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What are the electronic energy levels and wavefunctions in a periodic potential?



Electron Energy States in a Periodic Potential

Bloch’s Theorem demonstrates that we can write a wavefunction in a periodic potential as follows:

Ψ𝑛𝑛𝑘𝑘(𝑟𝑟) = 𝑢𝑢𝑛𝑛𝑘𝑘(𝑟𝑟)𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟

Ψ𝑛𝑛𝑘𝑘(𝑟𝑟 + 𝑅𝑅) = Ψ𝑛𝑛𝑘𝑘(𝑟𝑟)𝑒𝑒𝑖𝑖𝑘𝑘�𝑅𝑅

where 𝑢𝑢𝑛𝑛𝑘𝑘 𝑟𝑟 + 𝑅𝑅 = 𝑢𝑢𝑛𝑛𝑘𝑘 𝑟𝑟 ∀𝑅𝑅

Function with the periodicity of the latticePlane wave (phase factor)

Indeed it is straightforward to show that if the wavefunction has this structure, then:

It is important to recognize that:

• 𝑘𝑘 ≠ 𝐾𝐾

• While in the case of a free particle with wavefunction Ψ ∝ 𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟, 𝑘𝑘 was proportional to the electron momentum, in a periodic potential this is not the 
case. Yet, the quantity ћ𝑘𝑘 is known as crystal momentum and plays an important role in the dynamics of electrons in a solid.

• For every value of 𝑘𝑘 there are infinite solutions 𝑢𝑢𝑛𝑛𝑘𝑘 𝑟𝑟 , this is why we have introduced the index 𝑛𝑛 to distinguish different wavefunctions with the same 𝑘𝑘. 
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Electron Density of States

Close to the conduction band minimum we can use a parabolic band 
approximation (Taylor expansion):

𝐸𝐸 − 𝐸𝐸𝑐𝑐 =
ћ2

2𝑚𝑚∗ 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2

parabolic band structure

𝐸𝐸 =
ћ2

2𝑚𝑚
𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2

𝑘𝑘𝑥𝑥 =
𝜋𝜋
𝐿𝐿𝑥𝑥
𝑛𝑛

𝑚𝑚∗ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑖𝑖 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

𝑛𝑛 =
2𝜋𝜋
𝐿𝐿
𝑛𝑛

𝑛𝑛 = ±0, ±1, … ±
𝑁𝑁
2

𝐸𝐸 − 𝐸𝐸𝑐𝑐 =
ћ2

2𝑚𝑚∗ 𝑘𝑘
2 𝑘𝑘2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2

We can observe that often, for 3D lattices, for a given value of 𝐸𝐸, there are many possible combinations of 𝑘𝑘𝑖𝑖

Example 1 – particle in a box Example 2 – conduction band of a semiconductor (periodic potential)
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Electron Density of States

Close to the conduction band minimum we can use a parabolic band 
approximation (Taylor expansion):

𝐸𝐸 − 𝐸𝐸𝑐𝑐 =
ћ2

2𝑚𝑚∗ 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2

parabolic band structure

𝐸𝐸 =
ћ2

2𝑚𝑚
𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2

𝑘𝑘𝑥𝑥 =
𝜋𝜋
𝐿𝐿𝑥𝑥
𝑛𝑛

𝑚𝑚∗ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑖𝑖 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

𝑛𝑛 =
2𝜋𝜋
𝐿𝐿
𝑛𝑛

𝑛𝑛 = ±0, ±1, … ±
𝑁𝑁
2

𝐸𝐸 − 𝐸𝐸𝑐𝑐 =
ћ2

2𝑚𝑚∗ 𝑘𝑘
2 𝑘𝑘2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2

We can observe that often, for 3D lattices, for a given value of 𝐸𝐸, there are many possible combinations of 𝑘𝑘𝑖𝑖

It is often convenient to know the number of quantum states available in an energy interval 𝐸𝐸 + 𝑑𝑑𝑑𝑑 and per unit volume of the crystal.

We call this quantity density of states. 

Example 1 – particle in a box Example 2 – conduction band of a semiconductor (periodic potential)
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We have also discussed previously that the Born-Von Karmann condition results in discrete values of k, i.e. quantum states.



Electron Density of States

Observations:
• In 3D each quantum mechanical state occupies a volume ⁄2𝜋𝜋 𝐿𝐿 3

• the iso-energy surface is a circle (2D) / sphere (3D).

𝐸𝐸 − 𝐸𝐸𝑐𝑐 =
ћ2

2𝑚𝑚∗ 𝑘𝑘
2 𝑘𝑘2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2 𝑘𝑘𝑖𝑖 =

2𝜋𝜋
𝐿𝐿
𝑛𝑛 𝑛𝑛 = ±0, … ±

𝑁𝑁
2

Thus, in 3D the number of energy states between 𝑘𝑘 and 𝑘𝑘 + ∆𝑘𝑘 is:

# = 2 �
4𝜋𝜋𝑘𝑘2𝑑𝑑𝑑𝑑

⁄2𝜋𝜋 𝐿𝐿 3 =
𝑉𝑉𝑘𝑘2𝑑𝑑𝑑𝑑
𝜋𝜋2

𝑉𝑉 = 𝐿𝐿3 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

spin

We can first define the density of states as the number of quantum states per unit interval of the wavevector, 𝑑𝑑𝑑𝑑, per unit volume, V:

𝐷𝐷 𝑘𝑘 =
#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 + 𝑑𝑑𝑑𝑑

𝑉𝑉𝑉𝑉𝑉𝑉
=
𝑘𝑘2

𝜋𝜋2

Re-writing as a function of energy we have:

𝐷𝐷 𝐸𝐸 =
#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸 + 𝑑𝑑𝑑𝑑

𝑉𝑉𝑉𝑉𝑉𝑉
=

2𝑚𝑚∗

ћ2
𝐸𝐸 − 𝐸𝐸𝑐𝑐

𝑚𝑚∗

ћ2 2𝑚𝑚∗

ћ2 𝐸𝐸 − 𝐸𝐸𝑐𝑐

𝑑𝑑 𝐸𝐸 − 𝐸𝐸𝑐𝑐 =
ћ2

𝑚𝑚∗ 𝑘𝑘𝑘𝑘𝑘𝑘

𝑑𝑑𝑑𝑑 =
𝑚𝑚∗𝑑𝑑 𝐸𝐸 − 𝐸𝐸𝑐𝑐

ћ2 2𝑚𝑚∗

ћ2 𝐸𝐸 − 𝐸𝐸𝑐𝑐

𝐷𝐷 𝐸𝐸 =
𝟏𝟏
𝟐𝟐𝟐𝟐𝟐𝟐

𝟐𝟐𝒎𝒎∗

ћ𝟐𝟐

𝟑𝟑/𝟐𝟐

𝑬𝑬 − 𝑬𝑬𝒄𝒄
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Electron Density of States

𝐷𝐷 𝐸𝐸 =
𝟏𝟏
𝟐𝟐𝝅𝝅𝟐𝟐

𝟐𝟐𝒎𝒎∗

ћ𝟐𝟐

𝟑𝟑/𝟐𝟐

𝑬𝑬 − 𝑬𝑬𝒄𝒄

To see how this is useful, we now want to find the Fermi level for a gold crystal at 𝑇𝑇 = 0𝐾𝐾. Being gold a metal we can set 𝐸𝐸𝑐𝑐 = 0

Gold as an FCC lattice with one atom per lattice point and a lattice constant 𝑎𝑎 = 4.08 Å. 
Using the conventional FCC lattice cell we have 4 lattice points. Furthermore, each lattice point has one electron. Thus we have 4 electrons per conventional cell. 

𝑛𝑛 =
#𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
=

4
4.08 � 10−10 3 = 5.89 � 1028 𝑚𝑚−3 = 5.89 � 1022 𝑐𝑐𝑚𝑚−3

At the same time we observe that we can write: 𝑛𝑛 =
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= �
0

𝐸𝐸𝐹𝐹
𝐷𝐷 𝐸𝐸 𝑑𝑑𝑑𝑑 =

1
3𝜋𝜋2

2𝑚𝑚
ћ2

3/2

𝐸𝐸𝐹𝐹3/2

𝐸𝐸𝐹𝐹 =
ћ2

2𝑚𝑚
3𝜋𝜋2𝑛𝑛 2/3 = 8.66 � 10−19 𝐽𝐽 = 5.4 𝑒𝑒𝑒𝑒

𝑎𝑎
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Nanoscale Confinement and Artificial Structures
So far we have discussed infinite bulk crystals. Let’s now confine one of the spatial directions such that quantization effects become important. 

Quantum well: by using two semiconductors with different values of the electron affinity, we can create a potential 
well. If the thickness (z) of such potential well is sufficiently small (d< 200 nm) it will behave like a quantum well, 
giving rise to quantization of the electronic energy levels along z. 

𝐸𝐸 =
ћ2

2𝑚𝑚∗ 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑛𝑛2
ћ2𝜋𝜋2

2𝑚𝑚∗𝑑𝑑2 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 = ±
2𝜋𝜋
𝑁𝑁𝑁𝑁

𝑛𝑛 = ±
2𝜋𝜋
𝐿𝐿
𝑛𝑛

Area of the unit cell

𝐸𝐸 =
ћ2

2𝑚𝑚∗ 𝑘𝑘𝑥𝑥𝑥𝑥
2 + 𝑛𝑛2

ћ2𝜋𝜋2

2𝑚𝑚∗𝑑𝑑2

We observe that if 𝐸𝐸𝑛𝑛 = 𝑛𝑛2 ћ2𝜋𝜋2

2𝑚𝑚∗𝑑𝑑2
, 

𝐸𝐸𝑛𝑛 < 𝐸𝐸 < 𝐸𝐸𝑛𝑛+1 can be obtained 
with n-combinations:

𝑘𝑘𝑥𝑥𝑥𝑥2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2

𝐸𝐸𝑛𝑛 =
ћ2

2𝑚𝑚∗ 𝑘𝑘𝑥𝑥𝑥𝑥,1
2 +

ћ2𝜋𝜋2

2𝑚𝑚∗𝑑𝑑2

.

.

.

𝐸𝐸𝑛𝑛 = 𝑛𝑛2
ћ2𝜋𝜋2

2𝑚𝑚∗𝑑𝑑2

𝐸𝐸𝑛𝑛 =
ћ2

2𝑚𝑚∗ 𝑘𝑘𝑥𝑥𝑥𝑥,2
2 + 4

ћ2𝜋𝜋2

2𝑚𝑚∗𝑑𝑑2

We also observe that for each 
combination, the number of states 
between 𝑘𝑘𝑥𝑥𝑦𝑦 and 𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑑𝑑𝑘𝑘𝑥𝑥𝑥𝑥

# =
4𝜋𝜋𝑘𝑘𝑥𝑥𝑥𝑥𝑑𝑑𝑘𝑘𝑥𝑥𝑥𝑥

2𝜋𝜋/𝐿𝐿 2

while

𝑑𝑑𝑑𝑑 =
ћ2

𝑚𝑚∗ 𝑘𝑘𝑥𝑥𝑥𝑥𝑑𝑑𝑘𝑘𝑥𝑥𝑥𝑥

For each allowable 𝑘𝑘𝑥𝑥𝑦𝑦 series the density of states is

𝐷𝐷1 𝐸𝐸 =
#
𝐴𝐴𝑑𝑑𝑑𝑑

=
𝑚𝑚∗

𝜋𝜋ћ2 with 𝐴𝐴 = 𝐿𝐿2

Thus for the energy state 𝐸𝐸𝑛𝑛 < 𝐸𝐸 < 𝐸𝐸𝑛𝑛+1

𝐷𝐷 𝐸𝐸 = 𝑛𝑛𝐷𝐷1 𝐸𝐸
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Nanoscale Confinement and Artificial Crystal

𝐷𝐷1 𝐸𝐸 =
#
𝐴𝐴𝑑𝑑𝑑𝑑

=
𝑚𝑚∗

𝜋𝜋ћ2

𝐷𝐷 𝐸𝐸 = 𝑛𝑛𝐷𝐷1 𝐸𝐸

13

What happens if we have 2D confinement, i.e. a nanowire?

And for 3D confinement, i.e. a quantum dot?



In This Lecture…
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Phonon Modes of a Crystal – 1D monoatomic lattice

𝑎𝑎

𝑁𝑁𝑁𝑁

𝑗𝑗 − 1 𝑗𝑗 𝑗𝑗 + 1

Hypothesis: 
1. Force interactions occur only between nearest neighbors
2. Harmonic interaction force (Hooke’s law) 
3. Equal mass 𝑀𝑀 and spring constant 𝐾𝐾

𝑢𝑢𝑗𝑗 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗0

𝐹𝐹𝑗𝑗 = −
𝜕𝜕𝑈𝑈ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝑢𝑢𝑗𝑗
= 𝐾𝐾 𝑢𝑢𝑗𝑗+1 − 𝑢𝑢𝑗𝑗 − 𝐾𝐾 𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗−1

displacement

force

𝑢𝑢𝑗𝑗

𝑈𝑈ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =
1
2
𝐾𝐾�

𝑗𝑗

𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗+1
2

potential

To find the energy states of this system we can use:
• Schrodinger equation with periodic harmonic potential
• Classical solution of the vibration modes of this system + quantization of the energy states as for the quantum harmonic oscillator

We follow the second option. 
16



Phonon Modes of a Crystal – 1D monoatomic lattice

𝑎𝑎

𝑁𝑁𝑁𝑁

𝑗𝑗 − 1 𝑗𝑗 𝑗𝑗 + 1

Hypothesis: 
1. Force interactions occur only between nearest neighbors
2. Harmonic interaction force (Hooke’s law) 
3. Equal mass 𝑀𝑀 and spring constant 𝐾𝐾

𝑢𝑢𝑗𝑗 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗0 displacement

force

𝑢𝑢𝑗𝑗

𝑈𝑈ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =
1
2
𝐾𝐾�

𝑗𝑗

𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗+1
2

potential

Dynamical equations (Newton’s law): 𝑚𝑚
𝑑𝑑2𝑢𝑢𝑗𝑗
𝑑𝑑𝑡𝑡2

= 𝐾𝐾 𝑢𝑢𝑗𝑗+1 − 𝑢𝑢𝑗𝑗 − 𝐾𝐾 𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗−1

𝑚𝑚
𝜕𝜕2𝑢𝑢𝑗𝑗
𝜕𝜕𝑡𝑡2

= 𝐾𝐾𝑎𝑎2
𝜕𝜕2𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥2

This equation has the typical form : 𝑢𝑢𝑗𝑗 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘)with solution of the form

17

𝐹𝐹𝑗𝑗 = −
𝜕𝜕𝑈𝑈ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝑢𝑢𝑗𝑗
= 𝐾𝐾 𝑢𝑢𝑗𝑗+1 − 𝑢𝑢𝑗𝑗 − 𝐾𝐾 𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗−1



Phonon Modes of a Crystal – 1D monoatomic lattice

𝑚𝑚
𝑑𝑑2𝑢𝑢𝑗𝑗
𝑑𝑑𝑡𝑡2

= 𝐾𝐾 𝑢𝑢𝑗𝑗+1 − 𝑢𝑢𝑗𝑗 − 𝐾𝐾 𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗−1 𝑢𝑢𝑗𝑗 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘)

Observations: 

1. The displacement is defined only at DISCRETE lattice coordinates 𝑥𝑥 = 𝑗𝑗𝑗𝑗. Indeed, talking about vibration at locations other than the atomic sites is meaningless.

2. The real lattice is infinite so we should use the Born-von Karmann boundary condition to describe it correctly:

3. There are just 𝑁𝑁 values of 𝑘𝑘 . Indeed

𝑢𝑢 𝑁𝑁+1 = 𝑢𝑢1𝑢𝑢𝑁𝑁 = 𝑢𝑢0 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 𝑘𝑘 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

𝑛𝑛or

𝑢𝑢𝑗𝑗 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘) 𝑢𝑢𝑗𝑗 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘𝑘𝑘)

𝑛𝑛 = 𝑁𝑁 + 1 𝑢𝑢𝑗𝑗 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−
2𝜋𝜋
𝑁𝑁𝑁𝑁(𝑁𝑁+1)𝑗𝑗𝑗𝑗) = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−

2𝜋𝜋
𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗)

18



Phonon Modes of a Crystal – 1D monoatomic lattice

𝑘𝑘 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

𝑛𝑛 𝑛𝑛 = ±0, ±1, … ±
𝑁𝑁
2

−𝒎𝒎𝝎𝝎𝟐𝟐𝒆𝒆−𝒊𝒊 𝝎𝝎𝝎𝝎−𝒌𝒌𝒌𝒌𝒌𝒌 = 𝐾𝐾 𝑒𝑒−𝑖𝑖 𝜔𝜔𝜔𝜔−𝑘𝑘 𝑗𝑗+1 𝑎𝑎 − 2𝑒𝑒−𝑖𝑖 𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑒𝑒−𝑖𝑖 𝜔𝜔𝜔𝜔−𝑘𝑘 𝑗𝑗−1 𝑎𝑎 = 𝐾𝐾 𝑒𝑒𝑘𝑘𝑘𝑘 − 2 + 𝑒𝑒−𝑘𝑘𝑘𝑘 𝑒𝑒−𝑖𝑖 𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘𝑘𝑘 = −𝟐𝟐𝟐𝟐(𝟏𝟏 − 𝒄𝒄𝒄𝒄𝒄𝒄(𝒌𝒌𝒌𝒌))𝒆𝒆−𝒊𝒊 𝝎𝝎𝝎𝝎−𝒌𝒌𝒌𝒌𝒌𝒌

𝜔𝜔 =
2𝐾𝐾(1 − cos(𝑘𝑘𝑘𝑘))

𝑚𝑚
= 2

𝐾𝐾
𝑚𝑚

sin(
1
2
𝑘𝑘𝑘𝑘) 𝑢𝑢(𝑗𝑗𝑗𝑗, 𝑡𝑡) ∝ 𝑅𝑅𝑅𝑅 𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘𝑘𝑘)

Dispersion relation 𝜔𝜔(𝑘𝑘)

The solutions 𝑢𝑢(𝑗𝑗𝑗𝑗, 𝑡𝑡) describe plane waves propagating along the chain with:
• Phase velocity 𝑐𝑐 = ⁄𝜔𝜔 𝑘𝑘
• Group velocity 𝑣𝑣 = ⁄𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕

𝑚𝑚
𝑑𝑑2𝑢𝑢𝑗𝑗
𝑑𝑑𝑡𝑡2

= 𝐾𝐾 𝑢𝑢𝑗𝑗+1 − 𝑢𝑢𝑗𝑗 − 𝐾𝐾 𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗−1 𝑢𝑢𝑗𝑗 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘)

• For 𝑘𝑘 ≪ ⁄𝜋𝜋 𝑎𝑎 , i.e. wavelength much larger than inter-atomic spacing, we can assume a 

linear dispersion 𝜔𝜔 = 𝑎𝑎 𝐾𝐾
𝑚𝑚
𝑘𝑘 Debye Approximation

• For 𝑘𝑘~ ⁄𝜋𝜋 𝑎𝑎 we have v~0

19



and the amplitude of the mode will be related to the number of phonons in that mode (L3, slide 8). 

Phonon Modes of a Crystal – 1D monoatomic lattice

For the classical resonator, the vibrational energy at each frequency is determined by the amplitude of oscillation 𝐴𝐴

For the quantum mechanical oscillator we have previously demonstrated that the energy of the lattice vibration is quantized: 𝐸𝐸𝑛𝑛 = 𝑛𝑛 +
1
2 ћ𝜔𝜔

We call PHONON the minimum quantum of lattice vibration (normal mode). This collective excitation has a zero rest mass. 

Each phonon has an energy E = ћ𝜔𝜔 where 

𝑛𝑛 = 0,1, …

𝜔𝜔 = 2
𝐾𝐾
𝑚𝑚

sin(
1
2
𝑘𝑘𝑘𝑘)

For phonons, one quantum state corresponds to one set of wavevectors 𝑘𝑘. We note that there are 𝑁𝑁 frequencies and hence phonon energies for a monoatomic 
1D lattice. 

𝑘𝑘 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

𝑛𝑛 𝑛𝑛 = ±0, ±1, … ±
𝑁𝑁
2𝜔𝜔 =

2𝐾𝐾(1 − cos(𝑘𝑘𝑘𝑘))
𝑚𝑚

= 2
𝐾𝐾
𝑚𝑚

sin(
1
2
𝑘𝑘𝑘𝑘) 𝑢𝑢(𝑗𝑗𝑗𝑗, 𝑡𝑡) ∝ 𝑅𝑅𝑅𝑅 𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘𝑘𝑘)

20

Finally, we observe that, contrary to the electron case where the Pauli exclusion principle restrict the occupancy of a quantum state to just two electrons, many 
phonons can occupy the same quantum state. 



Phonon Modes of a Crystal – 1D polyatomic lattice

If we consider a lattice with two ions per primitive cell we will have to consider to different 
coupling constants, 𝐾𝐾,𝐺𝐺. 

Masses could also be different but for simplicity we consider identical ions with mass 𝑚𝑚

The solutions for this system gives: 𝜔𝜔2 =
𝐾𝐾 + 𝐺𝐺
𝑚𝑚

±
1
𝑚𝑚

𝐾𝐾2 + 𝐺𝐺2 + 2𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑘𝑘𝑘𝑘)

• For 𝑘𝑘 ≪ ⁄𝜋𝜋 𝑎𝑎 subsequent primitive cells oscillate in phase. Yet, ions within the cell have different phaseOptical 
phonons

Acoustic 
phonons

𝜔𝜔+ = 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 =
2(𝐾𝐾 + 𝐺𝐺)

𝑚𝑚

𝜔𝜔− = 𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐾𝐾𝐾𝐾

2𝑚𝑚 𝐾𝐾 + 𝐺𝐺
(𝑘𝑘𝑘𝑘) In-phase ion oscillation

Out-of-phase ion oscillation

• For 𝑘𝑘~ ⁄𝜋𝜋 𝑎𝑎 subsequent primitive cells oscillate out of phase. Ions within the cell have different phase

𝜔𝜔+ = 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 =
2𝐾𝐾
𝑚𝑚

𝜔𝜔− = 𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎 =
2𝐺𝐺
𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠
1
2
𝑘𝑘𝑘𝑘 In-phase ion oscillation

Out-of-phase ion oscillation

cell
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Phonon Modes of a Crystal – 3D lattices
For a 3D lattice we have more degrees of freedoms. Thus every lattice point can vibrate along all three spatial directions. This results in two types of waves:

Longitudinal Waves Transversal Waves

Acoustic Phonons

Optical Phonons

3 branches of acoustic phonons 
(1x longitudinal, 2x transversal)

3(𝑝𝑝 − 1) branches of acoustic phonons 
where 𝑝𝑝 = #𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
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Phonon Modes of a Crystal – 3D lattices
For a 3D lattice we have more degrees of freedoms. Thus every lattice point can vibrate along all three spatial directions. This results in two types of waves:

Longitudinal Waves Transversal Waves

Acoustic Phonons

Optical Phonons

𝒑𝒑 = 𝟏𝟏 𝒑𝒑 = 𝟐𝟐
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In This Lecture…
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• Electron Energy States in Periodic Lattices 

 Density of States

• Phonons

 Energy states in Periodic Lattices

 Phonon Density of States

• Photons Density of States



Phonon Density of States
We now want to determine the phonon density of states. 
To obtain an analytical expression we limit ourselves to a monoatomic lattice and to the Debye regime 𝑘𝑘 ≪ ⁄𝜋𝜋 𝑎𝑎 where

While electrons have spin, phonons have different polarizations and we know that we will have 3 polarization states for the acoustic phonons.  

𝜔𝜔 = 𝑎𝑎 𝐾𝐾
𝑚𝑚
𝑘𝑘 = 𝑣𝑣𝐷𝐷𝑘𝑘

𝐷𝐷 𝜔𝜔 =
#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜔𝜔 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 + 𝑑𝑑𝜔𝜔

𝑉𝑉𝑉𝑉𝜔𝜔
=

3𝜔𝜔2

2𝜋𝜋2𝑣𝑣𝐷𝐷3

𝐷𝐷 𝑘𝑘 =
#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 + 𝑑𝑑𝑑𝑑

𝑉𝑉𝑉𝑉𝑉𝑉
= 3

4𝜋𝜋𝑘𝑘2𝑑𝑑𝑑𝑑
⁄2𝜋𝜋 𝐿𝐿 3

𝑉𝑉𝑉𝑉𝑉𝑉

𝑉𝑉𝑘𝑘 = ⁄2𝜋𝜋 𝐿𝐿 3

𝑘𝑘 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

𝑛𝑛 =
2𝜋𝜋
𝐿𝐿
𝑛𝑛In 1D we have:

Therefore, for a 3D crystal in k-space the volume of one phonon state is:

Also, the isofrequency surface will be a sphere in 3D. 

Finally the total volume of the crystal is 𝑉𝑉 = 𝐿𝐿3

with 𝑣𝑣𝐷𝐷 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
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Phonon Density of States
𝐷𝐷 𝜔𝜔 =

3𝜔𝜔2

2𝜋𝜋2𝑣𝑣𝐷𝐷3
Acoustic Phonons

Optical Phonons

For a 3D lattice this results implies that the propagation velocity 𝑣𝑣𝐷𝐷 is the same in all directions in the lattice.
However, even in a cubic lattice,  different crystallographic directions have different velocities. 

We can nonetheless define a fictitious Debye crystal with lattice constant 𝑎𝑎𝐷𝐷 that satisfies the isotropic 𝑣𝑣𝐷𝐷. 
To do so, we require that the total number of phonon states in the isotropic crystal equals the total number 
of states in the real crystal, i.e. 3𝑁𝑁 where 𝑁𝑁 is the number of ions in the crystal, :

𝑘𝑘𝐷𝐷 =
𝜋𝜋
𝑎𝑎𝐷𝐷

3𝑁𝑁 = 3
4/3𝜋𝜋𝑘𝑘𝐷𝐷

3

⁄2𝜋𝜋 𝐿𝐿 3
𝑘𝑘𝐷𝐷 =

6𝜋𝜋2𝑁𝑁
𝑉𝑉

1/3

𝑎𝑎𝐷𝐷 =
𝜋𝜋𝑉𝑉
6𝑁𝑁

1/3

𝜔𝜔𝐷𝐷 = 𝑣𝑣𝐷𝐷𝑘𝑘𝐷𝐷

The usefulness of this approximation will become more clear later in the course

For the optical phonons, a better approximation is 𝜔𝜔 = 𝜔𝜔𝐸𝐸 for each branch. 
Hence, for a lattice with 𝑁𝑁 points, there will be 𝑁𝑁 modes for each branch with 𝑁𝑁 degeneracy. 

This approximation is called Einstein model.

26



Phonon Density of States

Debye Crystal Real Crystal
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Nanoscale Confinement and Artificial Structures
Similar to what we can do for electrons, we can create quantum wells also for phonons, for example by creating a free-standing ultra-thin film. 

We will see that we can use optical tool, such as Raman spectroscopy, to probe the change in the vibrational modes of the structure. 

As we will see, controlling the phonon dispersion enables controlling heat flow in the material. 

28
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• Photons Density of States



Photon Density of States
Photons are the other important particle we will encounter often. It is a quantum of an electromagnetic field oscillation. 
Similar to phonons in the Debye approximation, photons have a linear dispersion relation:

𝜔𝜔 = 𝑐𝑐𝑐𝑐 𝑐𝑐 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙*

* When travelling inside a material the light can be slowed down compared to its vacuum value. The dispersion relation remains linear

If we consider the electromagnetic field in a cubic box of length 𝐿𝐿 we will find that the allowable wavevectors are: 𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 ,𝑘𝑘𝑧𝑧 = 0, ±
2𝜋𝜋
𝐿𝐿

, ±
4𝜋𝜋
𝐿𝐿

, …

Contrary to phonons, however:
• Photons can have only two (transverse) polarizations (factor of 2 instead of 3 for the D(k) )
• There is no cut-off frequency for the photons (no minimum wavelength required by the interatomic spacing) 

𝐷𝐷 𝜔𝜔 =
#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜔𝜔 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 + 𝑑𝑑𝜔𝜔

𝑉𝑉𝑉𝑉𝜔𝜔
=

𝜔𝜔2

𝜋𝜋2𝑐𝑐3

Using the same derivation of the density of states as for phonons we obtain: 

𝐷𝐷 𝑘𝑘 =
#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 + 𝑑𝑑𝑑𝑑

𝑉𝑉𝑉𝑉𝑉𝑉
= 2

4𝜋𝜋𝑘𝑘2𝑑𝑑𝑑𝑑
⁄2𝜋𝜋 𝐿𝐿 3

𝑉𝑉𝑉𝑉𝑉𝑉
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Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Thermal Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

Energy Transport by Waves
(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)


	Nanoscale Heat Transfer�(and Energy Conversion)�ME469
	From Individual Elements to Periodic Arrangements
	From Individuals to Crystals
	Electron Energy States in a Periodic Potential
	From Individuals to Crystals
	In This Lecture…
	Electron Density of States
	Electron Density of States
	Electron Density of States
	Electron Density of States
	In This Lecture…
	Nanoscale Confinement and Artificial Structures
	Nanoscale Confinement and Artificial Crystal
	In This Lecture…
	From Individuals to Crystals
	Phonon Modes of a Crystal – 1D monoatomic lattice
	Phonon Modes of a Crystal – 1D monoatomic lattice
	Phonon Modes of a Crystal – 1D monoatomic lattice
	Phonon Modes of a Crystal – 1D monoatomic lattice
	Phonon Modes of a Crystal – 1D monoatomic lattice
	Phonon Modes of a Crystal – 1D polyatomic lattice
	Phonon Modes of a Crystal – 3D lattices
	Phonon Modes of a Crystal – 3D lattices
	In This Lecture…
	Phonon Density of States
	Phonon Density of States
	Phonon Density of States
	Nanoscale Confinement and Artificial Structures
	In This Lecture…
	Photon Density of States
	Next Week

