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: + ¥ .
where £7 and £ are the amplitudes of the resultant forward and backward propagating

-reflection phenomenon that occurs at one interface disappear. These interference and ;
waves inside the film and

tunneling processes can occur for photons, phonons, and electrons. In this section, we S8
will first examine the interference phenomenon. The formulation established can also 3

be applied to tunneling processes, which will be discussed in section 5.4. ' - wn27 cos 6

A — (5.104)
wl:lere & is. the angle formed between wavevector direction and z. Again, if np is complex
ﬂns ar}gk: s also complex, and can be calculated according to the Snell law. In the above’
equations, we have dropped the terms exp(—iwt) and exp(—ky,x) because all terms h:
these factors and eventually cancel. -

We want to rel_ate the electric and magnetic fields at any location z inside the film to
these fields at the interface z = 0. This can be realized by first taking z = O in eql (5.102)
: and (5.103) and then eliminating E* and E~ in these equations ' il

5.3.1 Propagation of EM Waves

There are three ways to derive an expression for the radiative properties (reflectivity S8 =
and transmissivity) of thin films: the field-tracing method, the resultant wave method, g~

and the transfer matrix method, as explained in figure 5.9. The field-tracing method; ! b £

figure 5.9(a), follows the trajectory of the wave and counts each reflection and transmis-
using the Fresnel reflection” %

sion when the wave meets an interface (Born and Wolf, 1980),
and transmission coefficients. This method is intuitive but cumbersome. Because all the #

forwarding waves in the same medium have the same exponential factor, we can sum- : Ex(z) = Ex(0) cos ] ]
them up into one wave with a undetermined amplitude and call this wave the resultant 38 N 4 x(0) cos ¢(2) +ip2 H(0) sin p(2) (5.105)
wave [figure 5.9(b)]. Similarly, all the backward propa ating waves in the same medium S H, = 3 .

e [figure 5.9(b)]. Similarly. e backward propagating v 1| y(2) = E; (0) sin ¢(z) + Hy(0) cos p(z) (5.106)

then four resultant waves in the single 3

can be summed into a resultant wave. There are
ide the film (forward and backward),

layer thin film situation, one reflected, two ins
and one transmitted, as shown in figure 5.9(b). The amplitude of each resultant wave
will be determined by applying the boundary conditions at the two interfaces. The
transfer matrix method combines all the waves (both forward and backward) in each
medium into one wave, and uses a matrix to relate the electric and magnetic fields
between two different points inside a medium, as shown in figure 5.9(c). Because the
tangential components of the electric and magnetic fields are continuous across the
interface when no interface charge or interface current exists, the transfer matrix method
can be easily extended to multilayers. We will therefore focus on the transfer matrix
method. 3
Consider a TM wave, for example, the x-component of the electric field and the

y-component of the magnetic field inside the film, as a function of location z: b
!

(5.102)

where p» = [cos6y/(ny/uc,)]is the s ]
_ a urface impedance for a
equations can be written in matrix form ' SR

<Ex (Z)> - ( cos¢(z) ipasing(z)\ [E, (0)
.Hy(Z) v p—lz-.Sin p(z) cose(z) ) (Hy (O)) (5.107)

.Taking z = d and inverting the above matrix, we get

(Ex (0)) _ ( cosg;  —ipasing\ (E(d) (Ex(d)
H,©0)) = \~Lsings cosgs Hy(d)) — (Hy(d)) 61103
where ¢ = ¢(d) and M is the second-order matrix i
e ¢ -ond- trix in the ab i
the Emterference matrix. It is easy to show that |M| = 1. SRR I
quation (5.108) relates the electric and magneti inside’
: ! gnetic fields inside the film at z = d t
their values at the boundary z = 0. To find the reflectivity or transmissivity, we need tg

- further relate them to the fields outside the film through the boundary conditions. For a

boundary free of charge and current, e i
k , €gs. (5.58) and (5.61) dictate th, i
magnetic fields are continuous, which means that at 7 = 0) " ke sleciacand

Ex(2) = cos b, ET'?@ 4 cos G, E~ e %@

Hy(Z) l _n_Z_[E-I-ei(ﬁ(z) _ E—eilp(Z)]
] [2241]

< e
A e : Ex(0) = E;cosb; + E, cos b, = E;; + E,, (5.109)
[s(o))= M{E@) Wiy g ‘
~ e O =, i — Er) = (B — Ery) (5.110)
‘E‘d at z = d, only the transmitted wave exists,
By By 0, i
- L] =
(ﬂ) 0 © C Ex (d)\— E‘ COS 9( = EIX (5.111)
Figure 5.9 Three methods of treating reflection and transmission of electromagnetic field
through a thin film: (a) the field tracing method; (b) the resultant wave method; (c) the transfe Hy(d) = 3 E — 1 v
= Y eo b PR Ix i ; (5.112)

matrix method.
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where p; = cosf; / (n1/pco) and p3 = cosb; / (n3/pcg), and we have assumed tha
4 is the same for all layers because most materials are diamagnetic in the infrared to
visible frequency range. We can again write the above equations in matrix form,

Thus, with such a simple substituti i i
L p stitution, all previous expressions for the single-layer film
.For a single layer of film, eqs. (5.117) and (5.118) can be written as

E.(0 1 1 VElie E
(HyEOD ¥ (F}‘ _EL)<Erx) Q1138 _m + ryze?e2
E.(d) ' A 1 : L 1+ riaroze?® (.121)
x u Eix 5.11
(Hy(d)> ( o ) ‘ ey -
Hatze'??
(5.122)

nd (5.108), using the continuity of E; and H. _ _ hanze®
] - 14 riarzeltiv

We now combine egs. (5.113), (5.114), a
at the interfaces, to get

 LE E; 1 -

(G E-EDEs o
P i rx 2] M2 n

e clements of the interference matrix M. Inverting the matrix of the

trices, we obtain

. ;:gli-z r;lzl, irnztgoand dt'u’ t223 aref the Fresnel reflection and transmission coefficients from
ST medium 2 or from medium 2 to medi is vali

T e ey medium 3. The above formula is valid
On the basis of these expressions, we can calculate the reflectivity and transmissivity

where m;j are th .

left-hand side and multiplying out the three ma - of the film. For a nonabsorbing film,
2 2

iy +ryy + 2riara cos 2,

1 1
E; 1 [(my + =miz) + (mai + sm2) Py
o oottt S
rx) (mu + pymi2) — (m21 + M) P1 1+ 2r12r23 cos 205 + 1oy (5.123)
From the above matrix, we get the reflection and transmission coefficients through th . _ m3cos, ¥ 1 =rd)a - %)
ny 0059:' : l+.2r12m mszm +r122r223 (5.124_)

film as
E. E (m1y + -=my2) — (ma1 + Lmxn)p1 ; 4 :
o B _Ex ,,1, plg (5.117) If the optxc.al Fonstants of any media are complex, we should use eq. (5.76
i Eix  (mn+ 55"”2) + (may + Emgz) p1 " the transmissivity, and carry out complex number operation, R g*( . d A7 caiculate
; . W ! s R=rr*and r = 1*.
i o e 612 0 .20, e b e et
st e Y e on of thickness, and when there i i
o A " ._ F it 2 anc ¥ is no absorption the
. ix/COS6 _ : m : .118) : n is periodic, as shown in figure 5.10. This periodic variation in reflectivity and
E; . Eix/cosb; (m11 + Emu) + (ma1 + ;_;mn)Pl i
1
LA L s T e o o i 2 =

where ¢y = cos 6;/cos;. For a TE wave, the above expressions are still valid if p i > "
and ¢, are replaced by ‘ i i & Jranznlssivity,
ncosf : 08 1 i i i & ¥
p=- and cre =1 (5.119) SRR SR S oy ]
Rey ) SR N L
With the reflection and transmission coefficients known, we can calculate the reflectivity 0.6 —' I\' : '-_I/' \ ! L Y : ‘. “ : | H :
and transmissivity according to eqgs. (5.75) and (5.76). For ahsorbing films, the above [ l l ’ : " { \.: o\ f,\ Do _;“..\';-
vy " v . :
WAt

formulation is still valid by if n is replaced with the complex refractive index N.

The power of the matrix method can be best appreciated when dealing with multilayers
of thin films. In this case, we can relate the electric and magnetic field inside the i th
layer at both interfaces by the interference matrix M; for that layer. Since the transverse
components of the electric and magnetic fields are continuous at each interface tha
is free of net charge and current, the total interference matrix of the whole multilaye
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!_ Figure 5.10 Reflectivity,
transmissivity, and
absorptivity of a thin film
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transmissivity is the interference phenomenon, cansed by the constructive or destructi

superposition of the reflected and the incident waves. The maximum or minimum in
reflectivity can be found by setting dR/dg; = 0, which leads to 1 . . -
\ ]
sin 2¢2 =0 PR ( W w
: Stop Bang J
or E [
g 06 ]
4mnoLcosth o I- |
— ~=mnm a
Ao Y 0ab ]
g mhig :
" 4nycosth 02 i
Under the above condition, eq. (5.123) becomes o - , y
1 1.5 2 285 3
WAVENUMBER=1/WAVELENGTH (um™)
(@) (®

&
Figure 5.11 (a) A Bragg rffﬂector is a periodic thin-film structure. (b) Calculated reflectivity of
8 B.ragg reflector as a function of the incident photon wavelength for a reflector with refractive
_wd;ces of 3 and 3.5 and a corresponding thickness of 417 A and 352 A for each layer.

= 2 G
R=("2 m) = (M%) (foroddm =21+ 1)
1—riars nin3 +n;

2 LN
R= (Ei_’z}_) - (M) (foreven m = 21)
1+ riara;, ny+n3

where the first equality in the above two equations is valid for an arbitrary angle o
incidence while the second is for normal incidence only. When the film thickness is ]
(2¢ 4 1) Ao/ (4n7 cos 62), the reflectivity R can be a maximum (n7 < n3) or a minimu :
(ny < n3). Zero reflection occurs when the film has a refractive index ./n1n3 and i
thickness satisfies eq. (5.127) for odd m. Such interference phenomena are the basis?

for antireflection coatings. When the film thickness is €A/ (2n7 cos 6), the reflectivit :
does not depend on the second layer. ' here k(= 27/Ag) is the wavevector in vacuum. Equation (5.131) is identical to the

The reflectivity and transmissivity of multilayer thin films can be calculated using &k ?’,"ndm‘?“ of the electron bandgap formation discussed in chapter 3, which was obtained
the transfer matrix method. In practice, the reflectivity and transmissivity of multilayers - f’Y solving the Schradinger equation. We have said before that Ehe formatio frih
can be controlled quite accurately with various thin-film deposition techniques an B '_3?““'01.‘ bandgap is due to the cancellation of the electron waves inside the ¢ :m‘; The
the possibility of controlling spectral and directional properties is large. One special : discussion on the photon stop bands reinforces this picture. The Silcllidlaritiﬂrs}r f ihese '
example is the Bragg reflector, which is made from two alternating layers of thi dl__ﬂ’erent waves, including electrons, photons, and phonons, have, in the aa?t b :
films, figure 5.11(a). Bach layer has a thickness equal to one-quarter of the light* explored extensively to develop new concepts. For example’ the }zanon e
wavelength inside the film. Although, at one interface, the reflectivity between the . ﬁf’e” (Narayanamurti et al., 1979) and the electron minigal;s (Espaiu and ‘;;e’fi;e;{;e
two materials may be small, the coherent superposition of the reflected fields can creaté | based on superlattices, benefited from the analogy of photon stop bands in i tu;-f ;
a reflectivity that is close to 100%. Such Bragg reflectors are used as coatings fo filters. In return, it was exactly on the basis of the analogy of lhree-dimcu:;: a?rt?ncg
mirrors that are highly reflective at a specific required wavelength, such as for lasers’ Structure in naturally existing crystals for electrons and phonons that the c g
and X-rays. Figure 5.11(b) gives an example of the reflectivity of a quarter-wavelength three-dimensional photonic crystals was proposed (Yablonovitch 1986) :;tlthmm‘q“hpt i
mirror, similar to those used in special semiconductor laser structures called vertical: 26an 3150 argue that this concept is an extension of the thin-ﬁln‘:l Bra, : ﬂoug .
cavity surface-emitting lasers (Koyama et al., 1989; Walker, 1993). The reflectivity ihree dimensions. Not only are these concepts very similar to each Otflg .“ihecmfs .
in certain spectral regions can reach 100%, meaning that no electromagnetic fields i 4 matical techniques are also often interchangeable. For example rf P iathe

] for calculating the band structures of Lhree-dhnen;ional o popu' 2 apgiach
photonic crystals is based on a

that wavelength regime exist inside the reflector. These spectral regions, called stop; :
bands, occur when the round-trip phase difference through one period (two layer eneralized transfer matrix method (Pendry, 1996).

equals 2¢, that is, when the forward and backward propagating fields inside the film
cancel each other,

wh:ri tht:9 sibsc;ipts 1 ;;d 2 denote layer 1 and layer 2 respectively. Denoting a =
pia) cos ¢y +nads cos 6, as the optical thickness of i ' i T
B P ss of one period, the above equation can

ka = € (5.131)

5.3.2 Phonons and Acoustic Waves

0 cha ider i i
pter 3, we considered phonon waves in a periodic lattice chain and discussed

4mnydycosly | dmnadycoshy
- Phonons in superlattices. The periodicity in naturally existing crystal lattices leads to

Ao Ao
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the representation of phonons in the first Brillouin zone. The periodicity of superlattices A
adds an additional restriction to the phonon wavevector and leads to the folded zone, A (e T N g
representation and the formation of phonon minibands [figure 3.30]. Similar to the i 25 gt e s W
photon stop bands, the phonon minigaps formed in the dispersion of superlattices can be 08k . AR S
thought of as stop bands generated by multiple reflections and coherent superposition of’ £ [TRANSVERSE PHON O.N e ]
the lattice waves, as for photons in periodic structures. For long-wavelength phonons, = | A . 3
that is, acoustic waves, one can also use the transfer matrix method as for optical waves to 4 % 08 . 5 1
calculate the transmission of lattice waves through single-layer and multilayer structures 8 - 30 '
(Nayfeh, 1995). The reflectivity r and transmissivity ¢ of an SH wave through a film with g -
thickness d can be calculated from the following matrix E 04r
1 31} t % ‘
(r) fAi MA, (0) (5.132) 02k '
where the interference matrix is similar to that of an electromagnetic wave -' . LONGITUDINAL PHONON y 17.7°
: iy 0.0/ SRS [— a0
_ cosgr2  isingr2/Y2 ‘ 210" 4107 6107  810% 110" 12100 1410"
i (i Y, sin 12 oS P12 ) G433 ; PHONON FREQUENCY (X10"* Hz) el
tI;:lg';al.lrt?_‘hS.'I2_ 'l'kan.smissivity ef a transverse acoustic wave polarized in the plane of incideﬁce
1 1 . ugh a Si/Ge-like superlattice as a function of frequency with an incident angl 5
A= (5.134) ' (Chen, 1999). : angle of 17.7
—ZricosOr; ZryicosOry b : :

where ¢r2 = wd cos 62/vr2, Y2.= —Zg,cos B,
subscript i in eq. (5.134) by . The subscript T i
transverse waves and, in this case, a transverse wave polarized perpendicular to

of incidence. The reflection and transmission coefficients are defined as

r =v,(0)/vi(0)

t = ve(d)/vi(0)

and A; is obtained by replacing the “
s used to represent properties of the -’

In the above expressions, k; (= w/v;) is the magnitude of the wavevector of the incident
- waves ‘(SV or L, as distinguished by subscripts 7" and L). B, is obtained by re il %
~ subscript wit¥1 t, that is, from incident to transmitted waves, The intcrfere);lccp e

of the layer (with index 2) in eq. (5.136) is obtained from M = By ]NZBZ, when:n ;:nl)s(

g 9btained by replacing i in eq. (5.137) by 2, and N is given by

the plane

(5.135) -

The matrix formulation for SH acoustic waves is clearly similar to that for optical _' eler 0 0 0
waves. Multilayers can again be treated by simply replacing the interference matrix M 0 eivL2 0 0
with the product M1 M5 . .. Map+1. The order of the matrices is the same as the sequence. Ny = 0 0 o—ior2 0 (5.138)
se waves (SV 0 0 0 ST

of the layers. For longitudinal waves (L) and vertically polarized transver:
with the displacement polarized in the plane of incidence, the relationshi
incident, reflected, and transmitted wave velocity components of isotropic media is

p between the
- The transfer matrix is 4 x 4 because, as shown in eq. (5.136), the longitudinal and

i :alrlllsv?rse Iyvaves are coupled and the conversion between these two waves is possible
e interface. With eq. (5.136), the reflectivity and transmissivity for an incident field

vri(0) vr:(d)
:Li (((c)))) = B]'MB, vL'O(-d) (5.136) - (either vz; or vy;) can be calculated.
TrV)" Figure 5.12 shows \ it . .
01, (0) 0 e it W han example of Rhonon transmissivity through a Si/Ge-like super-
Al y the transfer matrix method (Chen, 1999), for a transverse wave

where vp; and vg;

transverse and longitudinal waves, respectively, and subscripts
reflected and transmitted waves, as usual. Matrix B; is a 4 x 4 matrix given by

are the amplitudes of the displacernent velocities of the incident
r and ¢ represent the:

2 Polanze'd'in. ﬂ.le plane of incidence at an angle of incidence of 17.7°. The stop bands
:in trans_nnssmty (?ero transmissivity) correspond to the minigaps obtained frdIII: lattice

gynamics simulation (figure 3.30) (Yang and Chen, 2001). The figure also shows th

some transverse incident waves are converted into longitudinal waves e ol

— ginfr; cos B sin O7; —cosfy;
cosBr sindy; cos fr; sinfLi 5.3.3 Ele
P = . ; 3. ctron Wi
By —pikrisin20p; (% + 20087 00 kee  —phikeisin28r; (M + 21 cos? 611) ki Nyvaves
ki cos 28 pikyisin20; —p kri cos267; — kg sin20y; The o, I
1kri i i i i study of electron wave propagation in layered media started with the investigation

(5.137) QH'Superlaltices (Esaki and Tsu, 1970). The most popular approach has been based on



