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Replace n links by a continuous, elastic curve in 3D

Enforce a fixed contour length

(curvature, 𝜅 𝑠 = !!"($)
!$!

  )

𝜕𝑎⃗
𝜕𝑠

!

= 1 ∀	𝑠 )
"

# 𝜕𝑎⃗
𝜕𝑠

!

𝑑𝑠 = 𝐿

Unit tangent vector from differential geometry

𝑡̂ 𝑠 =
𝜕𝑎⃗
𝜕𝑠

𝑈& =
𝐸𝐼
2
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𝜅) 𝑑𝑠 =
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𝑘*𝑇𝑙+(

'

( 𝜕)𝑎⃗
𝜕𝑠)

)

𝑑𝑠



School of 
Engineering

3

Canonical ensemble with 

Worm-Like Chain (WLC)
𝑈 = 𝑈& − 𝐹,𝑅, 𝑎⃗

(Note: 𝑅, 𝑎⃗ = ∫'
( !"($)

!$
5 𝑒̂,𝑑𝑠 )

𝑈 = (
'

( 𝑘*𝑇𝑙+
2

𝜕)𝑎⃗
𝜕𝑠)

)

− 𝐹,
𝜕𝑎⃗(𝑠)
𝜕𝑠

5 𝑒̂, 𝑑𝑠

Probability: 𝑃 𝑎⃗ =
1
𝑍 𝑒𝑥𝑝 −

𝑈(𝑎⃗)
𝑘$𝑇

Partition function: 𝑍 = )
%&&
𝑒𝑥𝑝 −

𝑈(𝑎⃗)
𝑘$𝑇

Z: not analytically computable, but approximation by combining asymptotes exist

𝐹9 =
𝑘:𝑇
𝑙;

1
4
1 −

𝑅9
𝐿

<=

−
1
4
+

𝑅9
𝐿
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Check:

Worm-Like Chain (WLC)

Need to show that 𝑏 = 2𝑙', to apply chain models with freely rotating Kuhn links 

Q: Show 𝑏 = 2𝑙' (Exercise)

𝐹, =
𝑘*𝑇
𝑙+

1
4
1 + 2

𝑅,
𝐿

−
1
4
+

𝑅,
𝐿

=
3𝑘*𝑇
2𝑙+𝐿

𝑅,
𝑅(
𝐿 ≪ 1

𝑅! = )
"

# 𝜕𝑎⃗(𝑠)
𝜕𝑠

𝑑𝑠)
"

# 𝜕𝑎⃗(𝑢)
𝜕𝑢

𝑑𝑢

= )
"

#
)
"

#
𝑒𝑥𝑝 −

𝑢 − 𝑠
𝑙'

𝑑𝑠𝑑𝑢 = 2𝑙'!
𝐿
𝑙'
− 1 + 𝑒)#/&!

𝐿 ≪ 𝑙' 𝑅! ≈ 2𝑙'𝐿 = 𝑛𝑏! = 𝑏𝐿 𝑏 = 2𝑙'
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End to end distance:

e.g) rubber, made of entangled entropic springs (disordered) 

Bulk Entropic Materials 

Assumption: affine deformation
 (microscopic deformation=macroscopic deformation

Individual chain extent in x,y,z changes proportionally to that of 
the bulk

Under stretch: 𝜆-, 𝜆., 𝜆,

𝑅 𝑋, 𝑌, 𝑍 𝑟 𝑥, 𝑦, 𝑧

with 𝑥! = 𝜆+! 𝑋!

𝑦! = 𝜆,! 𝑌!

𝑧! = 𝜆(! 𝑍!



School of 
Engineering

7

Recall entropy of IC:

Bulk Entropic Materials 

(here, 𝑋) = 𝑌) = 𝑍) = /&!

0
 )  

For a single chain

𝑆 𝑅 = −
3𝑘*𝑇
2𝑛𝑏)

𝑅) + 𝑆'

∆Ψ = −𝑇 𝑆 𝑟 − 𝑆 𝑅 =
3𝑘*𝑇
2𝑛𝑏)

𝜆-) 𝑋) + 𝜆.) 𝑌) + 𝜆,) 𝑍) − 𝑛𝑏)

∆Ψ =
𝑘*𝑇
2

𝜆-) + 𝜆.) + 𝜆,) − 3

For N chains: ∆Ψ&123= 𝑁 ∆Ψ
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Rubber: ideally elastic, volume conserved

Bulk Entropic Materials 
𝜆+𝜆,𝜆( = 1

e.g) uniaxial stretch, 𝜆- = 𝜆, 𝜆. = 𝜆, = 1/ 𝜆

∆Ψ =
𝑘:𝑇
2 𝜆= +

2
𝜆= − 3

𝐹+ =
𝜕∆Ψ-.&/
𝜕𝐿+

=
1
𝐿",+

𝜕∆Ψ-.&/
𝜕𝜆 =

𝑁𝑘$𝑇
𝐿",+

𝜆 −
2
𝜆!

Given a cross-section perpendicular to x is A, 

𝜎++ =
𝐹+
𝐴 =

𝑁
𝐴𝐿",+

𝑘$𝑇 𝜆 −
2
𝜆! = 𝜌1𝑘$𝑇 𝜆 −

2
𝜆!

Chain volume density
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A hyperelastic constitutive relation can be derived for small strain

Bulk Entropic Materials 

𝐸 = 3𝜌U𝑘:𝑇

𝜆 = 1 + 𝜀 𝜆 −
2
𝜆)

≈ 3𝜀

Notes:
• The stiffness scales linearly with the chain density
• The stiffness increase for higher temperature (different from most engineering materials)


