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» What are the electronic energy levels and wavefunctions in a periodic potential?



Electron Energy States in a Periodic Potential EPFL

Bloch’s Theorem demonstrates that we can write a wavefunction in a periodic potential as follows:
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Plane wave (phase factor) Function with the periodicity of the lattice

Indeed it is straightforward to show that if the wavefunction has this structure, then:
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It is important to recognize that:
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*  While in the case of a free particle with wavefunction ¥ « e”"F, k was proportional to the electron momentum, in a periodic potential this is not the

case. Yet, the quantity hk is known as crystal momentum and plays an important role in the dynamics of electrons in a solid.

*  For every value of k there are infinite solutions U (1), this is why we have introduced the index n to distinguish different wavefunctions with the same k.



From Individuals to Crystals EPFL
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Electron Density of States EPFL

We can observe that often, for 3D lattices, for a given value of E, there are many possible combinations of k;

Example 1 — particle in a box Example 2 — conduction band of a semiconductor (periodic potential)
6 6 2 Close to the conduction band minimum we can use a parabolic band
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Electron Density of States EPFL

We can observe that often, for 3D lattices, for a given value of E, there are many possible combinations of k;
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We have also discussed previously that the Born-Von Karmann condition results in discrete values of k, i.e. quantum states.

It is often convenient to know the number of quantum states available in an energy interval E + dE and per unit volume of the crystal.

We call this quantity density of states.



Electron Density of States EPFL
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Observations:

* In 3D each quantum mechanical state occupies a volume (2m/L)3

* theiso-energy surface is a circle (2D) / sphere (3D).
fl ST K‘ Thus, in 3D the number of energy states between k and k + Ak is:
% ! Volume-ofOne X Amk?dk  Vk2dk .
" kx : antum State. : =2 /L) = V = L° = crystal volume
; A - spinT
©) AR

We can first define the density of states as the number of quantum states per unit interval of the wavevector, dk, per unit volume, V:

#states between k and k + dk k?

D(k) = -
() Vdk m?
Re-writing as a function of energy we have:
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Electron Density of States EPFL
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To see how this is useful, we now want to find the Fermi level for a gold crystal at T = 0K. Being gold a metal we canset E, = 0

Gold as an FCC lattice with one atom per lattice point and a lattice constant a = 4.08 A.

Using the conventional FCC lattice cell we have 4 lattice points. Furthermore, each lattice point has one electron. Thus we have 4 electrons per conventional cell.

#electrons cell 4 28 3 22 _3
D = ™ = o5 100y = 089+ 10%° m? =589 107 cm
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At the same time we observe that we can write: n = —2ecrons _ 1 p(E)dE = — Ll IR 72
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Nanoscale Confinement and Artificial Structures EPFL

So far we have discussed infinite bulk crystals. Let’s now confine one of the spatial directions such that quantization effects become important.

Quantum well: by using two semiconductors with different values of the electron affinity, we can create a potential

well. If the thickness (z) of such potential well is sufficiently small (d< 200 nm) it will behave like a quantum well,
giving rise to quantization of the electronic energy levels along z.
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Nanoscale Confinement and Artificial Crystal EPFL

# m*
Di(E) =205 = w2

D(E) = nD,(E)

» What happens if we have 2D confinement, i.e. a nanowire?

» And for 3D confinement, i.e. a quantum dot?
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From Individuals to Crystals EPFL
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Phonon Modes of a Crystal — 1D monoatomic lattice
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Hypothesis:
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harm _ — Ay, ;
2. Harmonic interaction force (Hooke’s law) » 1 U o ZKZ[u] uJ+1] potential
3. Equal mass M and spring constant K J
aUharm
== Ky — ) — K (g - )
j

To find the energy states of this system we can use:
* Schrodinger equation with periodic harmonic potential

* Classical solution of the vibration modes of this system + quantization of the energy states as for the quantum harmonic oscillator

We follow the second option.

=PrL

16



Phonon Modes of a Crystal — 1D monoatomic lattice
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Dynamical equations (Newton’s law): d*y; — K — — K( —
Mz = (w1 =) W = tj1)
241, 2,0, .

This equation has the typical form : m 0"y, — Ka2 07y with solution of the form u; = Ae~H@t=kx)

Jdt? dx2

force

=PrL
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Phonon Modes of a Crystal — 1D monoatomic lattice EPFL

2.,
du]

m = K(uj+1 - uj) - K(uj — uj—l) u; = Ae—i(wt_kx)

Observations:

1. The displacement is defined only at DISCRETE lattice coordinates x = ja. Indeed, talking about vibration at locations other than the atomic sites is meaningless.

o

ATOM

u; = Ae~iwt=kn) » uj = Ae~i@t-kja)

2. The real lattice is infinite so we should use the Born-von Karmann boundary condition to describe it correctly:

. 21
Uy = Ug or Un+1) = U » e~tkNa — 1 » k=—n

. 2T . . 2T .
3. There are just N values of k . Indeed n=N+1 » u; = Ae U@t Ng(NFDI) — g o-i(@i-ygIa)
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Phonon Modes of a Crystal — 1D monoatomic lattice EPFL
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/
/ The solutions u(ja, t) describe plane waves propagating along the chain with:

§ ;
L it : g *  Phase velocityc = w/k
' «  Group velocity v = dw/dk

Dispersion relation w (k)

* Fork K m/a,i.e. wavelength much larger than inter-atomic spacing, we can assume a

linear dispersion w = a\/% |k| Debye Approximation

BIRE e L s e

* Fork~m/awe have v~0
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Phonon Modes of a Crystal — 1D monoatomic lattice EPFL
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For the classical resonator, the vibrational energy at each frequency is determined by the amplitude of oscillation A

1
For the quantum mechanical oscillator we have previously demonstrated that the energy of the lattice vibration is quantized: E, = (n + E) hw n=0]1,..

» We call PHONON the minimum quantum of lattice vibration (normal mode). This collective excitation has a zero rest mass.

K 1
Each phonon has an energy E = hw where w = 2 - sin(zka)|

and the amplitude of the mode will be related to the number of phonons in that mode (L3, slide 8).

For phonons, one quantum state corresponds to one set of wavevectors k. We note that there are N frequencies and hence phonon energies for a monoatomic
1D lattice.

Finally, we observe that, contrary to the electron case where the Pauli exclusion principle restrict the occupancy of a quantum state to just two electrons, many
phonons can occupy the same quantum state.
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Phonon Modes of a Crystal — 1D polyatomic lattice EPFL
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Phonon Modes of a Crystal — 3D lattices EPFL

For a 3D lattice we have more degrees of freedoms. Thus every lattice point can vibrate along all three spatial directions. This results in two types of waves:

Acoustic Phonons

Optical Phonons

Longitudinal Waves

Transversal Waves

\KDDDDD\’W\#DDDDD”‘W\‘OD@DWW

PN L T e

V@@W@D@W“W

w(k)

3(p — 1) branches of acoustic phonons

where p = #atoms per lattice point

0

3 branches of acoustic phonons
(1x longitudinal, 2x transversal)
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Phonon Modes of a Crystal — 3D lattices EPFL

For a 3D lattice we have more degrees of freedoms. Thus every lattice point can vibrate along all three spatial directions. This results in two types of waves:

Longitudinal Waves Transversal Waves
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Phonon Density of States EPFL

We now want to determine the phonon density of states. <
To obtain an analytical expression we limit ourselves to a monoatomic lattice and to the Debye regime k <K m/awhere w = a /— |k| = vpk
m

with vp = propagation velocity

_Volume of One

Also, the isofrequency surface will be a sphere in 3D.

4 it Cel o :
In 1D we h k=Tt | i mmi t
n 1D we have: =—n=—n <o :
Na L i e
. . " R /
Therefore, for a 3D crystal in k-space the volume of one phonon state is: Vi = (2m/L)3 Lt/ \
g

AR

antum State

Finally the total volume of the crystalis V = L3

While electrons have spin, phonons have different polarizations and we know that we will have 3 polarization states for the acoustic phonons.

A )
Amtk2dk =
#states between k and k + dk 3 &
D(k) = _ 3.2n/L) 8- S
| % Model
=
a
D(w) = #states between w and w + dw 3w? o
@)= Vdw - 2m2y,3

Phonon Frequency
25



Phonon Density of States

3w?

Acoustic Phonons  D(w) = 53
vy

For a 3D lattice this results implies that the propagation velocity vp is the same in all directions in the lattice.

However, even in a cubic lattice, different crystallographic directions have different velocities.

We can nonetheless define a fictitious Debye crystal with lattice constant ap that satisfies the isotropic vp.
To do so, we require that the total number of phonon states in the isotropic crystal equals the total number
of states in the real crystal, i.e. 3N where N is the number of ions in the crystal, :

1/3
4/3mkp? (67T2N>
= —_— k =
3N =3 21/L)° » D %

1/3

~ wp = vpkp

T 1%
A
ap 6N
The usefulness of this approximation will become more clear later in the course

Optical Phonons

For the optical phonons, a better approximation is w = wg for each branch.
Hence, for a lattice with N points, there will be N modes for each branch with N degeneracy.

This approximation is called Einstein model.

Density of States

=PrL

‘Einstein
M_ode_l

Debye
Model

Phonon Frequency @ ©p g
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Phonon Density of States EPFL
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Debye Crystal Real Crystal
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Nanoscale Confinement and Artificial Structures EPFL

Similar to what we can do for electrons, we can create quantum wells also for phonons, for example by creating a free-standing ultra-thin film.

8 v T r T ‘
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—— 7 l@yers
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’(? ' X 4 : — = 1G layers
= gl 6 7 ¥
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2 sa ’ = b “'Ki <
= 3 A
" O 4Lk 3 t
e -
> ~
o v |
g % 8
U -
[
o
w
0 == =
o ¢ 4] 0.4 0.6 0.8 1 0 20 4
2 . . . N
: Frequency (10 ~ rad/s
kla/,; quency ( )

We will see that we can use optical tool, such as Raman spectroscopy, to probe the change in the vibrational modes of the structure.

As we will see, controlling the phonon dispersion enables controlling heat flow in the material.
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Photon Density of States EPFL

Photons are the other important particle we will encounter often. It is a quantum of an electromagnetic field oscillation.
Similar to phonons in the Debye approximation, photons have a linear dispersion relation:

w = ck c = speed of light*
If we consider the electromagnetic field in a cubic box of length L we will find that the allowable wavevectors are:  ky, ky,k, =0, %

Contrary to phonons, however:
* Photons can have only two (transverse) polarizations (factor of 2 instead of 3 for the D(k) )
* There is no cut-off frequency for the photons (no minimum wavelength required by the interatomic spacing)

Using the same derivation of the density of states as for phonons we obtain:

4mk?dk
#states between k and k + dk (2r/L)3
Dk) = vdk =2 Vdk
#states between w and w + dw  w?
D(w) = =

Vdw 23

* When travelling inside a material the light can be slowed down compared to its vacuum value. The dispersion relation remains linear 30



Next Week EPFL

L[ Introduction to Statistical ]

Thermodynamics (Ch. 4)
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