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Mechanical properties of general network structures depend on multiple factors:
• Mechanical properties of a single 1D element
• Orientation of 1D element
• Number of 1D elements in a unit area
• Cross-link between 1D elements

We con sider a very simple case:

Constitutive relation (2D linear elastic): 𝜏!" = 𝐶!"#$𝜀#$ 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑥, 𝑦

Symmetry and thermodynamics reduces coefficients from 16 to 6

6-fold symmetry only leaves 2 independent coefficients

Regular triangular spring network as 2D isotropic homogeneous elastic materials!
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Due to symmetry, only consider a single triangle, “plaquette”

𝑎! =
3
4 𝑙!"

Under equi-biaxial extension:

𝑎 =
3
4 𝑙! + 𝛿 " ≈

3
4 𝑙!" + 𝑂 𝛿

Energy per plaquette:

𝑈 = 3 $
1
2
𝑘*+𝛿, $

1
2

=
3
4
𝑘*+𝛿,
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Energy per area:

𝐾- =
3
2
𝑘./

𝑢# =
𝑈
𝑎!
= 3𝑘$%

𝛿
𝑙!

"

Strain energy density: 𝜀&&? 𝜀'' = 𝜀(( =
𝛿
𝑙!

𝜀'( = 0

𝑢# = 𝜇# 2𝜀'(" +
1
2
𝜀'' − 𝜀((

" +
𝐾#
2

𝜀'' + 𝜀((
" = 2𝐾#

𝛿
𝑙!

"
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𝑙%& =
𝑙'
2 + 𝛿

&
+ ℎ& 𝑎 = 𝑎' =

3
4
𝑙'& ℎ =

3
2
𝑙'

For small 𝛿 𝑙% ≈ 𝑙' +
𝛿
2

𝑙& ≈ 𝑙' −
𝛿
2

Energy per plaquette:

𝑈 = 2 :
1
2
𝑘()

𝛿
2

&
:
1
2

=
1
8
𝑘()𝛿& 𝑢# =

𝑘$%
2 3

𝛿
𝑙!

"

Strain energy density: 𝑢# = 𝜇# 8 2𝜀'( =
2
3𝜇#

𝛿
𝑙!

"

𝜇- =
3
4
𝑘./
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Uniaxial tension: 𝜏)) = 𝐸#*#+ 8 𝜀)) = 𝑘$%
𝑙!
𝑤

𝛿
𝑙!

𝐾- =
𝜙
2
1 − 𝜈-=-> 𝐾-=->

𝐸#*#+ = 𝑘$%
𝑙!
𝑤 =

2
3
𝐾#

𝑙!
𝑤 = 2𝐾#*#+ 1 − 𝜈#*#+ 𝐾# = 3

𝑤
𝑙!

1 − 𝜈#*#+ 𝐾#*#+

Area fraction of strip: 𝜙 = 2 3
𝑤
𝑙!
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Per plaquette: 𝑈 =
3
4𝑘$%𝛿

"

𝑢# = 3𝑘$%
𝛿
𝑙!

"

Enthalpy:

(𝛿 = 𝑙 − 𝑙!)

ℎ# = 𝑢# − 𝜏,-𝜀,-

𝐻 = 𝑈 −@
.&/012332

𝜏,-𝜀,- 𝑑𝐴

𝜏,-𝜀,- = 𝜏 𝜀'' + 𝜀(( = 𝜏 8
∆𝑎
𝑎!

(∆𝑎 = 𝑎 − 𝑎!)

𝐻 = 𝑈 − 𝜏𝑎 − 𝜏𝑎! Constant, 
neglect

𝐻 =
3
4𝑘$% 𝑙 − 𝑙!

" − 𝜏
3
4 𝑙)
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Equilibrium: 𝑑𝐻 = 0

𝑙 =
𝑙!

1 − ⁄𝜏 𝜏4

𝑑𝐻
𝑑𝑙 = 0

𝜏4 = 3𝑘$%

Catastropic blow-up (𝑙 → ∞) as 𝜏 → 𝜏* 
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What if 𝜏 < 0 (still uniform)?

To solve this problem:
1. Numerical solution
2. Calculus of variation
3. Mode analysis

Deformation can be non-uniform Huge number of variables

Need all +,
+$!
= 0



Network under External Stress

School of 
Engineering

10

Mode 1: Uniform contraction (same as extension) 

𝐻-
./ 𝜏 =

3
4
𝑘()𝑙'& 1 −

1
1 − ⁄𝜏 𝜏*

− 𝜏
3
4

𝑙'&

1 − ⁄𝜏 𝜏* &

Mode 2: Plaquette collapse (zero area) 

2𝑙) = 𝑙" + 𝑙5

Assume that all plaquettes collapse in the same way

𝐻0 = 𝑈 − 𝜏𝑎 =
1
2𝑘() 2𝑙% − 𝑙' & + 𝑙& − 𝑙' & + 2𝑙% − 𝑙& − 𝑙' & :

1
2

𝑑𝐻0 = 0
𝜕𝐻0
𝜕𝑙%

= 0
𝜕𝐻0
𝜕𝑙&

= 0
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𝜕𝐻0
𝜕𝑙&

= 0 𝑙) = 𝑙"

𝜕𝐻0
𝜕𝑙%

= 0 𝑙) =
2
3 𝑙!

𝐻E
FG =

1
12
𝑘*+𝑙H,

𝐻E
FG = 𝐻I

FG 𝜏0 =
1
8
𝜏*
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9
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Note:
1. Only 2 modes analyzed, others may have lower enthalpy and lead to instability first from 

uniform contraction
2. Network must deform from uniform contraction to collapse mode through intermediate 

states, these might have higher enthalpy (energy barrier)


