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Wave-particle Duality EPFL

The wave nature of material particles gives rise to quantum mechanical effects!
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Describing the Material Waves — The Schrodinger Equation* =PFL

To understand the dynamics of the material waves (and hence of the associated particles) we use the Schrodinger equation:
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Together with the problem symmetry determines the energy levels and the wavefunctions

*Normally we would model the physics and derive the equations. Here we proceed in the opposite way.
We start from the equation and we show that the physics that follows corresponds to the observed physical phenomena 4



Summary of Solutions of Schrodinger Equation
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From Individual Elements to Periodic Arrangements EPFL
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Crystal Structure and the Real Lattice EPFL

Lattice * A Bravais lattice is an infinite array of discrete points with an arrangement AND orientation

that appears EXACTLY the same from whichever of the points the array is viewed

* A 3D Bravais lattice consists of all points with position vectors R of the form:

—_

R = nlal + nzaz + n3(33

We observe that the choice of the primitive lattice vectors (vectors connecting nearest
neighbors in the lattice) entails a degree of arbitrariness.

We define a primitive unit cell as a parallelepiped defined by three primitive lattice vectors
that contains only one lattice point.

A construction that always ensures we have identified a primitive unit cell is the Wigner-
Seitz construction. It consists in connecting all neighboring points surrounding an arbitrary
lattice point and then to draw the bisecting plane perpendicular to each connection line.

o . o ° Sometimes we describe the lattice by a , that can contain more than
one lattice point but has a more intuitive shape. It is important to recognize this is not a
primitive unit cell.



Reciprocal Lattice and Brillouin Zone EPFL

Reciprocal lattice = the set of all wavevectors G that yield plane waves with the periodicity of a given Bravais lattice

Like a real lattice the reciprocal lattice has a set of primitive vectors, b, b,, b; and it is possible to define its Wigner-Seitz cell, which is called Brillouin zone

Brillouin Zone
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Note: the wavevectors lying on the surface of the Brillouin zone define the Nyquist condition for the 3D crystal. This means that any wavevector larger than the

Brillouin zone can be expressed with a wavevector inside the Brillouin zone



Miller Indices

+ plane [111) + plane [221)

=PrL

We use the following notations:

» Miller plane: (hlk)
> If one of the plane indices is negative we write (—h, 1 k) = (hlk)

» Based on the real lattice symmetries, planes along different directions can exhibit the
same atom arrangement. We call these equivalent planes and indicate them as {hkl}

E.g. in a cubic lattice the planes (100), (010), (001), (100), (010), (001)

» Direction perpendicular to a Miller plane: [hkl]

» All equivalent directions in a crystal are indicated as (hkl)



In This Lecture... EPFL

* Electron Energy States in Periodic Lattices

» Band Structure and Material Properties
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Summary of Solutions of Schrodinger Equation (electrons)

Potential

Wavefunction

Energy Levels
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» The potential defines the wavefunctions and the energy states. In a crystal we will have a periodic potential.
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From Individuals to Crystals EPFL

3D Periodic
Arrangement
Individual Atom
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» What are the electronic energy levels and wavefunctions in a periodic potential?

12



From Individuals to Crystals EPFL
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» What are the electronic energy levels and wavefunctions in a periodic potential?
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From Individuals to Crystals EPFL

Reciprocal lattice vectors identify waves with periodicity equal to that of the lattice along different spatial directions.

The spacing between lattice points along different spatial directions is different.

» Different directions in the lattice have different periodic potentials!
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In This Lecture... EPFL

e Electron Energy States in Periodic Lattices
» Band Structure and Material Properties

» Density of States

15



Electron Energy States in a Periodic Potentia EPFL

We consider a 1D periodic (Kronig-Penney) potential: U = 0 0<x=a ; |
i ° vE ' " Uy —-b<x<0 :
‘ , —
b 0 aath
h? d?
o aez T —E¥(x) =0 0<x<a
We therefore obtain the following Schrodinger eqns: h2 ;21 X
maxz T @)+ W~ E)¥(x) =0 b<x<0

Considering the solutions inside the periodic potential we recognize that (U, — E) > 0 and therefore we have the following two solutions*:

P,(x) = Aek* + Be~iKx  0<x<a h2 K2
where E =

hZQZ
Uy—E =
2m 0 2m

W,(x) = Ce?* + De ¥ —b<x<0

To find the coefficients and solve the problem we need to apply the continuity of the wavefunction and its derivative.

We first set these two conditionsat x = 0 :

#1(0) = ¥2(0) A+B=C+D

0¥,
0x

0w,

=0 0x

iK(A—B)=C—-D

x=0
To find a second boundary condition we must use the periodicity of the potential function.

*if (Uy — E) > 0 the characteristic equation of the differential equation has real solutions. When U, = 0, instead, the solutions are imaginary. 16



Electron Energy States in a Periodic Potential EPFL

Bloch’s Theorem demonstrates that we can write a wavefunction in a periodic potential as follows:

—_

N SN kT (P4 R) =u (7 R
Y o) =uz(Me where uz(F+R)=uz:(¥) VR
Plane wave (phase factor) Function with the periodicity of the lattice

Indeed it is straightforward to show that if the wavefunction has this structure, then:

NN

W o +R) =W (e

It is important to recognize that:

e k#K
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*  While in the case of a free particle with wavefunction ¥ « e”"F, k was proportional to the electron momentum, in a periodic potential this is not the

case. Yet, the quantity hk is known as crystal momentum and plays an important role in the dynamics of electrons in a solid.

*  For every value of k there are infinite solutions U (1), this is why we have introduced the index n to distinguish different wavefunctions with the same k.
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Electron Energy States in a Periodic Potential EPFL

Up ‘
Let’s now go back to our 1D lattice and Kronig-Penney potential. ' ;
We observe that our period is equal to (a + b). Therefore, using Bloch’s Theorem we can write: ' Sl 5
] . -b 0 aath
Y(x + (a + b)) = W(x)etk@th) o S

To determine more equations and solve the problem, we need to apply the continuity of the wavefunction and its derivative in a second point.
We note that the region —b < x < O is equivalent toa < x < a + b. Hence we want to define these conditionsatx = a .
Using Bloch’s theorem, we can write:

qu (Cl) = LPZ (—b -+ (a + b)) = qJZ (_b)eik(a+b)

It followsthatatx = a:

= — _m\ pik(a+b)
¥ (a) = ¥,(a) Yy (a) = W,(—b)e AeiKa 4 Be—iKa _ (Ce—Qb + DeQb)eik(a+b)
oY, oW, oW 0w, | = | | |
_ax . = _ax - axl — _ax b elk(a+b) l-K(AelKa _ Be—lKa) — Q(Ce—Qb _ DeQb)elk(a+b)
- - x=a x=—

We can now put all four conditions together to solve for the wavefunction coefficients.
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Electron Energy States in a Periodic Potential

A+B—-C—-D=0 1 1 -1 -1 A
iIKA—iKB—C—D=0 iKA  —iKB —1 -1 B

eiKap 4 o—iKap _ pik(a+b)-Qbr _ pik(a+b)+Qbp — () = pika  p-ikKa  _pik(a+b)=Qb _ pik(a+b)+Qb ([~ = 0
iKeiKaA _ iKe_iKaB _ Qeik(a+b)—QbC + Qeik(a+b)+QbD =0 iKeiKa —iKe‘iKa _Qeik(a+b)—Qb Qeik(a+b)+Qb D

The system can be solved only if detM = 0 where M is the matrix of the coefficients of the system. The resulting equation is:

2 2 -
Q" — K ZK: sinh(Qb) sin(Ka) + cosh(Qb) cos(Ka) = cos(k(a + b)) where K ZZ;E 0 \/2m(l;102 E)

By solving this equation it is possible to obtain the dispersion relation E (k).

=PrL

It is interesting to observe that the right hand side of the above equation is limited to [—1,1]. Instead the left-hand side of the equation can assume values on a

much larger range. Therefore, there might be values of E for which it is NOT possible to satisfy the above constraint and a solution does not exist.

We conclude that periodicity restricts the allowed energy levels similarly to the energy quantization effect caused by the potential of an isolated atom/molecule.

19



Electron Energy States in a Periodic Potential EPFL

2pa
¢ = constant.

In order to gain deeper insight into this effect, we simplify the above equation by assuming that b = 0 and U, — oo while

We thus get:
2p
——sinKa + cosKa = coska
2K

There exist a value of K, and hence E, that satisfies this equation if

Q*b
y = ﬁsmKa + cosKa € [—1,1]

3
o
<

FUNCTION (P/Ka)'sin(Ka) + cos(ka)

It can be demonstrated that the band-gaps occur at the edges of the Brillouin

zone, i.e. for values of k equal to half the reciprocal lattice vector b= 2n/a .
This is due to interference effects of electrons in the periodic structure.

Thus we observe that we obtain bands of allowed K values and
bands of forbidden K values. Therefore, the periodicity creates

energy bands and energy band-gaps.

Also, for every value of k we have many K (i.e. energy) values)
20



Electron Energy States in a Periodic Potential EPFL

Do
~

=5
|
|
|
l |
el
PR e
e K I .
e L 1 k
0--1. -~ 3. 0 -
_ B = —b
20 T 2
Extended Zone Scheme Reduced Zone Scheme Repeated Zone Scheme
representation representation representation

Observe that in a periodic 1D structure we have a parabolic-like distribution of energy states that is interrupted close to the edges of the Brillouin zone. In addition we
observe that, once we have constructed the reduced-scheme representation, for a given value of k there is a discrete and infinite set of values of E},;, similar to the case

of an infinite potential well. However, as k increase, the values of E,,;, change almost continuously until the Brillouin zone, hence forming a band n of energies. ’



Electron Energy States in a Periodic Potential EPFL

From the previous representation we might have the impression that k is a continuous value.

However, we need to remember that k is the wavevector of a plane-wave that extends over the entire crystal. To understand what values of k are allowed, we
thus have to consider the crystal in its entirety.

To mimic a truly infinite periodic lattice, it is common to apply the Born-Von Karmann boundary condition that loops the crystal onto itself. This is easy to define
and represent for a 1D lattice.

We thus impose the following constraint on the wavefunction:

e

Y(x+N(a+b)) =¥(x) [ g =
o e
Using Bloch’s theorem: 1 = o ‘ < N

Y(x + N(a+ b)) = P(x)ekN@+h) = g(y)
Therefore it follows: kN(a + b) = 21n » k = — Where L is the size of the crystal and n is an integer value.

Thus the values of k are discrete but their separation is relatively small due to the large size of a typical crystal. As a result the energy states are always discrete.

Furthermore we observe that for a crystal with periodicity (a + b) with N lattice points*:

b=2 b
m/(a+b) . Within the first Brillouin zone,
- A And thereforewhen n =N mp k=0»>b in each energy band
k=——=—n there are N available energy states
N(a+b) N

*remember that the lattice can have a base and also every atom can have multiple electrons. Therefore the number of lattice points is different to the electron values 22



Band Structure and Material Properties
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* Each available state can have 2 electrons, one with spin up and one with spin down. Thus, in each band, for a lattice with N points, there are N available
energy states and 2N electrons. Electrons fills the energy bands starting from the lowest energy state. Depending on the number of electrons per atom we
can have different degrees of filling of the energy bands. In metals, the highest occupied energy band is only partially filled. Thus electrons can be easily
excited by thermal effects in unoccupied states within the same band. In semiconductor and insulators, the highest occupied energy band is completely

filled. Temperature and dopants can create some vacancies in the filled bands.

* The highest filled energy state is called Fermi Level.

* Collisions between different particles must conserve the crystal momentum: 2 hk; = 2 h(ks + G)
L f

i = initial state
f = final state

23



Band Structure and Material Properties EPFL
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Band Structure and Material Properties

1D Lattice

RealSpace @ @ @ ® : ® ®@ o

ReciprocalSpace ® ® ® ©® © @ [

First Brillouin Zone
Wigner-Seitz Unit Cell

Energ}

3D Lattice

Fermi Surfaces (constant energy surface corresponding to
the energy of the highest occupied level)
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