the Maxwell approximation p*
for the threshold as shown in Fig. 2(a). The Maxwell
approximation gives a very good account of the location
of the phase transition and the number of floppy modes,
but it ultimately fails since the number of independent
constraints is not just the total number of bonds as some
bonds are redundant.
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FIG. 2. (a) Simulation results for the fraction of floppy

modes, f, compared to the Maxwell prediction. Error bars
are smaller than the symbol sizes. (b) A cusp in the second
derivative, f(z), is found at 0.6603 = 0.0003, which locates the
transition. Typical error bars are shown on several data points.
The solid line in (a) and (b) represent the best fit for f and f@,
respectively. We find a cusp exponent of —0.48 = 0.05.
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There are two important differences between connec-
tivity and rigidity percolation. The first difference is that
rigidity percolation is a vector (not a scalar) problem, and
secondly, there is an inherent long range aspect to rigidity
percolation. Figure 1(c) shows four distinct rigid clusters
(two rods and two clusters). Now the placement of one
additional bond, as in Fig. 1(b), locks all four clusters into
a single rigid cluster. This nonlocal character allows a
single bond on one end of the network to affect the rigid-
ity all across the network from one side to the other.

We have implemented an efficient combinatorial algo-
rithm suggested by Hendrickson [15] to (i) calculate the
number of floppy modes, (ii) locate overconstrained re-
gions, and (iii) identify all rigid clusters for 2D generic
bar-joint networks. The crux of the algorithm is based on
a theorem by Laman [18] from graph theory.

Theorem: A generic network in two dimensions with
N sites and B bonds (defining a graph) does not have a
redundant bond if no subset of the network containing
n sites and b bonds (defining a subgraph) violates
b =2n — 3.

By simple constraint counting it can be seen that there
must be a redundant bond when Laman’s condition is
violated. This necessary part generalizes to all dimensions.
However, the essence of Laman’s theorem is that in two
dimensions finding » > 2n — 3 is the only way redundant
bonds can arise. This sufficient part does not generalize
to higher dimensions [15].

The basic structure of an efficient algorithm is to apply
Laman’s theorem recursively by building the network up
one bond at a time. Only subgraphs that contain the
newly added bond need to be checked. If each of these
subgraphs satisfies the Laman condition, then the last
bond placed is independent; otherwise it is redundant.

The algorithm can be understood quite intuitively.
Searching over the subgraphs is accomplished by con-
structing a pebble game [19]. A pebble is either free when
it is on a site or anchored when it is covering a bond. A
free pebble represents a single motion that a site can un-
dertake. A site with two free pebbles has two translational
motions. If two additional free pebbles can be found at
a different site, then the distance between these sites is
not fixed. Placing a bond between this pair of sites will
constrain their distance of separation. This independent
constraint is recorded by anchoring one of the four free
pebbles to the bond, which must always remain covered.

We begin with a network of N = L? sites. Nearest
neighbor bonds are randomly selected and tested in turn.
Then pebbles are shuffled around the network in an
attempt to free two pebbles at each site at the ends of
the test bond. In the shuffling, an anchored pebble can be
released from covering a bond by anchoring a neighboring
free pebble to that bond. Figures 3(a) and 3(b) show an
example of how pebbles are shuffled. It is always possible
to free three pebbles, since they correspond to the rigid
body motion of that bond. A redundant bond is identified
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FIG. 3. A demonstration of the pebble game on a generic
network. Independent (redundant) bonds are shown with solid
(dashed) lines that are (are not) covered by a pebble. Large
(filled, open) circles denote (anchored, free) pebbles on (bonds,
sites). Small (filled, open) circles denote sites belonging to
(one, more than one) rigid cluster. Overconstrained bonds are
shown with heavy dark lines. Shaded regions denote 2D rigid
bodies. (a) Five free pebbles indicate 5 floppy modes until a
new bond is added and tested for independence. A fourth free
pebble is found via the path traced by arrows. (b) The added
bond is independent and thus covered.

when the search for the fourth pebble results in a closed
loop back to the sites at the ends of the test bond. This
indicates that the distance between the incident sites is
already fixed, and the redundant bond is not covered.

The exact number of floppy modes is determined
by counting the number of redundant bonds. When a
redundant bond is found, the set of sites searched in
the failed attempt to free the fourth pebble defines an
overconstrained region. A systematic search to map out
all rigid clusters is made after building the network.
The rigidity between a pair of sites is checked using a
test bond. If the test bond is redundant, then the sites
are mutually rigid. Figure 4 shows a section of a large
network after applying the pebble game.

The pebble game is slowest at the rigidity threshold
where it scales as ~N'? to system size. On average it
takes =1.4 CPU minutes on a Dec-alpha workstation for
processing a 1150 X 1150 site system. Away from the
threshold, the CPU time scales nearly linearly (~N).

A sum rule for f in terms of the rigid clusters can be
written as

N
f)=1= 5 Y npes -, @
s=2

where ng is the number of rigid clusters with s sites
per lattice site. Unlike connectivity percolation, we have
Z,’;V=1 sng(p) = 1 because sites are shared at pivots. For
bond dilution, it can be shown that f) = df/dp =
—~3(1 = No/Ng), where No is the number of bonds
forming the overconstrained regions and Np is the total
number of bonds in the network.

~ -

FIG. 4. The topology of a typical cutout region from a bond-
diluted generic triangular lattice. A particular realization would
have local distortions (not shown) similar to Fig. 3. Heavy dark
lines denote overconstrained bonds. Open circles denote pivots
between two or more rigid bodies.

The second derivative, f @ can be calculated by sam-
pling the change in Np with the random placement of one
additional bond. In Fig. 2(b) we plot f® versus bond con-
centration, p, and find a sharp peak at the threshold. The
behavior of £ suggests that the number of floppy modes
is analogous for rigidity and connectivity percolation. In
the latter case, the number of floppy modes corresponds
to a free energy [20]. Assuming f corresponds to a free
energy density, we fit our data for £, f, and f® to ob-
tain the cusp exponent & = 0.48 * 0.05 and a threshold
of peen = 0.6603 = 0.0003. We note that the total num-
ber of rigid clusters is not suitable as a free energy because
its second derivative changes sign at the transition and thus
violates convexity requirements.

We also analyzed our rigid cluster data using finite
size scaling where a single relevant length scale is
assumed [21]. Each network was filled to a predeter-
mined exact bond concentration. We present results
from data taken from the set of linear system sizes
L = {25,35,50,70, 100, 120, 170, 240, 340, 480, 680, 960}
and have generated Ny realizations (with L®Ng = 108
for L = 100 and Ng = 10000 for L < 100) per fixed
concentration p for both periodic and free boundary
conditions. This extensive simulation is made possible
by considering generic networks.

We define a network as percolating when a spanning
rigid cluster exists. The width in the probability density
for a network of linear size L to percolate should scale
as A ~ AL™'/”. Estimating A(L) from /(p?) — (p)?

and incorporating corrections to finite size scaling [22],
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the correlation length exponent is extrapolated to be v =
1.21 * 0.06. The first moment, { p), is extrapolated to ob-
tain the threshold pcep, = 0.6602 = 0.0003, which agrees
well with the cusp location in f®. Previous best esti-
mates [5,9] for pcen are 0.641 *= 0.001 for the regular
(nongeneric) triangular network. Clearly there are impor-
tant differences between the generic and nongeneric cases.

The fractal dimension df = d — B/v was obtained
using “mass” scaling at p = pcen, by averaging over
approximately 4000 spanning clusters at each system
size mentioned above in addition to another size of
L = 1150 averaging over roughly 2000 spanning clusters.
Incorporating corrections to finite size scaling [22] we
extrapolate dy = 1.86 * 0.02. -As suggested by Duxbury
[23] we examined the fractal dimension of the so-called
backbone [3,5,9], which is the stress carrying part of the
incipient infinite cluster. The backbone dimension was
extrapolated to be 1.80 = 0.03, which agrees well with
Moukarzel and Duxbury [23] as reported in the following
Letter.

We estimate from the order parameter, P., defined
as the probability for a bond to belong to the incipient
infinite cluster, the exponent 8 = 0.18 = 0.02. Recently,
it has been suggested that the transition we see should be
first order [10], and it has been shown that the rigidity
transition is first order on various Bethe lattices [23].
However, we have not detected any indications of a
discontinuity in quantities such as P or f?.

We suggest that the rigidity transition is second order
for the bond-diluted triangular lattice. We have obtained
the exponents v = 1.21 = 0.06 and B = 0.18 = 0.02
using the usual cluster moment definitions [21] except for
the “specific heat” exponent. We find « = 0.48 = 0.05
from f®, as shown in Fig. 2(b), assuming f is the free
energy density. Interestingly, the hyperscaling relation,
a = 2 — dv, is satisfied with our independent estimates
for @ and v within the error bars. Further work is needed
to establish f as an appropriate free energy.

In summary, we have shown how the concept of a
generic graph, as introduced by Laman [18] and ampli-
fied by Hendrickson [15] can greatly simplify problems
concerned with the percolation of rigidity. The surprise is
that networks that lack any symmetry (generic networks)
are much easier to deal with. This concept leads to a
common pc., for all generic bond-diluted triangular net-
works. Moreover, the same static critical exponents (e.g.,
a, B, v, v) would be expected to be universal for all 2D
generic networks. It is now clear that rigidity percolation
(with exponents ¥ = 1.21 * 0.06 and 8 = 0.18 = 0.02)
is in a different universality class than connectivity perco-
lation (with exponents » = 4/3 and 8 = 5/36 = 0.14).
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