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cPrL Stretching in Spring Network

Mechanical properties of general network structures depend on multiple factors:

« Mechanical properties of a single 1D element
* Orientation of 1D element

« Number of 1D elements in a unit area

* Cross-link between 1D elements

We con sider a very simple case:
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LINTAR  SPRINGS ElLKTIC STRIPS

Constitutive relation (2D linear elastic): Tij = Cijrue Uj k1 €{x,y}

> Symmetry and thermodynamics reduces coefficients from 16 to 6

—> 6-fold symmetry only leaves 2 independent coefficients
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=P~L Bulk Modulus

Due to symmetry, only consider a single triangle, “plaquette”

—> Under equi-biaxial extension:

3 —> a=§(lo+5)2z§l§+0(5)

s ~ fs —

—> Energy per plaquette:
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=P~L Bulk Modulus

U

—> Energy perarea: us =— = V3k,

Ao

> Strain energy density:  &;?
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=P-L Shear Modulus

—> Strain energy density:
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For small § [, = [ +E

—> Energy per plaquette:
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cPFL Elastic strips
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Uniaxial tension: 711 = E{" - &11 = kg ( 0) (lo)
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Area fraction of strip: ¢ = 23—
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=P-L Network under External Stress

3
Per plaquette: U = stp52

1)
Uy = \/§k5~p (E)
7/
y / ) Enthalpy: hg = Uy — 7y5€;

H=U —f Tijgij dA
Plaquette
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|:> TijEij =T(€xx+€yy) =T — (Aa = a — ay)

—> H=U-7ta—
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= H= kg 1) — T
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=P-L Network under External Stress

Equilibrium: dH =0

dH
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Catastropic blow-up (I - o) as t - 1
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=P-L Network under External Stress

What if T < 0 (still uniform)?

Deformation can be non-uniform = Huge number of variables

= Need all g—f’ =0

To solve this problem:
1. Numerical solution
2. Calculus of variation
3. Mode analysis
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=P-L Network under External Stress

Mode 1: Uniform contraction (same as extension)

3 1 V3 13
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. Plaquette collapse (zero area)

( 5 = iz % 21, =1, + I
R

Assume that all plaquettes collapse in the same way
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H. =U—1ta=skgp[(2l — )%+ (I, — p)* + 2l — 1, — 1p)*] -
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=P-L Network under External Stress

oH,
= L =1
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HC — Hu |:> Tc — gTb

I(t.) = glo Still uniform

T.<1t<0 Uniform contraction
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=P-L Network under External Stress

Note:

1. Only 2 modes analyzed, others may have lower enthalpy and lead to instability first from
uniform contraction

2. Network must deform from uniform contraction to collapse mode through intermediate
states, these might have higher enthalpy (energy barrier)
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