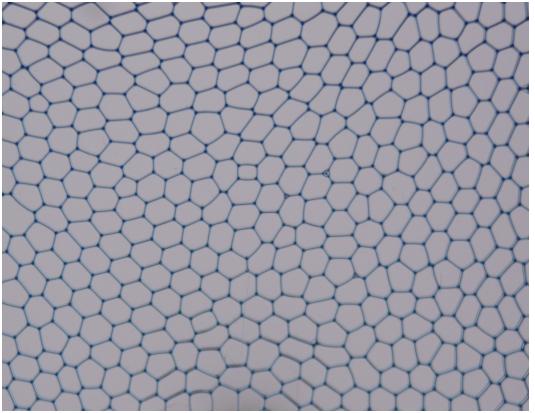
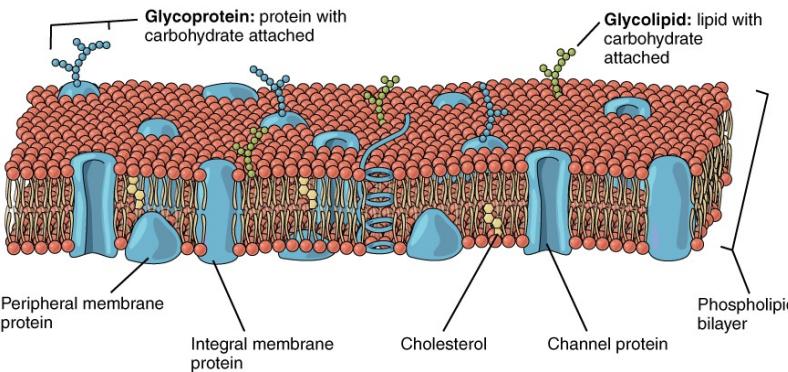
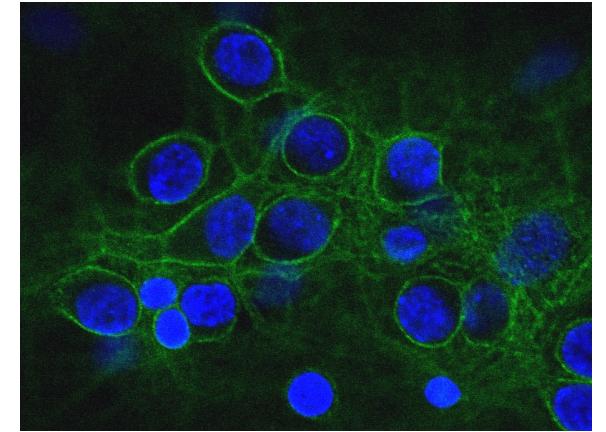
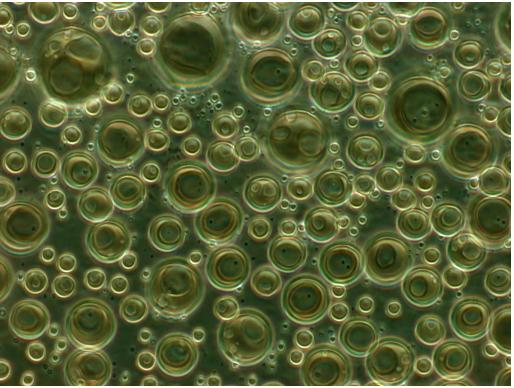


ME470: Mechanics of Soft and Biological Matter

Lecture6: Triangular Lattice



Sangwoo Kim

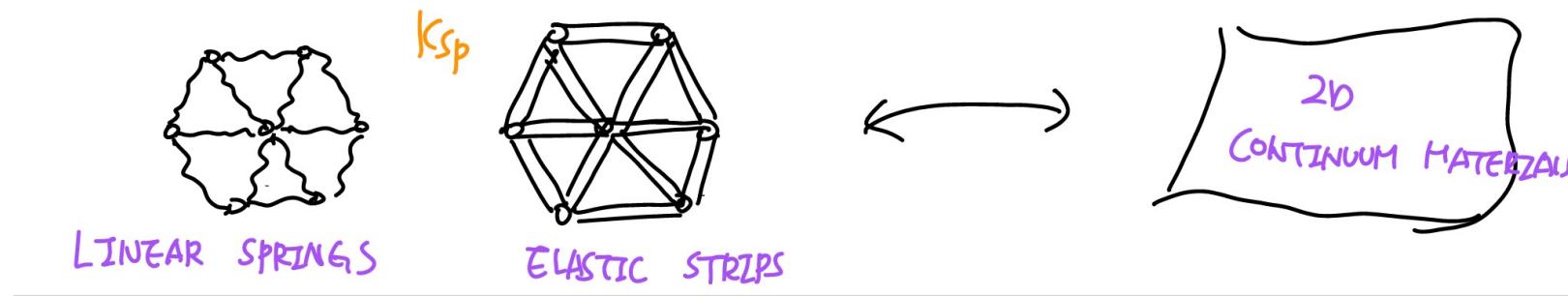
MESOBIO – IGM – STI – EPFL

Red Blood Cells

Mechanical properties of general network structures depend on multiple factors:

- Mechanical properties of a single 1D element
- Orientation of 1D element
- Number of 1D elements in a unit area
- Cross-link between 1D elements

We consider a very simple case:



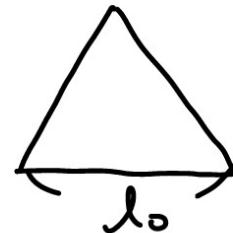
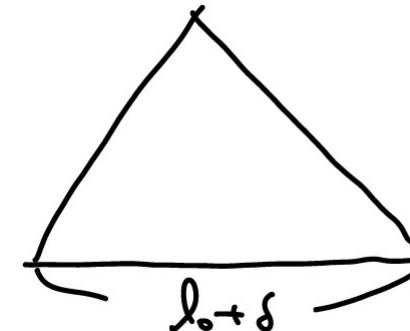
Constitutive relation (2D linear elastic): $\tau_{ij} = C_{ijkl}\varepsilon_{kl} \quad i, j, k, l \in \{x, y\}$

- ➡ Symmetry and thermodynamics reduces coefficients from 16 to 6
- ➡ 6-fold symmetry only leaves 2 independent coefficients
- ➡ Regular triangular spring network as 2D isotropic homogeneous elastic materials!

Due to symmetry, only consider a single triangle, “plaquette”

➡ Under equi-biaxial extension:

$$a_0 = \frac{\sqrt{3}}{4} l_0^2$$



$$a = \frac{\sqrt{3}}{4} (l_0 + \delta)^2 \approx \frac{\sqrt{3}}{4} l_0^2 + O(\delta)$$

➡ Energy per plaquette:

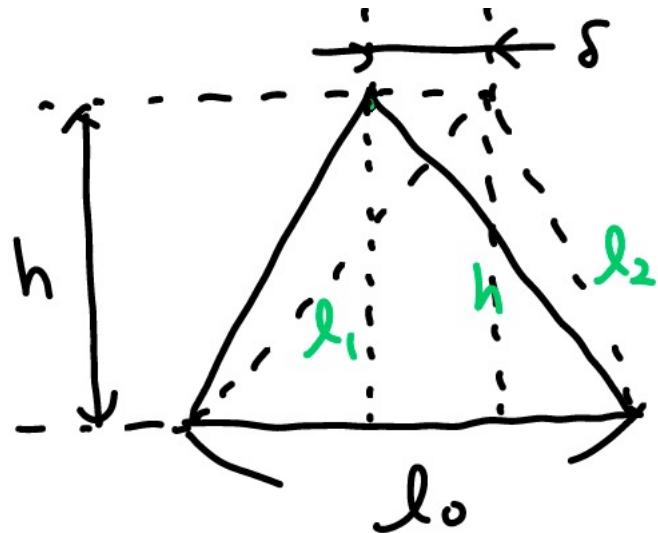
$$U = 3 \cdot \frac{1}{2} k_{sp} \delta^2 \cdot \left(\frac{1}{2}\right) = \frac{3}{4} k_{sp} \delta^2$$

→ Energy per area: $u_A = \frac{U}{a_0} = \sqrt{3}k_{sp} \left(\frac{\delta}{l_0}\right)^2$

→ Strain energy density: ε_{ll} ? $\varepsilon_{xx} = \varepsilon_{yy} = \frac{\delta}{l_0}$ $\varepsilon_{xy} = 0$

$$u_A = \mu_A \left[2\varepsilon_{xy}^2 + \frac{1}{2}(\varepsilon_{xx} - \varepsilon_{yy})^2 \right] + \frac{K_A}{2}(\varepsilon_{xx} + \varepsilon_{yy})^2 = 2K_A \left(\frac{\delta}{l_0}\right)^2$$

→
$$K_A = \frac{\sqrt{3}}{2} k_{sp}$$



$$l_1^2 = \left(\frac{l_0}{2} + \delta\right)^2 + h^2$$

$$a = a_0 = \frac{\sqrt{3}}{4} l_0^2$$

$$h = \frac{\sqrt{3}}{2} l_0$$

For small δ

$$l_1 \approx l_0 + \frac{\delta}{2}$$

$$l_2 \approx l_0 - \frac{\delta}{2}$$

➡ Energy per plaquette:

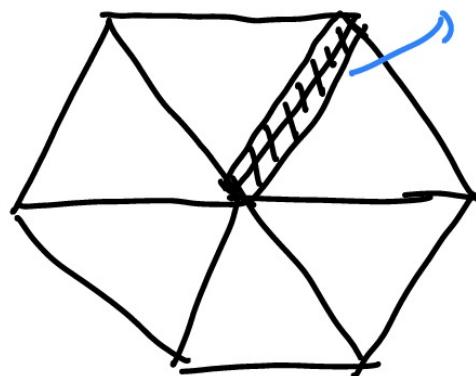
$$U = 2 \cdot \frac{1}{2} k_{sp} \left(\frac{\delta}{2}\right)^2 \cdot \left(\frac{1}{2}\right) = \frac{1}{8} k_{sp} \delta^2$$

$$u_A = \frac{k_{sp}}{2\sqrt{3}} \left(\frac{\delta}{l_0}\right)^2$$

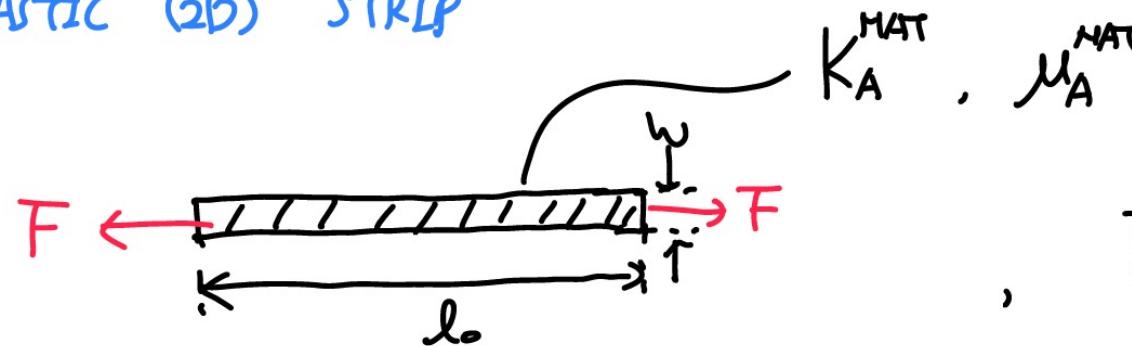
$$u_A = \mu_A \cdot 2\varepsilon_{xy} = \frac{2}{3} \mu_A \left(\frac{\delta}{l_0}\right)^2$$

Strain energy density:

$$\mu_A = \frac{\sqrt{3}}{4} k_{sp}$$



ELASTIC (2D) STRIP



$$F = k_{sp} \cdot \delta$$

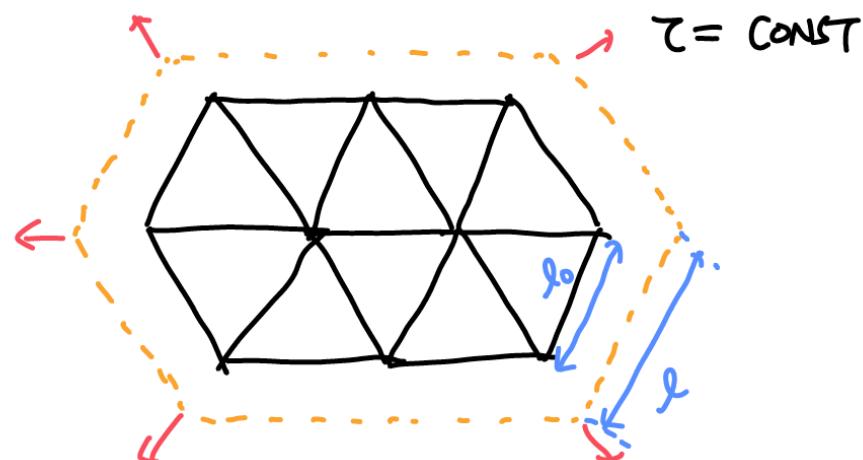
Uniaxial tension: $\tau_{11} = E_A^{MAT} \cdot \varepsilon_{11} = k_{sp} \left(\frac{l_0}{w} \right) \left(\frac{\delta}{l_0} \right)$

→ $E_A^{MAT} = k_{sp} \left(\frac{l_0}{w} \right) = \frac{2}{\sqrt{3}} K_A \left(\frac{l_0}{w} \right) = 2 K_A^{MAT} (1 - \nu_A^{MAT})$

→ $K_A = \sqrt{3} \frac{w}{l_0} (1 - \nu_A^{MAT}) K_A^{MAT}$

Area fraction of strip: $\phi = 2\sqrt{3} \frac{w}{l_0}$

$K_A = \frac{\phi}{2} (1 - \nu_A^{MAT}) K_A^{MAT}$



Per plaquette: $U = \frac{3}{4} k_{sp} \delta^2$ $(\delta = l - l_0)$

$$u_A = \sqrt{3} k_{sp} \left(\frac{\delta}{l_0} \right)^2$$

Enthalpy: $h_A = u_A - \tau_{ij} \varepsilon_{ij}$

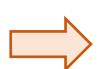
$$H = U - \int_{Plaquette} \tau_{ij} \varepsilon_{ij} dA$$

➡ $\tau_{ij} \varepsilon_{ij} = \tau(\varepsilon_{xx} + \varepsilon_{yy}) = \tau \cdot \frac{\Delta a}{a_0}$ $(\Delta a = a - a_0)$

➡ $H = U - \tau a - \tau a_0$ Constant, neglect

➡ $H = \frac{3}{4} k_{sp} (l - l_0)^2 - \tau \frac{\sqrt{3}}{4} l^1$

Equilibrium: $dH = 0$

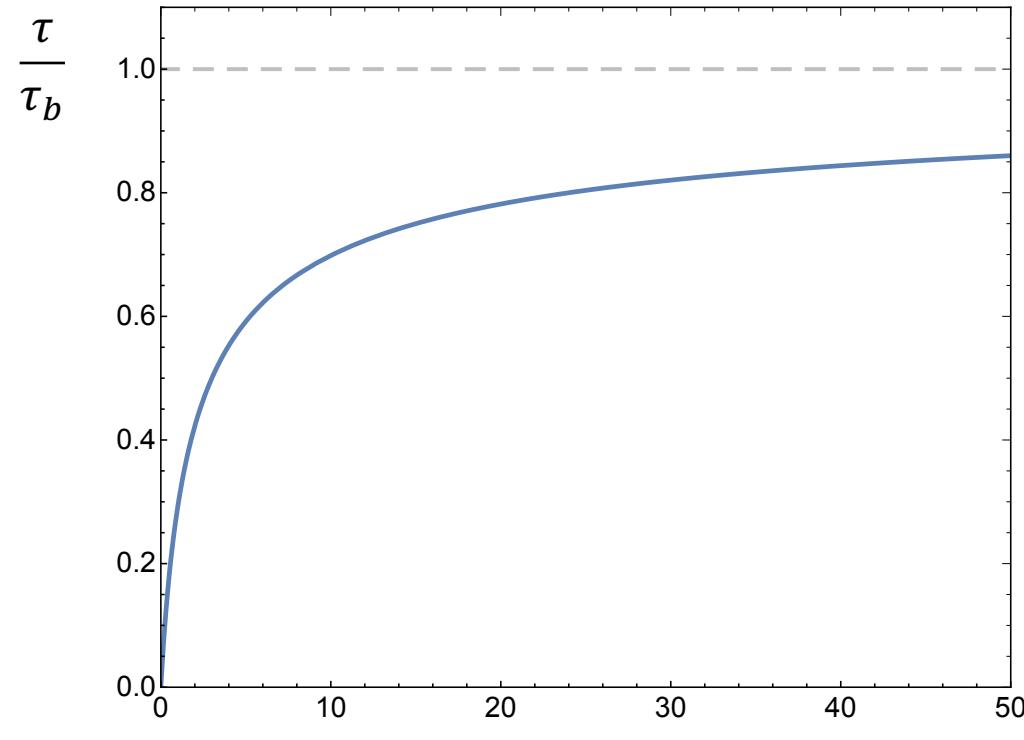


$$\frac{dH}{dl} = 0$$

$$l = \frac{l_0}{1 - \tau/\tau_b}$$

$$\tau_b = \sqrt{3}k_{sp}$$

Catastrophic blow-up ($l \rightarrow \infty$) as $\tau \rightarrow \tau_b$



What if $\tau < 0$ (still uniform)?

Deformation can be non-uniform

Huge number of variables

Need all $\frac{\partial H}{\partial l_i} = 0$

To solve this problem:

1. Numerical solution
2. Calculus of variation
3. Mode analysis

Mode 1: Uniform contraction (same as extension)

$$\Rightarrow H_u^{eq}(\tau) = \frac{3}{4} k_{sp} l_0^2 \left(1 - \frac{1}{1 - \tau/\tau_b} \right) - \tau \frac{\sqrt{3}}{4} \frac{l_0^2}{(1 - \tau/\tau_b)^2}$$

Mode 2: Plaquette collapse (zero area)

Assume that all plaquettes collapse in the same way

$$H_c = U - \tau a = \frac{1}{2} k_{sp} [(2l_1 - l_0)^2 + (l_2 - l_0)^2 + (2l_1 - l_2 - l_0)^2] \cdot \frac{1}{2}$$

$$dH_c = 0 \quad \iff \quad \frac{\partial H_c}{\partial l_1} = 0 \quad \frac{\partial H_c}{\partial l_2} = 0$$

$$\frac{\partial H_c}{\partial l_2} = 0 \quad \Rightarrow \quad l_1 = l_2$$

$$\frac{\partial H_c}{\partial l_1} = 0 \quad \Rightarrow \quad l_1 = \frac{2}{3}l_0$$

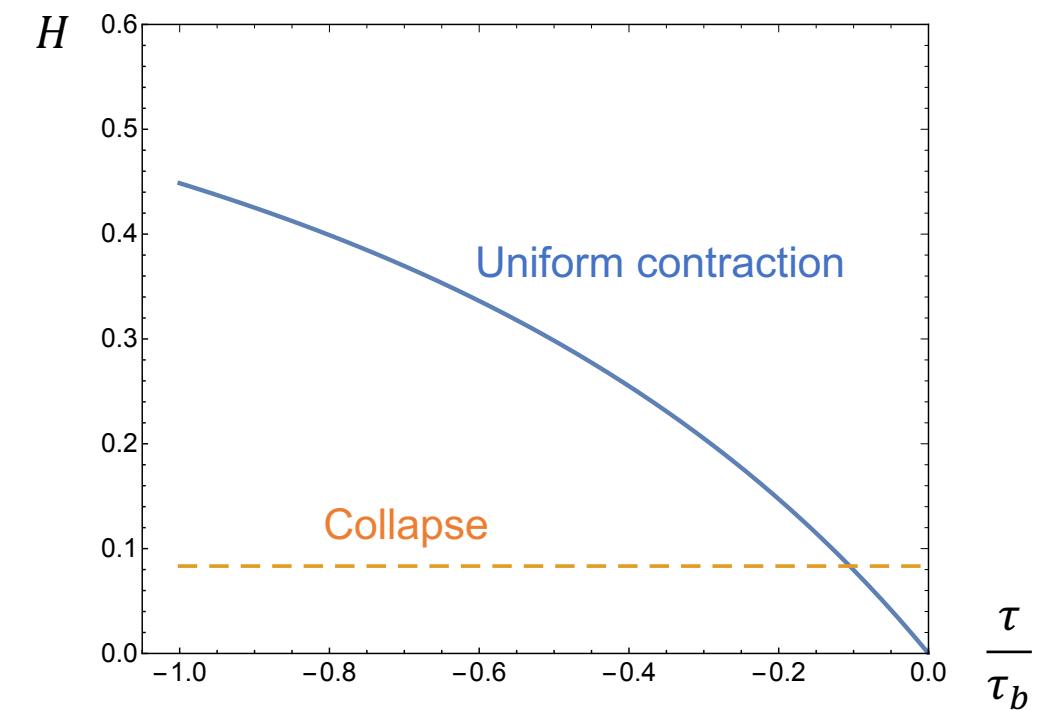
$$H_c^{eq} = \frac{1}{12} k_{sp} l_0^2$$

$$H_c^{eq} = H_u^{eq} \quad \Rightarrow \quad \tau_c = \frac{1}{8}\tau_b$$

$$l(\tau_c) = \frac{8}{9}l_0 \quad \text{Still uniform}$$

$\tau_c < \tau < 0$ Uniform contraction

$\tau < \tau_c$ Collapse



Note:

1. Only 2 modes analyzed, others may have lower enthalpy and lead to instability first from uniform contraction
2. Network must deform from uniform contraction to collapse mode through intermediate states, these might have higher enthalpy (energy barrier)