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2.1 INTRODUCTION

p-r junctions are of great importance both in modern electronic applications and in
understanding other semiconductor devices. The p-# junction theory serves as the
foundation of the physics of semiconductor devices. The basic theory of current-
voltage characteristics of p-n junctions was established by Shockley.::2 This theory
was then extended by Sah, Noyce, and Shockley?, and by Moll.#

The basic equations presented in Chapter 1 are used to develop the ideal static and
dynamic characteristics of p-n junctions. Departures from the ideal characteristics
due to generation and recombination in the depletion layer, to high injection, and to
series resistance effects are then discussed. Junction breakdown, especially that due
to avalanche multiplication, is considered in detail, after which transient behavior and
noise performance in p-# junctions are presented.

A p-n junction is a two-terminal device. Depending on the doping profile, device
geometry, and biasing condition, a p-» junction can perform various terminal func-
tions which are considered briefly in Section 2.6. The chapter closes with a discus-
sion of an important group of devices—the heterojunctions, which are junctions
formed between dissimilar semiconductors (e.g., n-type GaAs on p-type AlGaAs).
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80 CHAPTER2. p-n JUNCTIONS
2.2 DEPLETION REGION

2.2.1 Abrupt Junction

Built-in Potential and Depletion-Layer Width. When the impurity concentration
in a semiconductor changes abruptly from acceptor impurities N, to donor impurities
Np, as shown in Fig. 1a, one obtains an abrupt junction. In particular, if N, > N, (or
vice versa), one obtains a one-sided abrupt p*-» (or n*-p) junction.
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Fig. 1 Abrupt p-» junction in thermal equilibrium. (a) Space-charge distribution. Dashed
lines indicate corrections to depletion approximation. (b) Electric-field distribution. (c) Poten-
tial distribution where y; is the built-in potential. (c) Energy-band diagram.
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We first consider the thermal equilibrium condition, that is, one without applied
voltage and current flow. From the current equation of drift and diffusion (Eq. 156a
in Chapter 1),

Jy= 0= qpnE+ 2 < =t ()
or
dE
7xf = 0. )
Similarly,
J,=0= ﬂkp@p. 3)
. dx

Thus the condition of zero net electron and hole currents requires that the Fermi level
must be constant throughout the sample. The built-in patential y;,, or diffusion poten-
tial, as shown in Fig. 1b, ¢, and d, is equal to

9% = Eg—(90,+q9,) = q¥p,+qVp,. 4
For nondegenerate semiconductors,

Wiy = k—Tln(’h’) +k—Tln(€@)
q n; q n;

kT (N »N A)
o[04}
q 1 2 (%)
Since at equilibrium n,,p,,, = 1,,p,, = n?,
n
Wy = :k_Tln(ELv) - k_Tln(ﬂ) . (6)
q nd q npo

This gives the relationship between carrier densities on either side of the junction.

If one or both sides of the junction are degenerate, care has to be taken in calcu-
lating the Fermi-levels and built-in potential. Equation 4 has to be used since Boltz-
mann statistics cannot be used to simplify the Fermi-Dirac integral. Furthermore,
incomplete ionization has to be considered, i.e., n,, # N and/or p,, # N, (Eqs. 34 and
35 of Chapter 1).

Next, we proceed to calculate the field and potential distribution inside the deple-
tion region. To simplify the analysis, the depletion approximation is used which
assumes that the depleted charge has a box profile. Since in thermal equilibrium the
electric field in the neutral regions (far from the junction at either side) of the semi-
conductor must be zero, the total negative charge per unit area in the p-side must be
precisely equal to the total positive charge per unit area in the #-side:

N, WDp = NpWp,. 7

From the Poisson equation we obtain
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_EY_dE o) _ 4 - () - Ny () + ()], ®)

dx*  dx &, &

Inside the depletion region, #(x) ~ p(x) = 0, and assuming complete ionization,

dy;  qN,
e for —Wp,,<x<0, (%a)
d*y, qNp
R for 0<x<Wp,. (9b)

The electric field is then obtained by integrating the above equations, as shown in
Fig. 1b:

N (x+ W,
Z(x) = - M for — WDprSO, (10)
S
N
£(x) = - &, + 0%
8S
gNp
= (Wp,—x) for 0<x<W,, 1n
s

where &, is the maximum field that exists at x = 0 and is given by

|C5m _ gNpWp, _ qNAWDp_ (12)

& &

Integrating Eqs. 10 and 11 once again gives the potential distribution ,(x) (Fig. 1c)
gN,

wix) = P (x+ Wp,)? for - Wp,<x<0, (13)
S5
qNp x
w(x) = y/i(0)+—g— WD”_E x for 0<x<W,,. (14)
s
With these, the potentials across different regions can be found as:
N W3
) = 1047 hp (15a)
2¢,
qND W%Jn
=1L Dn 15b
|w 2 (15b)
(y, is relative to the n-type bulk and is thus negative. See definition in Appendix A)
_ - _ %l

Vpi = '//p + I l//n| = '//I( WDn) = T(WDP + WDn) (16)

where &,, can also be expressed as:

2gN 2gN

& &
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From Eqgs. 16 and 7, the depletion widths are calculated to be:

2 Es Wi ND
Wp, = ; 18a
o ’\/ g NyN,+Np) (152)
28 Wyi Ny
Wp, = Lol , 18b
br ’\/ g Np(Ny+Np) (hat)
W o e = ZES(NA+ND) 19
Dp Dn = 7 \ NN, Wi - (19)
The following relationships can be further deduced:
ol o _#on Ny (20a)
Yoi Wpp+Wp, Ny+Np
Yoo Mo _ _Mp (20b)

Woi  Wpp+ Wp, T Ny+Np

For a one-sided abrupt junction (p*-n or n*-p), Eq. 4 is used to calculate the built-
in potential. In this case, the majority of the potential variation and depletion region
will be inside the lightly doped side. Equation 19 reduces to

26 ¥y
W, = |—2 21
o= i @1)

where N is N, or N, depending on whether N, > N, or vice versa, and

2
vi(x) = |%,)(x- 2"—W) . 22)

This discussion uses box profiles for the depletion charges, i.e., depletion approx-
imation. A more accurate result for the depletion-layer properties can be obtained by
considering the majority-carrier contribution in addition to the impurity concentration
in the Poisson equation, that is, p = — g[N, — p(x)] on the p-side and p = g[N — n(x)]
on the n-side. The depletion width is essentially the same as given by Eq. 19, except
that ;, is replaced by (,, — 2kT/q).” The correction factor 2k7/g comes about
because of the two majority-carrier distribution tails>® (electrons in n-side and holes
in p-side, as shown by the dashed lines in Fig. 1a) near the edges of the depletion
region. Each contributes a correction factor £7/q. The depletion-layer width at
thermal equilibrium for a one-sided abrupt junction becomes

2¢, 2kT)
W, = [—= o 2
D qN(Wbt q ( 3)

Furthermore, when a voltage V is applied to the junction, the total electrostatic
potential variation across the junction is given by (y;,,— V) where V is positive for
forward bias (positive voltage on p-region with respect to n-region) and negative for
reverse bias. Substituting (y,; — V) for y;; in Eq. 23 yields the depletion-layer width
as a function of the applied voltage. The results for one-sided abrupt junctions in
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Fig. 2 Depletion-layer width and depletion-layer capacitance per unit area as a function of net
potential (y;, — ¥ - 2kT/q) for one-sided abrupt junctions in Si. Doping /N is from the lightly
doped side. Dashed lines represent breakdown conditions.

silicon are shown in Fig. 2. The net potential at zero bias is near 0.8 V for Si and
1.3 V for GaAs. This net potential will be decreased under forward bias and increased
under reverse bias. These results can also be used for GaAs since both Si and GaAs
have approximately the same static dielectric constants. To obtain the depletion-layer
width for other semiconductors such as Ge, one must multiply the results of Si by the
factor ,/£,(Ge)/g,(Si) (= 1.16). The simple model above can give adequate predic-
tions for most abrupt p-» junctions.

*

In the p-type region, the Poisson equation including the hole concentration is
ai:/_/_i
dx?
Integrating both sides by di;, and using di/dx =~ &,

N
= 4[N, -p@)] = T201 - exp(-A )]

¥ N, (%
q
L 9E gy, - TAL [1- exp(-A,¥)1dw;,

&2 gNy qNA( kT)
> —ﬂthgs[ﬂ,hwp+exr>(—ﬂ,hwp)—1]~ 2 Y~ e

Comparing this to Eq. 17, the potential is decreased by £7/q per side of the junction.
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Depletion-Layer Capacitance. The depletion-layer capacitance per unit area is
defined as Cp, = dQp/dV = /W, where dQ), is the incremental depletion charge on
each side of the junction (total charge is zero) upon an incremental change of the
applied voltage dV. For one-sided abrupt junctions, the capacitance per unit area is

given by
£ qe.N, 2k 2
Cp = e = [ (- v- 2T (24)
D q

where V is positive/negative for forward/reverse bias. The results of the depletion-
layer capacitance are also shown in Fig. 2. Rearrange the above equation leads to:

1 2 ( 2k
— = —| - V-=], 25
C% qé‘sN Vi q ( )
d(1/C3) 2
= — . 26
av qeN (26)

It is clear from Eqs. 25 and 26 that by plotting 1/C? versus ¥, a straight line should
result from a one-sided abrupt junction (Fig. 3). The slope gives the impurity concen-
tration of the substrate (N), and the extrapolation to 1/C% = 0 gives (i, — 2kT/q). Note
that, for the forward bias, a diffusion capacitance exists in addition to the depletion
capacitance mentioned previously. The diffusion capacitance will be discussed in
Section 2.3.4.

Note that the semiconductor potential and the capacitance-voltage data are insen-
sitive to changes in the doping profiles that occur in a distance less than a Debye
length.” The Debye length L, is a characteristic length for semiconductors and is

defined as
T
/ask _ f & ' @7
q*N qNpB,,

This Debye length gives an idea of the limit of the potential change in response to an
abrupt change in the doping profile. Consider a case where the doping has a small

Lp

1/C?

Slope «< 1/N

N
\ S~ Fig.3 A 1/C%-V plot can yield

N - the built-in potential and doping

Wi~ 2kTlg v density N.




86 CHAPTER 2. p-n JUNCTIONS

increase of AN}, in the background of Np, the change of potential A y(x) near the step
is given by

Au/iq)
= 2
n NDexp( T ) (28)
Ay, q qNp AN, (At//iq)
W——es(ND‘FAND—n)—— e, |:1+N—D—-exp %T }

AL AN, ( Al//iq) _q*Np

~ S-S |- e 29)

whose solution has a decay length given by Eq. 27. This implies that if the doping
profile changes abruptly in a scale less than the Debye length, this variation has no
effect and cannot be resolved, and that if the depletion width is smaller than the
Debye length, the analysis using the Poisson equation is no longer valid. At thermal
equilibrium the depletion-layer widths of abrupt junctions are about 8L, for Si, and
10L, for GaAs. The Debye length as a function of doping density is shown in Fig. 4
for silicon at room temperature. For a doping density of 1016 cm=3, the Debye length
is 40 nm; for other dopings, L, will vary as 1/J/N, that is, a reduction by a factor of
3.16 per decade.

2.2.2 Linearly Graded Junction

In practical devices, the doping profiles are not abrupt, especially near the metallur-
gical junction where the two types meet and they compensate each other. When the
depletion widths terminate within this transition region, the doping profile can be
approximated by a linear function. Consider the thermal-equilibrium case first. The
impurity distribution for a linearly graded junction is shown in Fig. 5a. The Poisson
equation for this case is

103
N
e N ,eskT
2 ey Ly =
E 10 D 2N
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=]
2
S N
g 10! ™
N
\~~.~
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Fig. 4 Debye length in Si at room temperature as a function of doping density N.
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Fig. 5 Linearly graded junction in thermal equilibrium. (a) Space-charge distribution. (b)
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Ta Tl e, g
ax 174 174
zﬂ_gs - —2DSxS—2D (30)

where a is the doping gradient in cm™. By integrating Eq. 30 once, we obtain the field
distribution shown in Fig. 5b:

E(x) = —%[(%})z—xq —%)st% 3D

with the maximum field €, atx =0,
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14,
%, = B22. (32)
8¢,
Integrating Eq. 30 once again gives the potential distribution shown in Fig. 5c
W3 Wp\? w, 174
0 E oD ew]  Toeese
(%) 635[2 L) +3(R) x-x L<xs= (33)
from which the built-in potential can be related to the depletion width
qaWy
;= 34
Wbi 126‘s ( )
or
12 Es V/bt) 13
Wp = ( = ; (35)

Since the values of the impurity concentrations at the edges of the depletion
region (— Wp/2 and W;y/2) are the same and equal to a¥ /2, the built-in potential for
a linearly graded junction can be approximated by an expression similar to Eq. 5:

le (aWpi2)(aWp/2)
—In
q [ n? }
2kT (a WD)
= ~—In| —

q 2n;
Equations 35 and 36 can thus be used to solve for W, and ;.

Based on an accurate numerical technique,® the built-in potential can be calcu-
lated explicitly by an expression as a gradient voltage V,:

2k
v, = 2ﬂwln(a ZEY
& 3q \8niq?

The gradient voltages for Si and GaAs as a function of impurity gradient are shown
in Fig. 6. These voltages are smaller than the y,; calculated from Eq. 36, using the
depletion approximation, by more than 100 mV. The depletion-layer width and the
corresponding capacitance for silicon using this ¥, as the built-in potential are plotted
in Fig. 7 as a function of net potential (¥, — V).

The depletion-layer capacitance for a linearly graded junction is given by

& qa€2 1/3
Ch= 2 = [—S] 38
2= 3, = w7 @8

where V is positive/negative for forward/reverse bias.

Ypi ™

(36)

37

2.2.3 Arbitrary Doping Profile

In this section we consider the doping near the junction to be of any arbitrary shape.
Limiting the discussion to the n-side of a p*-n junction, the net potential change at the
junction is given by integrating the total field across the depletion region;
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Fig. 6 Gradient voltages for linearly graded junctions in Si and GaAs.
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w EOTD)
Vo = V-V = —f E(x)ds = —xE(x)
0

T4 f xd%, (39)
0
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where y,, is y, at zero bias. The first term becomes zero since the field at the deple-
tion edge &(W ) is zero. The interface potential becomes
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Fig. 7 Depletion-layer width and depletion-layer capacitance per unit area as a function of net
potential (¥, — V) for different impurity gradients in linearly graded junctions in Si. Dashed
lines represent breakdown conditions.
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E(Wp)

v, = f x‘;—fdx = gf XNp(x)dx. (40)
#(0) 0
Meanwhile, the total depletion-layer charge is given by
Wp
0p = 4 f Npx)ds. @41)
0

Differentiating the above quantities with respect to the depletion width gives
v _ dy,  aNp(Wp)W,

— = - = , 42
dw, awy & (42)
d9p
—— = gNy(W,). 43
aw, gNp(Wp) (43)
From these we obtain the depletion-layer capacitance,
d aw
c, = |92 = |92, ol _ & (44)
av aw, dv Wy

Again the general expression of &/}, is obtained and is applicable to any arbitrary
doping profile. From this we can derive Eq. 26 for a general nonuniform profile;
d(1/C3) d(1/C3)dW, B 2WhdW,
av aw, dv =~ g dv
2
- qeNp(Wp) (45)

This C-V technique can be used to measure nonuniform doping profile. The 1/C3 -V
plot (like that shown in Fig. 3) would deviate from a straight line if the doping is not
constant.

2.3 CURRENT-VOLTAGE CHARACTERISTICS

2.3.1 Ideal Case—Shockley Equation!?

The ideal current-voltage characteristics are based on the following four assumptions:
(1) the abrupt depletion-layer approximation; that is, the built-in potential and applied
voltages are supported by a dipole layer with abrupt boundaries, and outside the
boundaries the semiconductor is assumed to be neutral; (2) the Boltzmann approxi-
mation, similar to Eqgs. 21 and 23 of Chapter 1, is valid; (3) the low-injection assump-
tion; that is, the injected minority carrier densities are small compared with the
majority-carrier densities; and (4) no generation-recombination current exists inside
the depletion layer, and the electron and hole currents are constant throughout the
depletion layer.
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We first consider the Boltzmann relation. At thermal equilibrium this relation is
given by

Ep—E;

n = nexp( L), (46)
E,~ Ej

p = niexp( T ) (46b)

Obviously, at thermal equilibrium, the pn product from the above equations is equal
to n? . When voltage is applied, the minority-carrier densities on both sides of the
junction are changed, and the pn product is no longer equal to n?. We shall now
define the quasi-Fermi (imref) levels as follows:

EFn B Ei

nzniexp( T ) (47a)
E,-E

p=mexp(=22) (47b)

where Ep, and Ef, are the quasi-Fermi levels for electrons and holes, respectively.
From Egs. 47a and 47b we obtain

Ep,=E;+ len(ni) , (48a)
Epy=E,~kTIn (5) . (48b)
The pn product becomes
Ep,—E
pn = ni2 exp (%ﬂ) . (49

For a forward bias, (Ep, — E,) > 0 and pn > n?; on the other hand, for a reversed
bias, (E, — Ep,) <0 and pn < n?.
From Eq. 156a of Chapter 1, Eq. 47a, and the fact that € = VE /g, we obtain

J, qyn(n% + %Tvn) = unVE, + ynkr[le(VEFn - VE,.)]
wnVEg, . (50)

Similarly, we obtain,
J, = w,pVEg,. (51)

Thus, the electron and hole current densities are proportional to the gradients of the
electron and hole quasi-Fermi levels, respectively. If £, = Ej, = constant (at thermal
equilibrium), then J, =J, = 0.

The idealized potential distributions and the carrier concentrations in a p-» junc-
tion under forward-bias and reverse-bias conditions are shown in Fig. 8. The varia-
tions of Ep, and E, with distance are related to the carrier concentrations as given in
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Fig. 8 Energy-band diagram, with quasi-Fermi levels for electrons and holes, and carrier dis-
tributions under (a) forward bias and (b) reverse bias.

Eqs. 48a and 48b, and to the current as given by Eqgs. 50 and 51. Inside the depletion
region, Er, and Ep, remain relatively constant. This comes about because the carrier
concentrations are relatively much higher inside the depletion region, but since the
currents remain fairly constant, the gradients of the quasi-Fermi levels have to be
small. In addition, the depletion width is typically much shorter than the diffusion
length, so the total drop of quasi-Fermi levels inside the depletion width is not signif-
icant. With these arguments, it follows that within the depletion region,

qV = EFn_EFp‘ (52)
Equations 49 and 52 can be combined to give the electron density at the boundary of
the depletion-layer region on the p-side (x = - Wp,):
n
n,(-Wp,) = p—pexp(%) ~ npoexp(i—T (53a)

where p, = p,,, for low-level injection, and n,, is the equilibrium electron density on
the p-side. Similarly,

PaW50) = proexo( L (53b)
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at x = Wp,, for the n-type boundary. The preceding equations are the most-important
boundary conditions for the ideal current-voltage equation.

From the continuity equations we obtain for the steady-state condition in the
n-side of the junction:
dz d*n

dn, 3
~-U+py, %E + My +D, el 0, (54a)

d &
Py dE,  EP

—U—ﬂpgﬁ—ﬂppna pdx2 =0. (54b)

In these equations, U is the net recombination rate. Note that due to charge neutrality,
majority carriers need to adjust their concentrations such that (n, — n,,) = (0, — p,,,). It
also follows that dn,/dx = dp,/dx. Multiplying Eq. 54a by u,p, and Eq. 54b by u,n,
and combining with the Einstein relation D = (kT/q)u, we obtain

Pn—Puno n,—py %dpn dzpn

- - + = 0 (55)
7, (n,/ 1) + (p/ 1) dx @ dx?
where
n,+p
P = —_t_&n 56
* n,/D,+p,/D, (56)
is the ambipolar diffusion coefficient, and
_ Pn—Pno
=T (57)

From the low-injection assumption [e.g., p, « (n, = n,,) in the n-type semicon-
ductor], Eq. 55 reduces to

Pn=Pno dpn dzpn
-2 uE—+D— =0 58
% P TV a2 (58)
which is Eq. 54b except that the term u,p,d&/dx is ignored under the low-injection

assumption.
In the neutral region where there is no electric field, Eq. 58 further reduces to

LDy _Pn=Pro _ g (59)
de* Dz,

The solution of Eq. 59, with the boundary conditions of Eq. 53b and p,(x =) =p,,
gives

PO ~Pas = oo (5] -1 Jexp - Z2) (60)

P

where

L,=JD,z,. (61)

At x = Wp,, the hole diffusion current is
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dp, ql?gpno[ (g__ ]
= —-gD, 7 B -1/
J, gD, v, L expl 1T (62a)
Similarly, we obtain the electron diffusion current in the p-side
D, n
J, = qn | - "—"ﬂ’[exp(g— - 1] (62b)
dx _WDp Ln kT

The minority-carrier densities and the current densities for the forward-bias and
reverse-bias conditions are shown in Fig. 9. It is interesting to note that the hole
current is due to injection of holes from the p-side to the n-side, but the magnitude is
determined by the properties in the n-side only (D,, L, p,,,). The analogy holds for the
electron current.

The total current is given by the sum of Egs. 62a and 62b:

J=J +J, = Jo[exp(%, -1], (63)
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Fig. 9 Carrier distributions and current densities (both linear plots) for (a) forward-biased
conditions and (b) reverse-biased conditions.
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qu no+annpo=quni2+anni2 (64)

E, L, LN, LN,

Equation 63 is the celebrated Shockley equation,!> which is the ideal diode law. The
ideal current-voltage relation is shown in Figs. 10a and b in the linear and semilog
plots, respectively. In the forward direction (positive bias on the p-side) for
V> 3kTl/q, the rate of current rise is constant (Fig. 10b); at 300 K for every decade
change of current, the voltage changes by 59.5 mV (= 2.3k7/g). In the reverse direc-
tion, the current density saturates at —J,.

We shall now briefly consider the temperature effect on the saturation current
density J,. We shall consider only the first term in Eq. 64, since the second term will
behave similarly to the first one. For the one-sided p*-n abrupt junction (with donor
concentration Np), p,, > 7,,, the second term can also be neglected. The quantities n,,
Dy, pyp» and L, (= /D, 7,) are all temperature-dependent. If D)/, is proportional to

P
T7, where yis a constant, then

_4DyPy, Dy} [ 3 (Egﬂ
Jy~ i qu\/:pNDOCTy[ exp|- 7

E
3+72) a i)
oC T( exp( kT . (65)

Jy=

The temperature dependence of the term 73*72) is not important compared with the
exponential term. The slope of a plot J,, versus I/T is determined mainly by the energy
gap E,. It is expected that in the reverse direction, where | /4| = Jj, the current will
increase approximately as exp(-E,/kT) with temperature; and in the forward direc-
tion, where Jp = Jyexp(qV/kT), the current will increase approximately as

exp[—(E, — qVVKT].
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Fig. 10 Ideal current-voltage characteristics. (a) Linear plot. (b) Semilog plot.
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The Shockley equation adequately predicts the current-voltage characteristics of
germanium p-» junctions at low current densities. For Si and GaAs p-n junctions,
however, the ideal equation can only give qualitative agreement. The departures from
the ideal are mainly due to: (1) the generation and recombination of carriers in the
depletion layer, (2) the high-injection condition that may occur even at relatively
small forward bias, (3) the parasitic /R drop due to series resistance, (4) the tunneling
of carriers between states in the bandgap, and (5) the surface effects. In addition,
under sufficiently larger field in the reverse direction, the junction will breakdown as
a result, for example, of avalanche multiplication. The junction breakdown will be
discussed in Section 2.4.

The surface effects on p-n junctions are primarily due to ionic charges on or
outside the semiconductor surface that induce image charges in the semiconductor,
and thereby cause the formation of the so-called surface channels or surface deple-
tion-layer regions. Once a channel is formed, it modifies the junction depletion region
and gives rise to surface leakage current. For Si planar p-n junctions, the surface
leakage current is generally much smaller than the generation-recombination current
in the depletion region.

2.3.2 Generation-Recombination Process’

Consider first the generation current under the reverse-bias condition. Because of the
reduction in carrier concentration under reverse bias (pn < n? ), the dominant gener-
ation processes, as discussed in Section 1.5.4, are those of emission. The rate of gen-
eration of electron-hole pairs can be obtained from Eq. 92 of Chapter 1 with the
condition p « n; and n < n;:

0,0,V N, n;
U=- n;=—— (66)
0,exp[(E,— E;)/kT] + o,exp[(E; - E,)/kT] T,

where 7, is the generation lifetime and is defined as the reciprocal of the expression

in brackets (see Eq. 98 of Chapter 1 and the discussion following). The current due to

generation in the depletion region is thus given by
"p

qgnWp
Jge = J< ‘I|U1d7C'*'Q]U]WDz
0

(67)
g

where W, is the depletion-layer width. If the generation lifetime is a slowly varying
function of temperature, the generation current will then have the same temperature
dependence as n,. At a given temperature, J,, is proportional to the depletion-layer
width, which in turn is dependent on the applied reverse bias. It is thus expected that

Jge e (W + 1) (68)

for abrupt junctions, and

1/3

Jge ® (W + V) (69)

for linearly graded junctions.



2.3 CURRENT-VOLTAGE CHARACTERISTICS 97

The total reverse current (for p,,, > n,, and [V] > 3kT/q) can be approximated by
the sum of the diffusion component in the neutral region and the generation current in
the depletion region:

D, n? W,
JR = q _Eﬁ__'_qnt D. (70)
YD Te

For semiconductors with large values of »; (such as Ge), the diffusion component will
dominate at room temperature and the reverse current will follow the Shockley equa-
tion; but if », is small (such as for Si), the generation current may dominate. A typical
result for Si is shown in Fig. 11, curve (e). At sufficiently high temperatures, how-
ever, the diffusion current will dominate.

At forward bias, where the major recombination-generation processes in the
depletion region are the capture processes, we have a recombination current J,, in
addition to the diffusion current. Substituting Eq. 49 in Eq. 92 of Chapter 1 yields

— O'pUnUrhNt”,Z[exp(q V/kT) - 1]
o,{n+nexp[(E,—E))/kT1} + o,{p + n;exp[(E; - E)/kT]} '
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Fig. 11 Current-voltage characteristics of a practical Si diode. (a) Generation-recombination
current region. (b) Diffusion-current region. (c) High-injection region. (d) Series-resistance
effect. (¢) Reverse leakage current due to generation-recombination and surface effects.
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Under the assumptions that E, = E; and o, = 0, = g, Eq. 71 reduces to

P
ov N lexp(qVIkT) - 1]

n+p+2n,
) ov, N exp(qVIKT) - 1] o)

n{exp[(Ep,— E)/kT] + exp[(E; - Ep,)/kT] + 2}

The maximum value of U exists in the depletion region where E; is halfway between
Ep, and Eg,, and so the denominator of Eq. 72 becomes 2n,[exp(qV/2kT) + 1]. We
obtain for V> kT/q,

U =

1 (ﬂ)
U~20v,hN,niexp kT (73)
and
WD
qWp VY _gWpn; 14
- ~ _q_) 1ot (_‘]_)
Jre f qUdx = av,hNn eXp(ZkT 77 exp Tk (74)
0

The above approximation assumes that most part of the depletion layer has this
maximum recombination rate, and J,, is thus somewhat an overestimate. A more rig-
orous derivation gives’

J = Uds = kT" V 75
re — J;) q ZkT ( )

where &, is the electric field at the location of maximum recombination, and it is
equal to

\ = M, (76)

&

&

Similar to the generation current in reverse bias, the recombination current in forward
bias is also proportional to »,. The total forward current can be approximated by the
sum of Eqgs. 63 and 75. For a p*-n junction (p,, > n,,) and ¥ » kT/q:

D_n? kTn,
Jp=q [£—
F QJ;NDCXP J;r% exp ?_kT a7
The experimental results in general can be represented by the empirical form,
|4
Jp o exp(-gﬁ,) (78)

where the ideality factor 77 equals 2 when the recombination current dominates
[Fig. 11, curve (a)] and 7 equals 1 when the diffusion current dominates [Fig. 11,
curve (b)]. When both currents are comparable, 7 has a value between 1 and 2.
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2.3.3 High-Injection Condition

At high current densities (under the forward-bias condition) such that the injected
minority-carrier density is comparable to the majority concentration, both drift and
diffusion current components must be considered. The individual conduction current
densities can always be given by Eqs. 50 and 51. Since J,, g, 14,, and p are positive,
the quasi-Fermi level for holes Ej, increases monotonically to the right as shown in
Fig. 8a. Similarly, the quasi-Fermi level for electrons E, decreases monotonically to
the left. Thus, everywhere the separation of the two quasi-Fermi levels must be equal
to or less than the applied voltage, and therefore!?

pn < n} exp(%—IT/) (79

even under the high-injection condition. Note also that the foregoing argument does
not depend on recombination in the depletion region.

To illustrate the high-injection case, we present in Fig. 12 plots of numerical sim-
ulation results for carrier concentrations and energy-band diagram with quasi-Fermi
levels for a silicon p*-n step junction. The current densities in Figs. 12a, b, and ¢ are
10, 103, and 10* A/cm?, respectively. At 10 A/cm? the diode is in the low-injection
regime. Almost all of the potential drop occurs across the junction. The hole concen-
tration in the n-side is small compared to the electron concentration. At 103 A/cm? the
electron concentration near the junction exceeds the donor concentration appreciably
(bear in mind that from charge neutrality, injected carriers Ap = An). An ohmic poten-
tial drop appears on the n-side. At 10* A/cm? we have very high injection; the poten-

p-side n-side p-side n-side p-side n-side
5 101 -
510
S8 10121
SE o] 7
£ 108
S
Q
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>
E— & || & — n
i3 E Err
E; Fn SR EFp EFp Ey,
—\——-—_ —_—_—\—/
| B B | |
10 200 10 20 10 2
x (um) x (um) x (um)
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Fig. 12 Carrier concentrations and energy-band diagrams for a Si p*-» junction operated at
different current densities. (a) 10 A/cm?. (b) 103 A/cm?. (¢) 10* A/cm?. Device parameters:
Ny=10"%cm?, Ny =10 em, 7,=3x107'0s, and 7, = 8.4x1071 5. (After Ref. 10.)
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tial drop across the junction is insignificant compared to ohmic drops on both sides of
the neutral regions. Even though only the center region of the diode is shown in
Fig. 12, it is apparent that the separation of the quasi-Fermi levels is equal to or less
than the applied voltage (¢V).

From Fig. 12b and c, the carrier densities at the #-side of the junction are compa-
rable (n = p). Substituting this condition in Eq. 79, we obtain p,(x = Wp,) »
ngexp(qV/2kT). The current then becomes roughly proportional to exp(gV/2kT), as
shown in Fig. 11, curve (c).

At high-current levels we should consider another effect associated with the finite
resistivity in the quasi-neutral regions. This resistance absorbs an appreciable amount
of the applied voltage between the diode terminals. This is shown in Fig. 11 as
curve-(d). One can estimate the series resistance from comparing the experimental
curve to the ideal curve (AV = IR). The series resistance effect can be substantially
reduced by the use of epitaxial materials (p*-n-n*).

2.3.4 Diffusion Capacitance

The depletion-layer capacitance considered previously accounts for most of the junc-
tion capacitance when the junction is reverse-biased. When forward-biased, there is,
in addition, a significant contribution to junction capacitance from the rearrangement
of minority carrier density, the so-called diffusion capacitance. In other words, the
latter is due to the injected charge, while the former to the depletion-layer charge.
When a small ac signal is applied to a junction that is forward-biased at a dc
voltage ¥, and current density J;, the total voltage and current are defined by

V(t)y = Vy+ Viexp(jot), (80)
J(t) = Jy+J exp(jwr) (81)

where V| and J, are the small-signal voltage and current density, respectively. The
imaginary part of the admittance J;/V, will give the diffusion conductance and diffu-
sion capacitance:

Y=2=G,+joC, . (82)

The electron and hole densities at the depletion region boundaries can be obtained
from Eqs. 53a and 53b by using [V, + V exp(jo¥)] instead of V. We obtain for the
n-side of the junction and V| « ¥,

q[Vy+ Viexp(jot)]
Pn(Wp,) = pnoexp{ - IlcT

qVy

q VO) Pnod Vl (C]_Vo) ] - (__) &
& kT exp kT exp(]a”) ~pnoexp kT +pn(’)

& Pno®XP (_

kT . (83)
A similar expression can be obtained for the electron density in the p-side. The first
term in Eq. 83 is the dc component, and the second term is the small-signal ac com-
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ponent. Substituting p,, into the continuity equation (Eq. 158b of Chapter 1 with
G, = &=d&/dx = 0) yields

o pa P,
jop, = Z, +0, = (84)
or
25 -
“Ha . (85)
dv¢ D, rp/(l +jo1,)
Equation 85 is identical to Eq. 59 if the carrier lifetime is expressed as
T
71: = ——L—-. . (86)
1 +jort,

We can then obtain the alternating current density from Eq. 63 by making the appro-
priate substitutions:

- (qpnoﬁ+qnpoﬁj exp{QIVo+ Vli;xp(fa)t)]}
V. qv,
[qpno,\/' po\/7] exp q O 1 T eXp(Ia)t)} (87)

with the ac component being

Jy = [qDPp""L‘Vl tjoy , 4Dy P”’VijT"] [exp(mnq—l/l (88)
P

L, KT/ kT

From J,/V}, both G, and C, can be found and they are frequency dependent.
For relatively low frequencies (@17,, ®7, « 1), the diffusion conductance G is
given by
v
= _q_(qD ng %} (U) fem>
Gy KN L + L exp| 7 mho/cm (89)

which has exactly the same value obtained by differentiating Eq. 63. The low-fre-
quency diffusion capacitance Cy can be obtained by using the approximation

J1+jor =(1+0.5w07)
qV,
Cio 2kT( +Lnnp0) exp(k—zf)> F/em®. (90)

This diffusion capacitance is proportional to the forward current. For an #*-p one-
sided junction, it can shown that

qL;
2kTD,
The frequency dependence of the diffusion conductance and capacitance is shown
in Fig. 13 as a function of the normalized frequency @z where only one term in Eq. 88

Cao = . 1)
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Fig. 13 Normalized diffusion conductance and diffusion capacitance versus wr. Inset shows
the equivalent circuit of a p-n junction under forward bias.

is considered (e.g., the term contains p,,, if p,, » n,,). The inset shows the equivalent
circuit of the ac admittance. It is clear from Fig. 13 that the diffusion capacitance
decreases with increasing frequency. For high frequencies, C, is approximately pro-
portional to w2, The diffusion capacitance is also proportional to the dc current
level [ exp(qV/kT)]. For this reason, C; is especially important at low frequencies
and under forward-bias conditions.

2.4 JUNCTION BREAKDOWN

When a sufficiently high field is applied to a p-» junction, the junction breaks down
and conducts a very large current.!! Breakdown occurs only in the reverse-bias
regime because high voltage can be applied resulting in high field. There are basically
three breakdown mechanisms: (1) thermal instability, (2) tunneling, and (3) ava-
lanche multiplication. We consider the first two mechanisms briefly, and discuss ava-
lanche multiplication in more detail.

2.4.1 Thermal Instability

Breakdown due to thermal instability is responsible for the maximum dielectric
strength in most insulators at room temperature, and is also a major effect in semicon-
ductors with relatively small bandgaps (e.g., Ge). Because of the heat dissipation
caused by the reverse current at high reverse voltage, the junction temperature
increases. This temperature increase, in turn, increases the reverse current in compar-
ison with its value at lower voltages. This positive feedback is responsible for break-
down. The temperature effect on the reverse current-voltage characteristics is
explained in Fig. 14. In this figure the reverse currents J,, are represented by a family
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Fig. 14 Reverse current-voltage characteristics of thermal breakdown, where V7, is the turn-
over voltage. (Note decreasing values of coordinates.) (After Ref. 12.)

of horizontal lines. Each line represents the current at a constant junction temperature,
and the current varies as T3*72exp(~ E,/kT), as discussed previously. The heat dissi-
pation hyperbolas which are proportional to the power, given by the I-V product, are
shown as sloped straight lines in the log-log plot. These lines also have to satisfy the
curves of constant junction temperature. So the reverse current-voltage characteris-
tics are obtained by the intersection points of these two sets of curves. Because of the
heat dissipation at high reverse voltage, the characteristics show a negative differen-
tial resistance. In this condition, the diode will be destroyed unless some special
measure such as a large series-limiting resistor is used. This effect is called thermal
instability or thermal runaway. The voltage ¥V, is called the turnover voltage. For p-n
junctions with relatively large saturation currents (e.g., in Ge), the thermal instability
is important at room temperature, but at very low temperatures it becomes less impor-
tant compared with other mechanisms.

2.4.2 Tunneling

We next consider the tunneling effect (see Section 1.5.7) when the junction is under a
large reverse bias. It is well known that carriers can tunnel through a potential barrier
if this barrier is sufficiently thin, induced by a large field as shown in Fig. 15a. In this
particular case, the barrier has a triangular shape with the maximum height given by
the energy gap. The derivation of the tunneling current of a p-» junction (tunnel
diode) is considered in details in Chapter 8, and the result is given here as:

L2m* g3y, 4.2m*E3"
gy = DT (2B
a7 JE, 3q%h

Since the field is not constant, % is some average field inside the junction.

92)
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Fig. 15 Energy band diagrams showing breakdown mechanisms of (a) tunneling and (b) ava-
lanche multiplication (example initiated by hole current /,,).

When the field approaches 10¢ V/cm in Si, significant current begins to flow by
means of this band-to-band tunneling process. To obtain such a high field, the junc-
tion must have relatively high impurity concentrations on both the p- and »-side. The
mechanism of breakdown for p-n junctions with breakdown voltages less than about
4E,/q is due to the tunneling effect. For junctions with breakdown voltages in excess
of 6E,/q, the mechanism is caused by avalanche multiplication. At voltages between
4 and 6 E /q, the breakdown is due to a mixture of both avalanche and tunneling.
Since the energy bandgaps E, in Si and GaAs decrease with increasing temperature
(refer to Chapter 1), the breakdown voltage in these semiconductors due to the tun-
neling effect has a negative temperature coefficient; that is, the breakdown voltage
decreases with increasing temperature. This is because a given breakdown current J,
can be reached at smaller reverse voltages (or fields) at higher temperatures (Eq. 92).
This temperature effect is generally used to distinguish the tunneling mechanism
from the avalanche mechanism, which has a positive temperature coefficient; that is,
the breakdown voltage increases with increasing temperature.

2.4.3 Avalanche Multiplication

Avalanche multiplication, or impact ionization, is the most-important mechanism in
junction breakdown. The avalanche breakdown voltage imposes an upper limit on the
reverse bias for most diodes, on the collector voltage of bipolar transistors, and on the
drain voltages of MESFETs and MOSFETSs. In addition, the impact ionization mech-
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anism can be used to generaté microwave power, as in IMPATT devices, and to
amplify optical signals, as in avalanche photodetectors.

We first derive the basic ionization integral which determines the breakdown con-
dition. Assume that a current /,, is incident at the left-hand side of the depletion
region with width W, (Fig. 15b). If the electric field in the depletion region is high
enough that electron-hole pairs are generated by the impact ionization process, the
hole current 7, will increase with distance through the depletion region and reach a
value M,[,, at x= Wy, Similarly, the electron current /, will increase from
L,Wp,) = 0t01,(0) =1-1,, where the total current / (= I, + ,)) is constant at steady
state. The incremental hole current is equal to the number of electron-hole pairs gen-
erated per second in the distance dx,

dl, = I,a,dx +1,a,dx (93)
or

dil

?b-f —(a,-a)l, = a,l. (94)

The electron and hole ionization rates (&, and a,) have been considered in Chapter 1.
The solution of Eq. 94 with the boundary condition of /= [,(Wpy,,) = M,1,, is
given by*

I (x) = 1{4( anexp{—f (a —an)dx':|dx+L} exp{—f (a —an)dx'] (95)
» . . P M, / : P

where M, is the multiplication factor of holes and is defined as

L) _ 1 -

P=TI) L
With a relationship®

W WD mn

J. (@ an)exp[—f (2~ an)dx'}dx = - exp{—j (a,- an)dx':l
0 0 0 5
"p
ol
0

Equation 95 can be evaluated at x = W, and be rewritten as

m

(ap - an)dx'} + 1}} (97)

* Equation 94 has the form y"+ Py = Q, where y = I,. The standard solution is

y= U: Q(expfxpdx']dx + C:|/epr:pdxv

0
where C is the constant of integration.
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¥ om X
1 _ZIL = apexp[—f (a,- an)dx':ldx. (98)
P 0 0

Note that M, is a function of a, in addition to a,. The avalanche breakdown voltage
is defined as the voltage where M, approaches infinity. Hence the breakdown condi-
tion is given by the ionization integral

W

J. o apexp[—fx(ap—an)dx}dx =1. (99a)
0 0

If the avalanche process is initiated by electrons instead of holes, the ionization inte-

gral is given by
J @, eXp “j
0 X

Equations 99a and 99b are equivalent;'3 that is, the breakdown condition depends
only on what is happening within the depletion region and not on the carriers (or
primary current) that initiate the avalanche process. The situation does not change
when a mixed primary current initiates the breakdown, so either Eq. 99a or Eq. 99b
gives the breakdown condition. For semiconductors with equal ionization rates
(&, = @, = @) such as GaP, Eq. 99a or 99b reduces to the simple expression

w,

Dm
f ade = 1. (100)
0

WD WDm

(a,- ap)dx'}dx =1. (99b)

From the breakdown conditions described above and the field dependence of the
ionization rates, the breakdown voltage, maximum electric field, and depletion-layer
width can be calculated. As discussed previously, the electric field and potential in the
depletion layer are determined from the solutions of the Poisson equation. Depletion-
layer boundaries that satisfy Eq. 99a or 99b can be obtained numerically using an iter-
ation method. With known boundaries we obtain the breakdown voltage

_ %m WDm & Cgrzn

V. = = 5%m 101
iy = g0 = e (10

for one-sided abrupt junctions, and

+ Let x d
0
The integral can be simplified to

>4 X
f }’(exp f ydx']dx = f yeUdx = f eVdU = eV = exp f v

0 0
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BD 3 3 qga

for linearly graded junctions, where N is the ionized background impurity concentra-
tion of the lightly doped side, a the impurity gradient, and &, the maximum field.

Figure 16a shows the calculated breakdown voltage as a function of N for abrupt
junctions in Si, (100)-oriented GaAs, and GaP. The experimental results are generally
in good agreement with the calculated values.!> The dashed line in the figure indi-
cates the upper limit of N for which the avalanche breakdown calculation is valid.
This limitation is based on the criterion of 6E /9. Above these corresponding values
of N, the tunneling mechanism will contribute to the breakdown process and eventu-
ally dominates.

In GaAs, the ionization rates and thus breakdown voltage depend on crystal ori-
entations, besides doping concentration (refer to Chapter 1).!6 At a doping concentra-
tion of around 10'6 ¢cm=3, the breakdown voltages are essentially independent of
orientations. At lower dopings, Vy, in (111) becomes the largest whereas at higher
dopings, Vp in (100} is the largest.

Figure 16b shows the calculated breakdown voltage versus the impurity gradient
for linearly graded junctions. The dashed line indicates the upper limit of a for which
the avalanche breakdown calculation is valid.

The calculated values of the maximum field ,, and the depletion-layer width at
breakdown for the three semiconductors above are shown in Fig. 17a for the abrupt
junctions, and in Fig. 17b for the linearly graded junctions. For the Si abrupt junc-
tions, the maximum field at breakdown can be expressed as!’

(102)

4x10°

En = 16
1 —(1/3)log((N/10 " cm3)

V/em (103)

where N is in ¢cm™,

Because of the strong dependence of the ionization rates on the field, the
maximum field at breakdown, sometimes called the critical field, varies very slowly
with either N or a (within a factor of 4 over many orders of magnitude in N and a).
Thus, as a first approximation, we can assume that for a given semiconductor, &,, has
a fixed value. Then from Eqgs. 101 and 102 we obtain V5, oc N0 for abrupt junctions
and Vy, oc a0 for linearly graded junctions. Figure 16 shows that the foregoing pat-
terns are generally followed (within a factor of 3). Also as expected, for a given N or
a, the breakdown voltage increases with the energy bandgap of the material, since the
avalanche process requires band-to-band excitations. It should be cautioned that the
critical field is only a rough guide line but not a fundamental material property. It
assumes a uniform field over a large distance. For example, if there is a high field but
only occurring over a small distance, breakdown would not happen since Eq. 100
cannot be satisfied. Also, the total voltage (field times distance) needs to be larger
than the bandgap for band-to-band carrier multiplication. An example is the high field
but small voltage drop in an accumulation layer.
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An approximate universal expression can be given as follows for the results above
comprising all semiconductors studied:

v 60( By )3/2( Ny 104
BD™TP\1.1 eV 10160m‘) (104)

for abrupt junctions where E, is the room-temperature bandgap in eV, and N is the
background doping in cm=3; and

14 60( Ee )6/5( a )_2/5 % 105
BT TNLL eV 3,10 em- L05)

for linearly graded junctions where a is the impurity gradient in cm™.

For diffused junctions with a linear gradient near the junction and a constant
doping on one side (Fig. 18 inset), the breakdown voltage lies between the two lim-
iting cases considered previously!® (Fig. 16). As shown in Fig. 18, for large a, the
breakdown voltage of these junctions is given by the abrupt junction results (bottom
line); on the other hand, for small 4, V5, will be given by the linearly graded junction
results (parallel lines) and is independent of Np.

In Figs. 16 and 17, it is assumed that the semiconductor layer is thick enough to
support the maximum depletion-layer width W, at breakdown. If, however, the
semiconductor layer W is smaller than W}, (shown in Fig. 19, inset), the device will
be punched through (i.e., the depletion layer reaches the n* substrate) prior to break-
down. As the reverse bias increases further, the depletion width cannot continue to
expand and the device will break down prematurely. The maximum electric field &,,

1x10%cm*=a

5
1x10'¢
2

TT §
TT
T 1 ﬂ

(
i

5
1x1017
2

103

5
1x10'8
2

T T TTTT]

Vep (V)

Gradient a N, ? <1019
(M. 2

5
1x1020
2

102

T TTT

X
NB

T

10 ol Lol Lo
1013 1014 1015 1016
Background concentration N (cm3)

Fig. 18 Breakdown voltage for Si diffused junctions at 300 K. The inset shows the space-
charge distribution. (After Ref. 18.)
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Fig. 19 Breakdown voltage for Si p*-7n* and p™-v-n* junctions, where 7z stands for lightly
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is essentially the same as for the nonpunched-through diode. Therefore, the reduced
breakdown voltage Vj,, for the punched-through diode, compared to a regular
device with ¥, for the same doping, can be given by

Shaded area in figure insert
(€, Wpn)/2

7))

m

VB D

VBD

(106)

Punch-through usually occurs when the doping concentration N becomes suffi-
ciently low as in a p*-7-n* or p*-v-n" diode, where 7 stands for a lightly doped p-type
and v for a lightly doped n-type semiconductor. The breakdown voltages for such
diodes as calculated from Eq. 106 are shown in Fig. 19 as a function of the back-
ground doping for Si one-sided abrupt junction formed on epitaxial substrates (e.g., v
on n* with the epitaxial-layer thickness W as a parameter). For a given thickness, the
breakdown voltage approaches a constant value as the doping decreases, corre-
sponding to the punch-through of the epitaxial layer.

The results shown so far are for avalanche breakdowns at room temperature. At
higher temperatures the breakdown voltage increases. A qualitative explanation of
this increase is that hot carriers passing through the depletion layer under a high field
lose part of their energy to optical phonons via scattering, resulting in a smaller ion-
ization rate (see Fig. 24 of Chapter 1). Therefore, the carriers lose more energy to the
crystal lattice along a given distance at a constant field. Hence, the carriers must pass
through a greater potential difference (or higher voltage) before they can acquire suf-
ficient energy to generate an electron-hole pair. The predicted values of ¥, normal-
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ized to the room-temperature value are shown in Fig. 20 for silicon. Note that there
are substantial increases of the breakdown voltage, especially for lower dopings (or
small gradient) at higher temperatures.2?

Edge Effects. For junctions formed by a planar process, a very important junction
curvature effect at the perimeter should be considered. A schematic diagram of a
planar junction is shown in Fig. 21a. Note that at the perimeter, the depletion region
is narrower and the field is higher. Since the cylindrical and/or spherical regions of
the junction have a higher field intensity, the avalanche breakdown voltage is deter-
mined by these regions. The potential y(r) and the electric field &(#) in a cylindrical
or spherical p-n junction can be calculated from Poisson equation:

i = &) (107)

;)

where n equals 1 for the cylindrical junction, and 2 for the spherical junction. The
solution for &(7) can be obtained from this equation and is given by

E(r) =

&E¥

5

I "J Fp(r)dr + % (108)
"

where r; is the radius of curvature of the metallurgical junction, and the constant C;

must be adjusted so that the integration of the field is equal to the built-in potential.
The calculated results for Si one-sided abrupt junctions at 300 K can be expressed

by a simple equation:!3

IIj_CY - E( 74 2757) In(1 + 277787y - n“} (109)
BD

for cylindrical junctions, and

@ = [ +2.14 757 — (1 + 3713/7)2/3] (110)
Vp

for spherical junctions, where ¥y and ¥V, are the breakdown voltages of cylindrical
and spherical junctions, respectively, ¥z, and W, are the breakdown voltage and
maximum depletion width of a plane junction having the same background doping,
and n=r/Wp,,. Figure 21b illustrates the numerical results as a function of 7.
Clearly, as the radius of curvature becomes smaller, so does the breakdown voltage.
However, for linearly graded cylindrical or spherical junctions, the calculated results
show that the breakdown voltage is relatively independent of its radius of curvature 2!

Another edge effect that causes premature breakdown is due to an MOS (metal-
oxide semiconductor) structure over the junction at the surface. Such a configuration
is often called a gated diode. At certain gate biases, the field near the gate edge is
higher than in the planar portion of the junction and breakdown changes location
from the surface area of the metallurgical junction to the edge of the gate. This gate-
voltage dependence of breakdown is shown in Fig. 22. At high positive gate bias on
a p*-n junction, the p*-surface is depleted while the n-surface is accumulated. Break-
down occurs near the metallurgical junction at the surface. As the gate bias is swept
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more negatively, the location of breakdown moves toward the #n-side (to the right). In
the middle gate-bias range, the breakdown voltage has a linear dependence on the
gate bias, with?

Vgp = mV + constant (111

and m < 1. At some high negative gate bias, the field directly under the gate edge is
high enough to cause breakdown, and the breakdown voltage collapses. This gated-
diode breakdown phenomenon is reversible and the measurement can be repeated. To
minimize this edge effect, the oxide thickness should be above a critical value.2? This
mechanism is also responsible for the gate-induced drain leakage (GIDL) of the
MOSFET (see Section 6.4.5).

2.5 TRANSIENT BEHAVIOR AND NOISE

2.5.1 Transient Behavior

For switching applications the transitions from forward bias to reverse bias and vice
versa must be nearly abrupt and the transient time short. For a p-» junction, while the
latter is reasonably fast, the response from forward to reverse is limited by minority-
carrier charge storage. Figure 23a shows a simple circuit in which a forward current
I flows in the p-» junction; at time ¢ = 0, the switch S is suddenly thrown to the right,



2.5 TRANSIENT BEHAVIOR AND NOISE 115

Vi
||
0 k T
_VR

@)

Fig. 23 Transient behavior of a p-n junction. (a) Basic switching circuit. (b) Transient current
response. {c) Minority-carrier distribution outside depletion edge for various time intervals.
(d) Transient junction-voltage response. (After Ref. 24.)

and an initial reverse current /, = (Vz — V)/R flows. The transient time is defined as
the time in which the current drops to 10% of the initial reverse current I, and is
equal to the sum of 7, and #, as shown in Fig. 23b, where £, and t, are the time intervals
for the constant-current phase and the decay phase, respectively.

Consider the constant-current phase (also called storage phase) first. The conti-
nuity equation as given in Chapter 1 can be written for the n-type side of a p*-n junc-
tion (p,,, > n,,) as

op,(x, 1) -D 0%p,(x, 1) W ACIN (112)
ot Pooox? % '

The boundary conditions are that at # = 0 the initial distribution of holes is a steady-
state solution to the diffusion equation, and that under forward bias the voltage across
the junction is given from Eq. 53b as

0,¢
Vo) = Hln[p"(—)]. (113)
q no

The distribution of the minority-carrier density p,, with time is shown in Fig. 23c.
From Eq. 113 it can be calculated that, as long as p,(0,f) is greater than p,, (in the
interval 0 <7<1,), the junction voltage V; remains of the order of kT/g, as shown in
Fig. 23d. In this time interval the reverse current is approximately constant and we
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have the constant-current phase. The solution of the time-dependent continuity equa-
tion gives #; by the transcendental equations®*

! 1
fll=s —— 114
er J; 1+ ULy (114

However, an explicit expression for #, can be obtained, using a charge-control
model which can also provide some insight into the problem. The stored minority-
carrier charge in the lightly doped side is given by the integral

0, = g4 f Ap,ds. (115)

Integration of the continuity equation, after the current is switched to the reversed
mode, becomes

-Ip = dQs+gs. (116)
dt 7,

With the initial condition given by the forward current Q,(0) = I7,, the solution is
given by

-t
0.(t) = rp[—IR + (]F+IR)exp(?H. (117)
i
By setting O, = 0, ; can be obtained as
1
t = rpln(l +I—Q. (118)

A comparison of Eq. 118 to the exact solution of Eq. 114 shows that this estimate
gives higher values by a factor of = 2 for [/ = 0.1 and = 20 for I/I, = 10.

After ¢, the hole density starts to decrease below its equilibrium value p, .. The
junction voltage tends to reach — V' and a new boundary condition now holds. This
phase is the decay phase with the initial boundary condition p,(0,,) = p,,,. The solu-
tion for ¢, is given by another transcendental equation

erfF+M - 1+0.1({f). (119)
% NEL 2/ % 1

The total results for ¢, and ¢, are shown in Fig. 24 where the solid lines are for the
plane junction with the length of the n-type material # much greater than the diffu-
sion length (W > L,), and the dashed lines are for the narrow-base junction with
W « L, For a large I/ ratio, the transient time can be approximated by

7 I\ 2
i+t~ -f(l—f) (120)

for W > L, or
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’1+t2~—W_2({§)_2 (12n

for W « L,,. For example, if one switches a junction (of > L,) from forward 10 mA
to reverse 10 mA (/z/f = 1), the time for the constant-current phase is 0.37,, and that
for the decay phase is about 0.67,. Total transient time is then 0.97,. A fast switch
requires that 7, be small for all cases. The lifetime 7, can be substantially reduced by
introducing impurities with deep levels in the forbidden gap, such as gold in silicon.

2.5.2 Noise

The term “noise” refers to spontaneous fluctuations in the current passing through, or
the voltage developed across, semiconductor bulk materials or devices. Since semi-
conductor devices are mainly used to amplify small signals or to measure small phys-
ical quantities, spontaneous fluctuations in current or voltage set a lower limit to these
signals. It is important to know the factors contributing to these limits, to use this
knowledge to optimize operating conditions, and to find new methods and new tech-
nologies to reduce noise.

Observed noise is generally classified into (1) thermal noise or Johnson noise, (2)
flicker noise, and (3) shot noise. Thermal noise occurs in any conductor or semicon-
ductor device and is caused by the random thermal motion of the current carriers. It
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is also called white noise because its level is the same at all frequencies. The open-
circuit mean-square voltage of thermal noise is given by?5-26

(V2) = 4kTBR (122)

where B is the bandwidth in Hz, and R the real part of the dynamic impedance (dV/dI)
between terminals. At room temperature, for a semiconductor device with 1 kQ resis-
tance, the root-mean-square voltage ,/( ¥2) measured with a 1-Hz bandwidth is only
about 4 nV.

Flicker noise is distinguished by its peculiar spectral distribution which is propor-
tional to 1/f* with o generally close to unity (the so-called 1/fnoise). Flicker noise is
thus important at lower frequencies. For most semiconductor devices, the origin of
flicker noise is the surface effect. The 1//'noise-power spectrum has been correlated
both qualitatively and quantitatively with the lossy part of the metal-insulator-semi-
conductor (MIS) gate impedance due to carrier recombination at the interface traps.

Shot noise is due to the discreteness of charge carriers that contribute to current
flow, and it constitutes the major noise in most semiconductor devices. It is indepen-
dent of frequency (white spectrum) at low and intermediate frequencies. At higher
frequencies the shot-noise spectrum also becomes frequency-dependent. The mean-
square noise current of shot noise for a p-n junction is given by

(i) = 2qBlI| (123)

where [ can be forward or reverse current. For low injection the total mean-square
noise current (neglecting 1/f noise) is the sum
(2) = 4kTB +2gBl1. (124)

From the Shockley equation we obtain

Lot el ]| (i)

Substituting Eq. 125 into Eq. 124 yields for the forward-bias condition,

qVy
(i2y = 4qIOBexp( kT) +2q10B[exp( kT) 1]

~ 6alyBesp( kl;) ~ (126)

Experimental measurements indeed confirm that the mean-square noise current is
proportional to the saturation current /;, which can be increased by irradiation.

2.6 TERMINAL FUNCTIONS

A p-n junction is a two-terminal device that can perform various terminal functions,
depending upon its biasing condition as well as its doping profile and device geom-
etry. In this section we discuss briefly some interesting device performances based on
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its current-voltage, capacitance-voltage, and breakdown characteristics discussed in
previous sections. Many other related two-terminal devices will be considered in sub-
sequent chapters (e.g., tunnel diode in Chapter 8 and IMPATT diode in Chapter 9).

2.6.1 Rectifier

A rectifier is a two-terminal device that gives a very low resistance to current flow in
one direction and a very high resistance in the other direction, i.e., it allows current in
only one direction. The forward and reverse resistances of a rectifier can be derived
from the current-voltage relationship of a practical diode,

|4
I= Iol:exp(-gﬁ,) - 1} (127)
where [ is the saturation current and the ideality factor n generally has a value
between 1 (for diffusion current) and 2 (for recombination current). The forward dc
(or static) resistance R, and small-signal (or dynamic) resistance r are obtainable
from Eq. 127:

Ve Vg (—q VF)
Rp= L7, exp kT (128)
av

i g L (129)

dlp  qlf

The reverse dc resistance Ry and small-signal resistance ry are given by

Ve Ve

RR=IR~I—O, (130)
_dVy _ pkT (qlVR|)

FR= a, - ql, exp KT/ (131)

Comparing Eqs. 128-131 shows that the dc rectification ratio Ry/R; varies with the
factor (Vi/Vi)exp(qV g/ nkT), while the ac rectification ratio rp/rp varies with
(T/1o)exp(q|Vil/nkT).

p-n junction rectifiers generally have slow switching speeds; that is, a significant
time delay is necessary to obtain high impedance after switching from the forward-
conduction state to the reverse-blocking state. This time delay (proportional to the
minority-carrier lifetime as shown in Fig. 24) is of little consequence in rectifying
60-Hz currents. For high-frequency applications, the lifetime should be sufficiently
reduced to maintain rectification efficiency. The majority of rectifiers have power-
dissipation capabilities from 0.1 to 10 W, reverse breakdown voltages from 50 to
2500 V (for a high-voltage rectifier two or more p-» junctions are connected in
series), and switching times from 50 ns for low-power diodes to about 500 ns for
high-power diodes.

A rectifier has many circuit applications.?” It is used to transform ac signals into
different specials waveforms. Examples are half-wave and full-wave rectifiers,
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clipper and clamper circuits, peak detector (demodulator), etc. It can also be used as
a ESD (electrostatic discharge) protection device.

2.6.2 Zener Diode

A Zener diode (also called voltage regulator) has a well-controlled breakdown
voltage, called the Zener voltage, with sharp breakdown characteristics in the reverse-
bias region. Prior to breakdown, the diode has a very high resistance; after breakdown
the diode has a very small dynamic resistance. The terminal voltage is thus limited (or
regulated) by the breakdown voltage, and this is used to establish a fixed reference
voltage.

Most Zener diodes are made of Si, because of the low saturation current in Si
diodes and the advanced Si technology. They are special p-» junctions with higher
doping concentrations on both sides. As discussed in Section 2.4, for breakdown
voltage Vp, larger than 6E,/q (~7 V for Si), the breakdown mechanism is mainly
avalanche multiplication, and the temperature coefficient of Vy, is positive. For
Vep <4E/q (= 5V for Si), the breakdown mechanism is band-to-band tunneling, and
the temperature coefficient of Vjp, is negative. For 4E /g <V, < 6E//q, the break-
down is due to a combination of these two mechanisms. One can connect, for
example, a negative-temperature-coefficient diode in series with a positive-tempera-
ture-coefficient diode to produce a temperature-independent regulator (with a tem-
perature coefficient of the order of 0.002% per °C), which is suitable as a voltage
reference.

2.6.3 Varistor

A varistor (variable resistor) is a two-terminal device that shows nonohmic behavior,
i.e., voltage-dependent resistance.?® Equations 128 and 129 show the nonohmic char-
acteristics of a p-n junction diode in the forward-bias region. Similar nonohmic char-
acteristics are obtainable from metal-semiconductor contacts considered in
Chapter 3. An interesting application of varistors is their use as a symmetrical frac-
tional-voltage (= 0.5 V) limiter by connecting two diodes in parallel, oppositely
poled. The two-diode unit will exhibit the forward I-¥ characteristics in either direc-
tion. A varistor, being a nonlinear device, is also useful in microwave modulation,
mixing, and detection (demodulation). Varistors based on metal-semiconductor con-
tacts are more common due to their higher speed from the absence of minority-charge
storage.

2.6.4 Varactor

The term varactor comes from variable reactor and means a device whose reactance
(or capacitance) can be varied in a controlled manner with a dc bias voltage. Varactor
diodes are widely used in parametric amplification, harmonic generation, mixing,
detection, and voltage-variable tuning.

For this application, the forward bias is to be avoided because of excessive current
which is undesirable for any capacitor. The basic capacitance-voltage relationships in
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reverse bias have already been derived in Section 2.2. We shall now extend the pre-
vious derivations of abrupt and linearly graded doping distributions to a more general
case. The one-dimensional Poisson equation is given as

T _ (132)

axr &
where N is the generalized doping distribution (negative sign for donors) as shown in
Fig. 25a (assuming one side is heavily doped):

N = Bxm for x20. (133)

For m = 0 we have N = B, corresponding to the uniformly doped (or one-sided abrupt
junction) case. For m = 1, the doping profile corresponds to a one-sided linearly
graded case. For m <0, the device is called a “hyper-abrupt” junction. The hyper-
abrupt doping profile can be achieved by an epitaxial process or by ion implantation.
The boundary conditions are y{x =0)=0 and y(x = Wp) = V3 + y,,, where V; is the
applied reverse voltage and i, is the built-in potential. Integrating the Poisson equa-
tion with the boundary conditions, we obtain for the depletion-layer width and the dif-
ferential capacitance per unit area?’

&(m+2) (Vg + )7V "+ 2
= 134
vy« [ )
&, gBen+! 1(m+2)
cE_=[ J o« (Vp+ 0y)~, 135
=, = Ltmr Ve v i) (129
s= L (136)
Tm+2’
One important parameter in characterizing the varactor is the sensitivity defined
by?0
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Fig. 25 (a) Various impurity distributions (normalized at x,) for varactors. (b) Log-log plot of
depletion-layer capacitance versus reverse bias. (After Refs. 29 and 30.)
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dCp Vp d(logCp) 1
e B R = = 5. (137)
CpdVy d(logVy) m+2

The larger the s, the larger will be the capacitance variation with biasing voltage. For
linearly graded junctions, m = 1 and s = /3; for abrupt junctions, m =0 and s = 1/2;
for hyper-abrupt junction with m = -1, -3/2, or —5/3, the value of s is 1,2, or 3, respec-
tively. The capacitance-voltage relationships for these junction diodes are shown in
Fig. 25b. The hyper-abrupt junction, as expected, has the highest sensitivity and gives
rise to the largest capacitance variation.

2.6.5 Fast-Recovery Diode

Fast-recovery diodes are designed to give ultrahigh switching speed. The devices can
be classified into two types: p-» junction diodes and metal-semiconductor diodes.
The general switching behavior of both types can be described by Fig. 23b. The total
recovery time (¢, + £,) for a p-n junction diode can be substantially reduced by intro-
ducing recombination centers, such as Au in Si, to reduce the carrier lifetime.
Although the recovery time is directly proportional to the lifetime 7, as shown in
Fig. 24, it is not possible, unfortunately, to reduce the recovery time indefinitely by
introducing an extremely large number of recombination centers V,, because the
reverse generation current of a p-» junction is proportional to N, (Egs. 66 and 67). For
direct bandgap semiconductors, such as GaAs, the minority-carrier lifetimes are gen-
erally much smaller than that of Si. This results in ultra-high-speed GaAs p-» junction
diodes with recovery times of the order of 0.1 ns or less. For Si the practical recovery
time is in the range of 1 to 5 ns.

The metal-semiconductor diodes (Schottky diodes) fundamentally exhibit ultra-
high-speed characteristics, because they are majority-carrier devices and the
minority-carrier storage effect is negligible. We discuss metal-semiconductor con-
tacts in detail in Chapter 3.

2.6.6 Charge-Storage Diode

In contrast to fast-recovery diodes, a charge-storage diode is designed to store a
charge while conducting in the forward direction and, upon switching to the reverse
direction, to conduct a reverse current for a short period. A particularly interesting
charge-storage diode is the step-recovery diode (also called the snapback diode) that
conducts in the reverse direction for a short period and then abruptly cuts off the
current as the stored charge has been dissipated. In other words, it is desirable here to
reduce the decay phase or ¢, without shortening the storage phase or ¢,. Most charge-
storage diodes are made from Si with relatively long minority-carrier lifetimes
ranging from 0.5 to 5 ps. Note that the lifetimes are about 1000 times longer than for
fast-recovery diodes. The mechanism to reduce the decay phase is by a special doping
profile such that the injected charge is confined closer to the junction. This cutoff
occurs in the range of picoseconds and results in a fast-rising wavefront which is rich
in harmonics. Because of these characteristics, step-recovery diodes are used in har-
monic generation and pulse shaping.
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2.6.7 p-i-n Diode

A p-i-n diode is a p-n junction with an intrinsic layer (i-region) sandwiched between
the p-layer and the n-layer. In practice, however, the idealized i-region is approxi-
mated by either a high-resistivity p-layer (referred to as z-layer) or a high-resistivity
n-layer (1-layer). The p-i-n diode has found wide applications in microwave circuits.
Its special feature is a wide intrinsic layer that provides unique properties such as low
and constant capacitance, high breakdown voltage in reverse bias, and most interest-
ingly, as a variolosser (variable attenuator) by controlling the device resistance which
varies approximately linearly with the forward bias current. The switching time is
approximately given by W/2v,, where W is the width of the i-region.?! It can modulate
signals up to the GHz range. Furthermore, the forward characteristics of a thyristor
(refer to Chapter 11) in its on-state closely resemble those of a p-i-n diode.

At near zero or low reverse bias, the lightly doped intrinsic layer starts to be fully
depleted, and the capacitance is given by

£
C == 138
W (138)
Once fully depleted, its capacitance is independent of reverse bias. Figure 19 gives
the breakdown voltage of a p-i-n diode under reverse bias. Since there is little net
charge within the intrinsic layer, the electric field is constant and the breakdown

voltage can be estimated by
Vep= €, W (139)

where the maximum breakdown field %, for Si at lower dopings is about
2.5x10° V/em. These two equations show that the width of the i-region ¥ controls the
trade-off between frequency response and power (from maximum voltage).

Under forward conditions, holes are injected from the p-region and electrons from
the n-region. As the injected carrier densities are nearly equal (and uniform) due to
charge neutrality, they are much higher than the i-region doping concentration, so the
p-i-n diode is generally operated in the high-injection condition, Ap = An >> n,. The
current conduction is via recombination within the i-region and is given by (see
Eq. 74)

Wn,

W
_ _ q i (qVF)

Jo = f qUdx = 77 exp Tk (140)

0

For a detailed discussion of the dc I-V characteristics, the readers are referred to
Section 11.2.4.

The most interesting phenomenon for a p-i-n diode, however, is for small signals
at high frequencies (> 1/277) at which the stored carriers within the intrinsic layer are
not completely swept away by the RF signal or by recombination. At these frequen-
cies there is no rectification and the p-i-n diode behaves like a pure resistor whose
value is determined solely by the injected charge, proportional to the dc bias current.
This dynamic RF resistance is simply given by
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W /4

p = ——
4 qAn(p,+ p,)A
W2
 Jpt(p,+ )4 (141)

RRF

Here the relationship J = g WAn/ 7 has been assumed. The RF resistance is controlled
by the dc bias current, and typical characteristics are shown in Fig. 26.

2.7 HETEROJUNCTIONS

Some properties of heterojunctions have been discussed in Section 1.7. When the two
semiconductors have the same type of conductivity, the junction is called an isotype
heterojunction. When the conductivity types differ, the junction is called an anisotype
heterojunction which is a much more useful and common structure than its counter-
part. In 1951, Shockley proposed the abrupt heterojunction to be used as an efficient
emitter-base injector in a bipolar transistor.3? In the same year, Gubanov published a
theoretical paper on heterojunctions.?* Kroemer later analyzed a similar, although
graded, heterojunction as a wide-bandgap emitter.?> Since then, heterojunctions have
been extensively studied, and many important applications have been made, among
them the room-temperature injection laser, light-emitting diode (LED), photode-
tector, and solar cell, to name a few. In many of these applications, by forming peri-
odic heterojunctions with layer thickness of the order of 10 nm, we utilize the
interesting properties of quantum wells and superlattices. Additional information on
heterojunctions can be found in Refs. 36-39.

2.7.1 Anisotype Heterojunction

The energy-band model of an idealized anisotype abrupt heterojunction without inter-
face traps was proposed by Anderson*® based on the previous work of Shockley. We
consider this model next, since it can adequately explain most transport processes,
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dc bias current (mA) Ref. 32.)
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and only slight modification of the model is needed to account for nonideal cases such
as interface traps. Figures 27a and ¢ show the energy-band diagrams of two isolated
semiconductors of opposite types. The two semiconductors are assumed to have dif-
ferent bandgaps E,, different permittivities &, different work functions ¢, and dif-
ferent electron affinities y. Work function and electron affinity are defined as the
energy required to remove an electron from the Fermi level £ and from the bottom
of the conduction band E, respectively, to a position just outside the material
(vacuum level). The difference in energy of the conduction-band edges in the two
semiconductors is represented by AE - and that in the valence-band edges by AEx The

Vacuum level Vacuum level
qx.
qn| |4%m : 9% ar|  |9%m q9x 98,
Eq Ec
Ec AE, B AE, Ey
Ep
E gl Egz Eﬂ Egl Egz
Ey AE, Er E, AE,
Ey, E,
(@) ©)

Vacuum level

(b) (@
Fig. 27 Energy-band diagrams for (a) two isolated semiconductors of opposite types and dif-
ferent E, (of which the smaller bandgap is n-type) and (b) their idealized anisotype heterojunc-
tion at thermal equilibrium. In (c) and (d), the smaller bandgap is p-type. In (b) and (d), the
dashed lines across the junctions represent graded composition. (After Ref. 40.)
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electron affinity rule (AE - = gAy) shown in Figure 27 may not be a valid assumption
in all cases. However, by choosing AE - as an empirical quantity, the Anderson model
remains satisfactory and unaltered.*!

When a junction is formed between these semiconductors, the energy-band
profile at equilibrium is as shown in Fig. 27b for an #-p anisotype heterojunction
where, in this example, the narrow-bandgap material is n-type. Since the Fermi level
must coincide on both sides in equilibrium and the vacuum level is everywhere par-
allel to the band edges and is continuous, the discontinuity in the conduction-band
edges (AE) and valence-band edges (AE}) is invariant with doping in those cases
where E, and y are not functions of doping (i.e., nondegenerate semiconductors). The
total built-in potential y,; is equal to the sum of the partial built-in voltages
(W + wiy), Where ;,; and y, are the electrostatic potentials supported at equilibrium
by semiconductors 1 and 2, respectively.” From Fig. 27, it is apparent that since at
equilibrium, E, = E, the total built-in potential is given by

Woi = |Su1 = Pl - (142)
The depletion widths and capacitance can be obtained by solving the Poisson equa-
tion for the step junction on either side of the interface. One boundary condition is the

continuity of electric displacement, that is, &, = 9, = ¢, %, = &,,%, at the interface.
We obtain

2N h&, & = 12
WDI - |: A2%s1 s2('//b1 V) il ) (1433.)
gNp1(&Npy + £,N40)
2Np &€ - 172
Wy, = { p1&51€2 (Wi — V) :I , (143b)
gN 45(&1Np + £, N )
and
Ny Np& 6 1/2
€ = [ qNp1Y 42851650 ] (144)
2(&Npi + €N o) (W= V)
The relative voltage supported in each semiconductor is
Yo — Vl _ NA2£S2 (145)

Wea—Vy  Npi&,
where the applied voltage is divided into the two regions V=V, + V,. It is apparent
that the foregoing expressions will reduce to the expression for the p-n junction
(homojunction) discussed in Section 2.3, when both sides of the heterojunction
become the same materials.

In considering the current flow, the example in Fig. 27b shows that the conduc-
tion-band edge E increases monotonically while the valence-band edge £, goes
through some peak near the junction. The hole current could become complicated

* The convention is to list the material with the smaller bandgap as the first symbol.
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because of the added barrier which might present a bottle-neck in thermionic emis-
sion, in series with diffusion. The analysis can be greatly simplified by assuming a
graded junction where AE - and AE, become smooth transitions inside the depletion
region. With this assumption, the diffusion currents are similar to a regular p-» junc-
tion but with the appropriate parameters in place. The electron and hole diffusion cur-
rents are:

D _.n?

7. = %[exp(% - 1], (146a)
n
D n?

J, = i—%[exp(% —1} (146b)
pl

Note that the band offsets AE- and AE}, are not in these equations, and also that each
diffusion current component depends on the properties of the receiving side only, as
in the case of a homojunction. The total current becomes

D_n% gD_ n?
J=J,+J, = (q naltiz | 4 Pln’l)[exp(g— = 1] (147)
LnZNAZ LplNDl kT.
Of particular interest is the ratio of the two diffusion currents.
Jy _ LD Npinhy L, D, yNp\NeaNy,exp(=E,,/kT)

o LpDpyNpnl  LypDpNpNe\ Ny exp(=Eg, /kT)

Np, (—AE)
~NAzexp T . (148)

Therefore the injection ratio depends exponentially on the bandgap difference, in
addition to their doping ratio. This is critical in designing a bipolar transistor where
the injection ratio is directly related to the current gain. The heterojunction bipolar
transistor (HBT) uses a wide-bandgap emitter to suppress the base current and will be
discussed in more details in Chapter 5.

2.7.2 Isotype Heterojunction

The case of an isotype heterojunction is somewhat different. In an n-# heterojunction,
since the work function of the wide-bandgap semiconductor is smaller, the energy
bands will be bent oppositely to those for the n-p case (Fig. 28a).#? The relation
between (y,, — V) and (,, — V,) can be found from the boundary condition of con-
tinuity of electric displacement (2 = &%) at the interface. For an accumulation
(increase of carriers at the interface) in Region-1 governed by Boltzmann statistics,
the electric field at x,, is given by (for detailed derivation see footnote on p. 84)

2gN, -V
&) (xp) = /%{%[CXP%J— 1}—(%1 - Vl)}' (149)

The electric field at the interface for a depletion in Region-2 is given by
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E V2
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Fig. 28 Energy-band diagrams for ideal (a) n-n and (b) p-p isotype heterojunctions. (After
Refs. 40 and 42.)

(%) = /Z—qNDZ(EV’;Z‘ V), (150)

Equating the electric displacement & = &g, of Eqs. 149 and 150 gives a relation
between (w, — V) and (w,, — V,) that is quite complicated. However, if the ratio
£, Np1/€xNp, is of the order of unity and W, (= w, + W) » kT/g, we obtain®?
(W5~ 1) .9
[T = &7 (151)

where V is the total applied voltage and is equal to (¥ + V). Also shown in Fig. 28b
is the idealized equilibrium energy-band diagram for p-p heterojunctions.

For the carrier transport, because of the potential barrier as shown in Fig. 28a, the
conduction mechanism is governed by thermionic emission of majority carriers, elec-
trons in this case (refer to Chapter 3 for details). The current density is given by*?

J= qNDZJ;k—ZEexp(_-ﬂTV;?) [exp(q%-/]%) - exp(:z—;—,/—l-)]. (152)

Substituting Eq. 151 into Eq. 152 yields the current-voltage relationship:

J= q2ND2WbieXp("‘§;bi)(1 _l)[exP(qk? _ 1] (153)

[27m3kT Vi

Since the current is thermionic emission as in a metal-semiconductor contact, the pre-
exponential factor is often expressed in terms of the effective Richardson constant 4*
and the barrier height ¢,. With substitution for 4* and the appropriate expression for
N, the current equation above becomes
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_9vA'T 4 (_qul (—q%) (q_
7= (I‘V,—M)e"p 7)o [=eli7) - 1]

Jo[eXp(%—T — 1] : (154)

This expression is quite different from that for metal-semiconductor contact. The
value of J, is different [from A*T2exp(—q@g/kT)] and so is its temperature dependence.
The reverse current never saturates but increases linearly with voltage at large — V. In
the forward direction, the dependence of J on ¥ can be approximated by an exponen-
tial function J o exp(g ¥/ nkT).
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PROBLEMS

1. A silicon p-n junction of 1 cm? area consists of a two-sided step junction with an n-region
of 10!7 donors/cm? and a p-region of 2x10'7 acceptors/cm?. All donors and acceptors are
ionized. Find the built-in potential.

2. The measured depletion capacitance of a p*-n Ve
silicon junction (formed in an n-type epitaxial
layer) is shown. The device area is 10-° cm? and
the p*-layer thickness is 0.07 um. Find the thick-
ness of the epitaxial layer.

0.75x10% F2

ey
095V

L 1

-3 -2 -1 0

3. A silicon p-n junction has a linearly graded junction on the p-side with an impurity gra-
dient of 10'° cm™, and a uniform doping of 3x10'* ¢cm on the n-side. (a) If the depletion
width of the p-side is 0.8 pum at zero bias, find the total depletion width, the built-in poten-
tial and the maximum field at thermal equilibrium. (b) Plot the impurity and field distribu-
tion of this junction.

4. Find the depletion-layer width and the maximum field at b n
1

h
thermal equilibration for the p*-n,-n, structure. 10!6 :

1013

Y

|
0 02 pm

5. (a) A silicon p*-n junction has the following parameters at 300K: z,= 7, = 106 s,
Np= 10" em 3. Find the generation current density in the depletion region and the total
reverse current density at a bias of 5 V.

(b) Will there be any significant change of the total reverse current density if z, is reduced
by a factor of 100 while 7, remains the same?

6. A p*-n junction is formed in an n-type substrate with N, = 10! cm=3. If the junction con-
tains 1015 cm™3 generation-recombination centers located 0.02 eV above the intrinsic
Fermi level of silicon with o, = o, = 1015 cm? (v,, = 107 cm/s), calculate the generation
and recombination current at —0.5 V.

7. For a p-n junction with the p-side doped to 1x10!7 cm3, the n-side doped to 1x10'° cm3,
and a reverse bias of -2 V, calculate the generation-recombination current density,
assuming that the effective lifetime is 1x10-% s,

8. Design an abrupt Si p*-» junction diode that has a reverse breakdown voltage of 130 V and
has a forward-bias current of 2.2 mA at = 0.7 volt. Assume 7, = 107 s.

9. (a) Assume o = (€/€,)" where @,, &), and m are constants. Also assume @, = @, = a.
Derive an expression for the avalanche breakdown voltage of an #*-p junction with a
uniform acceptor concentration N, and a dielectric permittivity &,.

(b) If oy = 10* em™, &, = 4x10° V/em, m = 6, N, = 2x10'¢ cm™ and &, =10"12 F/cm, what
is the breakdown voltage?
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When a silicon p*-n junction is reverse-biased to 30 V, the depletion-layer capacitance is
1.75 nF/cm?. If the maximum electric field at avalanche breakdown is 3.1x10° V/em, find
the breakdown voltage.

A silicon junction diode has a doping profile of p*-i-n*-i-n* which contains a very narrow
n*-region sandwiched between two i-regions. This narrow region has a doping of
10!8 cm™ and a width of 10 nm. The first i-region has a thickness of 0.2 um, and the
second i-region is 0.8 um in thickness. Find the electric field in the second i-region (i.e., in
the n*-i-n*) when a reverse bias of 20 V is applied to the junction diode.

For assilicon one-sided p*-n-n* abrupt junction with a donor concentration of 5x10'* cm™3,
the maximum field at breakdown is 3x10° V/cm. If the thickness of the n-type epitaxial
layer is reduced to 5 um, find the breakdown voltage.

For a Si p*-n one-sided abrupt junction with Np= 5+ 5 5,016 o3
2x10'6 cm3, the breakdown voltage is 32 V (Fig. a). If
the doping distribution is modified to Fig. b, find the @
breakdown voltage.
¥
L 2x1016 ¢cm3
I ()
1x1016 cm-3
0 0.§ pm x=

Find the value of the electron multiplication factor M, for a silicon p*-i-n* diode having a
reverse bias of 200 V. The corresponding capacitance of the diode is 1.05 nF/cm?.

In an “ideal” silicon n*-p junction with N, = 10'® cm™3, a minority carrier lifetime of
10-8 s, and a mobility of 966 cm?/V-s, find the stored minority carriers in the neutral
p-region of 1 pm, under a forward bias of 1 V.

For an ideal abrupt silicon p*-n junction with N, = 10'5 cm™, find the stored minority car-
riers (in C/cm?) in the neutral region when a forward bias of 1 V is applied. Assume the
length of the neutral region is 1 um and the diffusion length of holes is 5 pm. The hole dis-
tribution is given by

Pu—Dis = pno[eXP(i—T - l]exp[_(xT;x"—)]

For a hyperabrupt p*-n junction varactor, the n-side doping profile is given by n(x) = Bx™
where B is a constant and m = —3/2. Derive the express for the differential capacitance.

Consider an ideal abrupt heterojunction with a built-in potential of 1.6 V. The impurity
concentrations in semiconductor 1 and 2 are 1x10'¢ donors/cm? and 3x10'9 acceptors/cm?,
and dielectric constants are 12 and 13, respectively. Find the electrostatic potential and
depletion width in each material for applied voltages of 0.5 V and -5 V.

For an n-GaAs/p-Al);Ga,,As heterojunctlon at room-temperature, AE.= 0.21 eV. (1)
What type of heterojunction is this? (2) Based on the Anderson Model, find the total deple-
tion width at thermal equilibrium when both sides have impurity concentration of
5x10'% cm3, (3) Draw the band diagram. [Hint: For the bandgap of AlGaAs, refer to
Fig. 32 of Chapter 1. The dielectric constant is (12.9 — 3.12x) for Al Ga,_ As. Assume N
and N, are the same for Al Ga,_ As with 0 <x <0.4.]
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20. The alignment of heterojunction between GaAs and Al 4Ga, ¢As is Type-I. The doping
concentration is 102° cm™ in Al 4,Gag ¢As and 106 cm™ in GaAs, both doped with carbon.
(a) Find the total depletion width under thermal equilibrium condition, assuming the
dielectric constant is the same for both semiconductors. (b) Draw the band diagram for
V=0.



