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Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Thermal Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

Energy Transport by Waves
(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)



Wave-particle Duality

Particle View Wave View
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Energy Frequency, Amplitude

Momentum Wavevector

The wave nature of material particles gives rise to quantum mechanical effects!

𝑝𝑝 = ћ𝑘𝑘



Describing the Material Waves – The Schrodinger Equation*
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𝑖𝑖ћ
𝜕𝜕Ψ𝑡𝑡
𝜕𝜕𝑡𝑡

= −
ћ2

2𝑚𝑚
∇2 + 𝑈𝑈 Ψ𝑡𝑡

Ψ𝑡𝑡(𝑟𝑟, 𝑡𝑡) = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑈𝑈 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

*Normally we would model the physics and derive the equations. Here we proceed in the opposite way. 
We start from the equation and we show that the physics that follows corresponds to the observed physical phenomena

Ψ𝑡𝑡Ψ𝑡𝑡∗ = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
−∞

+∞
Ψ𝑡𝑡Ψ𝑡𝑡∗𝑑𝑑𝑑𝑑 = 1

To understand the dynamics of the material waves (and hence of the associated particles) we use the Schrodinger equation:

−
ћ2

2𝑚𝑚∇2Ψ 𝑟𝑟 + 𝑼𝑼Ψ(𝑟𝑟) = 𝐸𝐸Ψ 𝑟𝑟

Steady-state Schrodinger equation (eigenvalue equation)

Together with the problem symmetry determines the energy levels and the wavefunctions



Summary of Solutions of Schrodinger Equation

Potential Wavefunction Energy Levels

Quant
um 

Numbe
rs

Degene
racy

Free Particle 𝑼𝑼 = 𝟎𝟎 Ψ𝑡𝑡 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔+𝑘𝑘𝑘𝑘) + 𝐵𝐵𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘)

𝑘𝑘 = √(2𝑚𝑚𝑚𝑚/ћ^2 ) 𝐸𝐸 =
ћ2
2𝑚𝑚𝑘𝑘2 - -

1D Infinite 
Potential Well

𝑼𝑼 = 𝟎𝟎 for 𝟎𝟎 <
𝒙𝒙 < 𝑳𝑳 𝑼𝑼 = ∞
for 𝐱𝐱 < 𝟎𝟎 and 

𝐱𝐱 > 𝑳𝑳
Ψ𝑛𝑛,𝑡𝑡 𝑥𝑥, 𝑡𝑡 =

2
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 =
1
2𝑚𝑚

ћ𝑛𝑛𝜋𝜋
𝐿𝐿

2
𝑛𝑛 none

2D Infinite 
Potential Well

Ψ𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑡𝑡 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 =
2
𝐷𝐷
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑥𝑥𝜋𝜋
𝐿𝐿𝑥𝑥

𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑦𝑦𝜋𝜋
𝐿𝐿𝑦𝑦

𝑦𝑦 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 =
ћ𝜋𝜋 2

2𝑚𝑚
𝑛𝑛𝑥𝑥
𝐿𝐿𝑥𝑥

2

+
𝑛𝑛𝑦𝑦
𝐿𝐿𝑦𝑦

2

𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦
Depends 
on 𝑛𝑛𝑖𝑖,𝑗𝑗

Harmonic 
Oscillator 
(1D)

𝑼𝑼 =
𝑲𝑲𝒙𝒙𝟐𝟐

𝟐𝟐
Ψ𝑛𝑛,𝑡𝑡 𝑥𝑥, 𝑡𝑡 =

𝑚𝑚𝑚𝑚
𝜋𝜋ћ

1
2𝑛𝑛𝑛𝑛!

1/2

𝐻𝐻𝑛𝑛
𝑚𝑚𝑚𝑚𝑥𝑥2

ћ

1/2

𝑒𝑒−
𝑚𝑚𝑚𝑚𝑥𝑥2
2ћ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 = 𝑛𝑛 +

1
2 ћ𝜔𝜔 𝑛𝑛 none

Rigid Rotor 𝑌𝑌𝑙𝑙𝑚𝑚 𝜃𝜃,𝜑𝜑 = 𝜀𝜀𝑖𝑖𝑙𝑙
2𝑙𝑙 + 1 𝑙𝑙 − 𝑚𝑚 !
4𝜋𝜋 𝑙𝑙 + 𝑚𝑚 !

1/2

𝑃𝑃𝑙𝑙
𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑙𝑙 =

ћ2
2𝐼𝐼 𝑙𝑙 𝑙𝑙 + 1 l, m 2𝑙𝑙 + 1

Hydrogen 
Atom (3D) 𝑈𝑈 = −

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜖𝜖0

1
𝑟𝑟

Ψ𝑛𝑛,𝑙𝑙,𝑚𝑚 𝑟𝑟,θ,𝜑𝜑 = 𝑅𝑅𝑛𝑛,𝑙𝑙(𝑟𝑟)𝑌𝑌𝑙𝑙𝑚𝑚 θ,𝜑𝜑 𝐸𝐸𝑛𝑛 = −
𝑍𝑍2𝑒𝑒4𝜇𝜇

8𝜖𝜖02𝑛𝑛2ℎ2
𝑛𝑛, 𝑙𝑙,𝑚𝑚 Depends 

on n
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From Individual Elements to Periodic Arrangements

𝐾𝐾

+

-
r

Individual Atom
(electron)

Individual Molecule
Single pair of Particles

(phonons)

3D Periodic 
Arrangement

6



Crystal Structure and the Real Lattice

Lattice

𝑅𝑅 = 𝑛𝑛1𝑎⃑𝑎1 + 𝑛𝑛2𝑎⃑𝑎2 + 𝑛𝑛3𝑎⃑𝑎3

• A Bravais lattice is an infinite array of discrete points with an arrangement AND orientation 

that appears EXACTLY the same from whichever of the points the array is viewed

• A 3D Bravais lattice consists of all points with position vectors 𝑅𝑅 of the form:

𝑎⃑𝑎1

𝑎⃑𝑎1
𝑎⃑𝑎1

𝑎⃑𝑎2

𝑎⃑𝑎2

𝑎⃑𝑎2

We observe that the choice of the primitive lattice vectors (vectors connecting nearest 
neighbors in the lattice) entails a degree of arbitrariness. 
We define a primitive unit cell as a parallelepiped defined by three primitive lattice vectors 
that contains only one lattice point. 

A construction that always ensures we have identified a primitive unit cell is the Wigner-
Seitz construction. It consists in connecting all neighboring points surrounding an arbitrary 
lattice point and then to draw the bisecting plane perpendicular to each connection line. 

Sometimes we describe the lattice by a conventional unit cell, that can contain more than 
one lattice point but has a more intuitive shape. It is important to recognize this is not a 
primitive unit cell. 

7



Reciprocal Lattice and Brillouin Zone

Brillouin Zone 
(Reciprocal Lattice)

Wigner-Seitz Cell 
(Real Lattice)

FCC

FCC
BCC

BCC

Reciprocal lattice = the set of all wavevectors 𝐺⃑𝐺 that yield plane waves with the periodicity of a given Bravais lattice. 

Like a real lattice the reciprocal lattice has a set of primitive vectors, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 and it is possible to define its Wigner-Seitz cell, which is called Brillouin zone.

Note: the wavevectors lying on the surface of the Brillouin zone define the Nyquist condition for the 3D crystal. This means that any wavevector larger than the 
Brillouin zone can be expressed with a wavevector inside the Brillouin zone. 

8

𝑅𝑅 = 𝑛𝑛1𝑎⃑𝑎1 + 𝑛𝑛2𝑎⃑𝑎2 + 𝑛𝑛3𝑎⃑𝑎3

𝐺⃑𝐺 = 𝑚𝑚1𝑏𝑏1 + 𝑚𝑚2𝑏𝑏2 + 𝑚𝑚3𝑏𝑏3

𝑏⃑𝑏2 = 2𝜋𝜋
𝑎⃑𝑎3 × 𝑎⃑𝑎1

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3

𝑏⃑𝑏1 = 2𝜋𝜋
𝑎⃑𝑎2 × 𝑎⃑𝑎3

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3

𝑏⃑𝑏3 = 2𝜋𝜋
𝑎⃑𝑎1 × 𝑎⃑𝑎2

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3



Miller Indices

We use the following notations:

 Miller plane:  𝒉𝒉𝒉𝒉𝒉𝒉

 If one of the plane indices is negative we write −𝒉𝒉, 𝒍𝒍,𝒌𝒌 = �𝒉𝒉𝒍𝒍𝒍𝒍

 Based on the real lattice symmetries, planes along different directions can exhibit the 

same atom arrangement. We call these equivalent planes and indicate them as 𝒉𝒉𝒉𝒉𝒉𝒉

 E.g. in a cubic lattice the planes 100 , 010 , 001 , �100 , 0�10 , 00�1

 Direction perpendicular to a Miller plane: 𝒉𝒉𝒉𝒉𝒉𝒉

 All equivalent directions in a crystal are indicated as 𝒉𝒉𝒉𝒉𝒉𝒉

9



In This Lecture…

• Electron Energy States in Periodic Lattices 

 Band Structure and Material Properties

10



Summary of Solutions of Schrodinger Equation (electrons)

Potential Wavefunction Energy Levels
Quantu

m 
Numbers

Degene
racy

Free Particle 𝑼𝑼 = 𝟎𝟎 Ψ𝑡𝑡 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔+𝑘𝑘𝑘𝑘) + 𝐵𝐵𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘)

𝑘𝑘 = √(2𝑚𝑚𝑚𝑚/ћ^2 ) 𝐸𝐸 =
ћ2
2𝑚𝑚𝑘𝑘2 - -

1D Infinite 
Potential 
Well

𝑼𝑼 = 𝟎𝟎 for 𝟎𝟎 <
𝒙𝒙 < 𝑳𝑳 𝑼𝑼 = ∞
for 𝐱𝐱 < 𝟎𝟎 and 

𝐱𝐱 > 𝑳𝑳
Ψ𝑛𝑛,𝑡𝑡 𝑥𝑥, 𝑡𝑡 =

2
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 =
1
2𝑚𝑚

ћ𝑛𝑛𝜋𝜋
𝐿𝐿

2
𝑛𝑛 none

2D Infinite 
Potential 
Well

Ψ𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑡𝑡 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 =
2
𝐷𝐷
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑥𝑥𝜋𝜋
𝐿𝐿𝑥𝑥

𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑦𝑦𝜋𝜋
𝐿𝐿𝑦𝑦

𝑦𝑦 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 =
ћ𝜋𝜋 2

2𝑚𝑚
𝑛𝑛𝑥𝑥
𝐿𝐿𝑥𝑥

2

+
𝑛𝑛𝑦𝑦
𝐿𝐿𝑦𝑦

2

𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦
Depends 
on 𝑛𝑛𝑖𝑖,𝑗𝑗

Harmonic 
Oscillator 
(1D)

𝑼𝑼 =
𝑲𝑲𝒙𝒙𝟐𝟐

𝟐𝟐
Ψ𝑛𝑛,𝑡𝑡 𝑥𝑥, 𝑡𝑡 =

𝑚𝑚𝑚𝑚
𝜋𝜋ћ

1
2𝑛𝑛𝑛𝑛!

1/2

𝐻𝐻𝑛𝑛
𝑚𝑚𝑚𝑚𝑥𝑥2

ћ

1/2

𝑒𝑒−
𝑚𝑚𝑚𝑚𝑥𝑥2
2ћ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 = 𝑛𝑛 +

1
2 ћ𝜔𝜔 𝑛𝑛 none

Rigid Rotor 𝑌𝑌𝑙𝑙𝑚𝑚 𝜃𝜃,𝜑𝜑 = 𝜀𝜀𝑖𝑖𝑙𝑙
2𝑙𝑙 + 1 𝑙𝑙 − 𝑚𝑚 !
4𝜋𝜋 𝑙𝑙 + 𝑚𝑚 !

1/2

𝑃𝑃𝑙𝑙
𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑙𝑙 =

ћ2
2𝐼𝐼 𝑙𝑙 𝑙𝑙 + 1 l, m 2𝑙𝑙 + 1

Hydrogen 
Atom (3D) 𝑈𝑈 = −

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜖𝜖0

1
𝑟𝑟

Ψ𝑛𝑛,𝑙𝑙,𝑚𝑚 𝑟𝑟,θ,𝜑𝜑 = 𝑅𝑅𝑛𝑛,𝑙𝑙(𝑟𝑟)𝑌𝑌𝑙𝑙𝑚𝑚 θ,𝜑𝜑 𝐸𝐸𝑛𝑛 = −
𝑍𝑍2𝑒𝑒4𝜇𝜇

8𝜖𝜖02𝑛𝑛2ℎ2
𝑛𝑛, 𝑙𝑙,𝑚𝑚 Depends 

on n

The potential defines the wavefunctions and the energy states. In a crystal we will have a periodic potential. 
11



From Individuals to Crystals

+

-
r

Individual Atom
(electron)

3D Periodic 
Arrangement+ + + +

-

12

What are the electronic energy levels and wavefunctions in a periodic potential?



From Individuals to Crystals

+

-
r

Individual Atom
(electron)

+ + + +

-

What are the electronic energy levels and wavefunctions in a periodic potential?

+

Kronig-Penney Potential

13



From Individuals to Crystals

14

𝑮𝑮 = 𝒃𝒃𝟏𝟏 + 𝒃𝒃𝟐𝟐

𝑮𝑮 = 𝒃𝒃𝟏𝟏 + 𝟐𝟐𝒃𝒃𝟐𝟐

𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

Reciprocal lattice vectors identify waves with periodicity equal to that of the lattice along different spatial directions. 

The spacing between lattice points along different spatial directions is different. 

Different directions in the lattice have different periodic potentials!



In This Lecture…

• Electron Energy States in Periodic Lattices 

 Band Structure and Material Properties

 Density of States

15



Electron Energy States in a Periodic Potential

We consider a 1D periodic (Kronig-Penney) potential: 𝑈𝑈 = �0 0 < 𝑥𝑥 ≤ 𝑎𝑎
𝑈𝑈0 − 𝑏𝑏 < 𝑥𝑥 ≤ 0

We therefore obtain the following Schrodinger eqns:
−
ћ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑥𝑥2 Ψ 𝑥𝑥 − 𝐸𝐸Ψ(𝑥𝑥) = 0

−
ћ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑥𝑥2 Ψ 𝑥𝑥 + 𝑈𝑈0 − 𝐸𝐸 Ψ(𝑥𝑥) = 0

0 < 𝑥𝑥 ≤ 𝑎𝑎

−𝑏𝑏 < 𝑥𝑥 ≤ 0

Considering the solutions inside the periodic potential we recognize that 𝑈𝑈0 − 𝐸𝐸 > 0 and therefore we have the following two solutions*:  

�
Ψ1 𝑥𝑥 = 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 + 𝐵𝐵𝑒𝑒−𝑖𝑖𝐾𝐾𝑥𝑥

Ψ2 𝑥𝑥 = 𝐶𝐶𝑒𝑒𝑄𝑄𝑥𝑥 + 𝐷𝐷𝑒𝑒−𝑄𝑄𝑄𝑄

0 < 𝑥𝑥 ≤ 𝑎𝑎

−𝑏𝑏 < 𝑥𝑥 ≤ 0
where 𝐸𝐸 =

ћ2𝐾𝐾2

2𝑚𝑚
𝑈𝑈0 − 𝐸𝐸 =

ћ2𝑄𝑄2

2𝑚𝑚

* if 𝑈𝑈0 − 𝐸𝐸 > 0 the characteristic equation of the differential equation has real solutions. When 𝑈𝑈0 = 0 , instead, the solutions are imaginary.   

To find the coefficients and solve the problem we need to apply the continuity of the wavefunction and its derivative.

We first set these two conditions at 𝑥𝑥 = 0 :
Ψ1 0 = Ψ2 0

�
𝜕𝜕Ψ1
𝜕𝜕𝜕𝜕 𝑥𝑥=0

= �
𝜕𝜕Ψ2
𝜕𝜕𝜕𝜕 𝑥𝑥=0

�
𝐴𝐴 + 𝐵𝐵 = 𝐶𝐶 + 𝐷𝐷

𝑖𝑖𝐾𝐾 𝐴𝐴 − 𝐵𝐵 = 𝐶𝐶 − 𝐷𝐷

To find a second boundary condition we must use the periodicity of the potential function.

16



Electron Energy States in a Periodic Potential

Bloch’s Theorem demonstrates that we can write a wavefunction in a periodic potential as follows:

Ψ𝑛𝑛𝑘𝑘(𝑟𝑟) = 𝑢𝑢𝑛𝑛𝑘𝑘(𝑟𝑟)𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟

Ψ𝑛𝑛𝑘𝑘(𝑟𝑟 + 𝑅𝑅) = Ψ𝑛𝑛𝑘𝑘(𝑟𝑟)𝑒𝑒𝑖𝑖𝑘𝑘�𝑅𝑅

where 𝑢𝑢𝑛𝑛𝑘𝑘 𝑟𝑟 + 𝑅𝑅 = 𝑢𝑢𝑛𝑛𝑘𝑘 𝑟𝑟 ∀𝑅𝑅

Function with the periodicity of the latticePlane wave (phase factor)

Indeed it is straightforward to show that if the wavefunction has this structure, then:

It is important to recognize that:

• 𝑘𝑘 ≠ 𝐾𝐾

• While in the case of a free particle with wavefunction Ψ ∝ 𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟, 𝑘𝑘 was proportional to the electron momentum, in a periodic potential this is not the 
case. Yet, the quantity ћ𝑘𝑘 is known as crystal momentum and plays an important role in the dynamics of electrons in a solid.

• For every value of 𝑘𝑘 there are infinite solutions 𝑢𝑢𝑛𝑛𝑘𝑘 𝑟𝑟 , this is why we have introduced the index 𝑛𝑛 to distinguish different wavefunctions with the same 𝑘𝑘. 
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Electron Energy States in a Periodic Potential
Let’s now go back to our 1D lattice and Kronig-Penney potential.

We observe that our period is equal to 𝑎𝑎 + 𝑏𝑏 . Therefore, using Bloch’s Theorem we can write:

Ψ(𝑥𝑥 + (𝑎𝑎 + 𝑏𝑏)) = Ψ(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖(𝑎𝑎+𝑏𝑏)

To determine more equations and solve the problem, we need to apply the continuity of the wavefunction and its derivative in a second point. 

We note that the region −𝑏𝑏 < 𝑥𝑥 ≤ 0 is equivalent to a < 𝑥𝑥 ≤ 𝑎𝑎 + 𝑏𝑏. Hence we want to define these conditions at 𝑥𝑥 = 𝑎𝑎 .

Using Bloch’s theorem, we can write: 
Ψ2 𝑎𝑎 = Ψ2(−𝑏𝑏 + (𝑎𝑎 + 𝑏𝑏)) = Ψ2(−𝑏𝑏)𝑒𝑒𝑖𝑖𝑖𝑖(𝑎𝑎+𝑏𝑏)

Ψ1 𝑎𝑎 = Ψ2 𝑎𝑎

�
𝜕𝜕Ψ1
𝜕𝜕𝜕𝜕 𝑥𝑥=𝑎𝑎

= �
𝜕𝜕Ψ2
𝜕𝜕𝜕𝜕 𝑥𝑥=𝑎𝑎

It follows that at 𝑥𝑥 = 𝑎𝑎 : 

Ψ1 𝑎𝑎 = Ψ2(−𝑏𝑏)𝑒𝑒𝑖𝑖𝑖𝑖(𝑎𝑎+𝑏𝑏)

�
𝜕𝜕Ψ1
𝜕𝜕𝜕𝜕 𝑥𝑥=𝑎𝑎

= �
𝜕𝜕Ψ2
𝜕𝜕𝜕𝜕 𝑥𝑥=−𝑏𝑏

𝑒𝑒𝑖𝑖𝑖𝑖(𝑎𝑎+𝑏𝑏)
�

𝐴𝐴𝑒𝑒𝑖𝑖𝐾𝐾𝐾𝐾 + 𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑒𝑒−𝑄𝑄𝑄𝑄 + 𝐷𝐷𝑒𝑒𝑄𝑄𝑄𝑄 𝑒𝑒𝑖𝑖𝑖𝑖(𝑎𝑎+𝑏𝑏)

𝑖𝑖𝐾𝐾 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑄𝑄 𝐶𝐶𝑒𝑒−𝑄𝑄𝑄𝑄 − 𝐷𝐷𝑒𝑒𝑄𝑄𝑄𝑄 𝑒𝑒𝑖𝑖𝑖𝑖(𝑎𝑎+𝑏𝑏)

We can now put all four conditions together to solve for the wavefunction coefficients.
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Electron Energy States in a Periodic Potential

The system can be solved only if 𝑑𝑑𝑑𝑑𝑑𝑑 �𝑀𝑀 = 0 where �𝑀𝑀 is the matrix of the coefficients of the system. The resulting equation is: 

𝐴𝐴 + 𝐵𝐵 − 𝐶𝐶 − 𝐷𝐷 = 0
𝑖𝑖𝐾𝐾𝐾𝐾 − 𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶 − 𝐷𝐷 = 0

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵 − 𝑒𝑒𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 −𝑄𝑄𝑄𝑄𝐶𝐶 − 𝑒𝑒𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 +𝑄𝑄𝑄𝑄𝐷𝐷 = 0
𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 − 𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵 − 𝑄𝑄𝑒𝑒𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 −𝑄𝑄𝑄𝑄𝐶𝐶 + 𝑄𝑄𝑒𝑒𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 +𝑄𝑄𝑄𝑄𝐷𝐷 = 0

1
𝑖𝑖𝐾𝐾𝐾𝐾
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

1
−𝑖𝑖𝑖𝑖𝑖𝑖
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

−𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

−1
−1

−𝑒𝑒𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 −𝑄𝑄𝑄𝑄

−𝑄𝑄𝑒𝑒𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 −𝑄𝑄𝑄𝑄

−1
−1

−𝑒𝑒𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 +𝑄𝑄𝑄𝑄

𝑄𝑄𝑒𝑒𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 +𝑄𝑄𝑄𝑄

𝐴𝐴
𝐵𝐵
𝐶𝐶
𝐷𝐷

= 0

𝑄𝑄2 − 𝐾𝐾2

2𝐾𝐾𝐾𝐾 sinh 𝑄𝑄𝑄𝑄 sin 𝐾𝐾𝐾𝐾 + cosh 𝑄𝑄𝑄𝑄 cos 𝐾𝐾𝐾𝐾 = cos(𝑘𝑘 𝑎𝑎 + 𝑏𝑏 ) where 𝐾𝐾 =
2𝑚𝑚𝑚𝑚
ћ2

𝑄𝑄 =
2𝑚𝑚(𝑈𝑈0 − 𝐸𝐸)

ћ2

By solving this equation it is possible to obtain the dispersion relation 𝐸𝐸(𝑘𝑘).  

It is interesting to observe that the right hand side of the above equation is limited to −1,1 . Instead the left-hand side of the equation can assume values on a 

much larger range. Therefore, there might be values of E for which it is NOT possible to satisfy the above constraint and a solution does not exist. 

We conclude that periodicity restricts the allowed energy levels similarly to the energy quantization effect caused by the potential of an isolated atom/molecule.
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Electron Energy States in a Periodic Potential

In order to gain deeper insight into this effect, we simplify the above equation by assuming that 𝑏𝑏 → 0 and 𝑈𝑈0 → ∞ while 𝑄𝑄
2𝑏𝑏𝑏𝑏
2

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

We thus get:
𝑄𝑄2𝑏𝑏
2𝐾𝐾

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

There exist a value of K, and hence E, that satisfies this equation if

𝑦𝑦 =
𝑄𝑄2𝑏𝑏
2𝐾𝐾

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ [−1,1]

Thus we observe that we obtain bands of allowed K values and 
bands of forbidden K values. Therefore, the periodicity creates 
energy bands and energy band-gaps. 
Also, for every value of 𝑘𝑘 we have many K (i.e. energy) values)

1
2
𝑏⃑𝑏−

1
2
𝑏⃑𝑏 𝑏⃑𝑏−𝑏⃑𝑏

3
2
𝑏⃑𝑏−

3
2
𝑏⃑𝑏

It can be demonstrated that the band-gaps occur at the edges of the Brillouin 
zone, i.e. for values of k equal to half the reciprocal lattice vector 𝑏𝑏 = 2𝜋𝜋/𝑎𝑎 . 
This is due to interference effects of electrons in the periodic structure. 
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Electron Energy States in a Periodic Potential

1
2
𝑏⃑𝑏−

1
2
𝑏⃑𝑏 𝑏⃑𝑏−𝑏⃑𝑏

3
2
𝑏⃑𝑏−

3
2
𝑏⃑𝑏

1
2
𝑏⃑𝑏 1

2
𝑏⃑𝑏−

1
2
𝑏⃑𝑏 𝑏⃑𝑏−𝑏⃑𝑏 3

2
𝑏⃑𝑏−

3
2
𝑏⃑𝑏

Extended Zone Scheme 
representation

Reduced Zone Scheme 
representation

Repeated Zone Scheme 
representation

Observe that in a periodic 1D structure we have a parabolic-like distribution of energy states that is interrupted close to the edges of the Brillouin zone. In addition we 
observe that, once we have constructed the reduced-scheme representation, for a given value of 𝑘𝑘 there is a discrete and infinite set of values of 𝐸𝐸𝑛𝑛𝑛𝑛 similar to the case 
of an infinite potential well. However, as 𝑘𝑘 increase, the values of 𝐸𝐸𝑛𝑛𝑛𝑛 change almost continuously until the Brillouin zone, hence forming a band 𝑛𝑛 of energies.
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Electron Energy States in a Periodic Potential
From the previous representation we might have the impression that 𝑘𝑘 is a continuous value. 

However, we need to remember that 𝑘𝑘 is the wavevector of a plane-wave that extends over the entire crystal. To understand what values of 𝑘𝑘 are allowed, we 
thus have to consider the crystal in its entirety. 

To mimic a truly infinite periodic lattice, it is common to apply the Born-Von Karmann boundary condition that loops the crystal onto itself. This is easy to define 
and represent for a 1D lattice. 

Ψ(𝑥𝑥 + 𝑁𝑁(𝑎𝑎 + 𝑏𝑏)) = Ψ(𝑥𝑥)

We thus impose the following constraint on the wavefunction:

Ψ 𝑥𝑥 + 𝑁𝑁 𝑎𝑎 + 𝑏𝑏 = Ψ 𝑥𝑥 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎+𝑏𝑏 = Ψ(𝑥𝑥)

Using Bloch’s theorem:

Therefore it follows: 𝑘𝑘𝑘𝑘 𝑎𝑎 + 𝑏𝑏 = 2𝜋𝜋𝜋𝜋 𝑘𝑘 =
2𝜋𝜋𝜋𝜋
𝐿𝐿

Where 𝐿𝐿 is the size of the crystal and 𝑛𝑛 is an integer value.  

Thus the values of 𝑘𝑘 are discrete but their separation is relatively small due to the large size of a typical crystal. As a result the energy states are always discrete.

Furthermore we observe that for a crystal with periodicity 𝑎𝑎 + 𝑏𝑏 with N lattice points*:

𝑏𝑏 = 2𝜋𝜋/(𝑎𝑎 + 𝑏𝑏)

𝑘𝑘 =
2𝜋𝜋𝜋𝜋

𝑁𝑁 𝑎𝑎 + 𝑏𝑏 =
𝑏⃑𝑏
𝑁𝑁 𝑛𝑛

And therefore when 𝒏𝒏 = 𝑵𝑵 𝒌𝒌 = 𝒃𝒃
Within the first Brillouin zone, 
in each energy band 
there are N available energy states

22*remember that the lattice can have a base and also every atom can have multiple electrons. Therefore the number of lattice points is different to the electron values



Band Structure and Material Properties

• Each available state can have 2 electrons, one with spin up and one with spin down. Thus, in each band, for a lattice with N points, there are N available 
energy states and 2N electrons. Electrons fills the energy bands starting from the lowest energy state. Depending on the number of electrons per atom we 
can have different degrees of filling of the energy bands. In metals, the highest occupied energy band is only partially filled. Thus electrons can be easily 
excited by thermal effects in unoccupied states within the same band. In semiconductor and insulators, the highest occupied energy band is completely 
filled. Temperature and dopants can create some vacancies in the filled bands. 

• The highest filled energy state is called Fermi Level. 

• Collisions  between different particles must conserve the crystal momentum: �
𝑖𝑖

ћ𝑘𝑘𝑖𝑖 = �
𝑓𝑓

ћ(𝑘𝑘𝑓𝑓 + 𝐺⃑𝐺) 𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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Band Structure and Material Properties
1D Lattice 3D Lattice

1
2
𝑏⃑𝑏
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Band Structure and Material Properties
1D Lattice 3D Lattice

Fermi Surfaces (constant energy surface corresponding to 
the energy of the highest occupied level) 
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