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Wave-particle Duality

Particle View Wave View
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Energy Frequency, Amplitude

Momentum Wavevector

The wave nature of material particles gives rise to quantum mechanical effects!

𝒑𝒑 = ћ𝒌𝒌 =
𝒉𝒉
𝝀𝝀

𝑬𝑬 = 𝒉𝒉𝝂𝝂 = ℏ𝝎𝝎

ℎ = 6.6 � 10−34𝐽𝐽𝐽𝐽
ℏ = ⁄ℎ 2𝜋𝜋



Describing the Material Waves – The Schrodinger Equation*

3

𝑖𝑖ћ
𝜕𝜕Ψ𝑡𝑡
𝜕𝜕𝑡𝑡

= −
ћ2

2𝑚𝑚
∇2 + 𝑈𝑈 Ψ𝑡𝑡

Ψ𝑡𝑡(𝑟𝑟, 𝑡𝑡) = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑈𝑈 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

*Normally we would model the physics and derive the equations. Here we proceed in the opposite way. 
We start from the equation and we show that the physics that follows corresponds to the observed physical phenomena

Ψ𝑡𝑡Ψ𝑡𝑡∗ = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
−∞

+∞
Ψ𝑡𝑡Ψ𝑡𝑡∗𝑑𝑑𝑑𝑑 = 1

To understand the dynamics of the material waves (and hence of the associated particles) we use the Schrodinger equation:

−
ћ2

2𝑚𝑚∇2Ψ 𝑟𝑟 + 𝑼𝑼Ψ(𝑟𝑟) = 𝐸𝐸Ψ 𝑟𝑟

Steady-state Schrodinger equation (eigenvalue equation)

Together with the problem symmetry determines the energy levels and the wavefunctions



Summary of Solutions of Schrodinger Equation

Potential Wavefunction Energy Levels

Quant
um 

Numbe
rs

Degene
racy

Free Particle 𝑼𝑼 = 𝟎𝟎 Ψ𝑡𝑡 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔+𝑘𝑘𝑘𝑘) + 𝐵𝐵𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘)

𝑘𝑘 = √(2𝑚𝑚𝑚𝑚/ћ^2 ) 𝐸𝐸 =
ћ2
2𝑚𝑚𝑘𝑘2 - -

1D Infinite 
Potential Well

𝑼𝑼 = 𝟎𝟎 for 𝟎𝟎 <
𝒙𝒙 < 𝑳𝑳 𝑼𝑼 = ∞
for 𝐱𝐱 < 𝟎𝟎 and 

𝐱𝐱 > 𝑳𝑳
Ψ𝑛𝑛,𝑡𝑡 𝑥𝑥, 𝑡𝑡 =

2
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 =
1
2𝑚𝑚

ћ𝑛𝑛𝜋𝜋
𝐿𝐿

2
𝑛𝑛 none

2D Infinite 
Potential Well

Ψ𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑡𝑡 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 =
2
𝐷𝐷
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑥𝑥𝜋𝜋
𝐿𝐿𝑥𝑥

𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑦𝑦𝜋𝜋
𝐿𝐿𝑦𝑦

𝑦𝑦 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 =
ћ𝜋𝜋 2

2𝑚𝑚
𝑛𝑛𝑥𝑥
𝐿𝐿𝑥𝑥

2

+
𝑛𝑛𝑦𝑦
𝐿𝐿𝑦𝑦

2

𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦
Depends 
on 𝑛𝑛𝑖𝑖,𝑗𝑗

Harmonic 
Oscillator 
(1D)

𝑼𝑼 =
𝑲𝑲𝒙𝒙𝟐𝟐

𝟐𝟐
Ψ𝑛𝑛,𝑡𝑡 𝑥𝑥, 𝑡𝑡 =

𝑚𝑚𝑚𝑚
𝜋𝜋ћ

1
2𝑛𝑛𝑛𝑛!

1/2

𝐻𝐻𝑛𝑛
𝑚𝑚𝑚𝑚𝑥𝑥2

ћ

1/2

𝑒𝑒−
𝑚𝑚𝑚𝑚𝑥𝑥2
2ћ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 = 𝑛𝑛 +

1
2 ћ𝜔𝜔 𝑛𝑛 none

Rigid Rotor 𝑌𝑌𝑙𝑙𝑚𝑚 𝜃𝜃,𝜑𝜑 = 𝜀𝜀𝑖𝑖𝑙𝑙
2𝑙𝑙 + 1 𝑙𝑙 − 𝑚𝑚 !
4𝜋𝜋 𝑙𝑙 + 𝑚𝑚 !

1/2

𝑃𝑃𝑙𝑙
𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑙𝑙 =

ћ2
2𝐼𝐼 𝑙𝑙 𝑙𝑙 + 1 l, m 2𝑙𝑙 + 1

Hydrogen 
Atom (3D) 𝑈𝑈 = −

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜖𝜖0

1
𝑟𝑟

Ψ𝑛𝑛,𝑙𝑙,𝑚𝑚 𝑟𝑟,θ,𝜑𝜑 = 𝑅𝑅𝑛𝑛,𝑙𝑙(𝑟𝑟)𝑌𝑌𝑙𝑙𝑚𝑚 θ,𝜑𝜑 𝐸𝐸𝑛𝑛 = −
𝑍𝑍2𝑒𝑒4𝜇𝜇

8𝜖𝜖02𝑛𝑛2ℎ2
𝑛𝑛, 𝑙𝑙,𝑚𝑚 Depends 

on n
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From Individual Elements to Periodic Arrangements

𝐾𝐾

+

-
r

Individual Atom
(electron)

Individual Molecule
Single pair of Particles

(phonons)

3D Periodic 
Arrangement
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This Lecture

6

Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

[only recorded lectures]
Energy Transport by Waves

(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)

Emerging Energy Devices

Thermoelectric

Plasmonic Catalysis

Radiative Heat 
Transfer

Hydrovoltaic 
Devices



In This Lecture…

• Crystal Structure, the Real and Reciprocal Lattice, Miller Indices

• Electron Energy States in Periodic Lattices – Intro to Periodic Potential

7



Crystal

Crystal Structure and the Real Lattice

A crystal is a 3D periodic arrangement of atoms. 
To describe it we use a lattice, i.e. a periodic array of points that replicates the periodicity.
Importantly, the periodicity of the crystal structure might become apparent only if we consider the regular repetition of a group of more the one atom. 
This is called the base. 

Crystal = lattice + base

Lattice Base

8



Crystal Structure and the Real Lattice

Lattice

𝑅𝑅 = 𝑛𝑛1𝑎⃑𝑎1 + 𝑛𝑛2𝑎⃑𝑎2 + 𝑛𝑛3𝑎⃑𝑎3

• A Bravais lattice is an infinite array of discrete points with an arrangement AND orientation 

that appears EXACTLY the same from whichever of the points the array is viewed

• A 3D Bravais lattice consists of all points with position vectors 𝑅𝑅 of the form:

𝑎⃑𝑎1

𝑎⃑𝑎1
𝑎⃑𝑎1

𝑎⃑𝑎2

𝑎⃑𝑎2

𝑎⃑𝑎2

We observe that the choice of the primitive lattice vectors (vectors connecting nearest 
neighbors in the lattice) entails a degree of arbitrariness. 
We define a primitive unit cell as a parallelepiped defined by three primitive lattice vectors 
that contains only one lattice point. 

A construction that always ensures we have identified a primitive unit cell is the Wigner-
Seitz construction. It consists in connecting all neighboring points surrounding an arbitrary 
lattice point and then to draw the bisecting plane perpendicular to each connection line. 

Sometimes we describe the lattice by a conventional unit cell, that can contain more than 
one lattice point but has a more intuitive shape. It is important to recognize this is not a 
primitive unit cell. 

9



Crystal Structure and the Real Lattice
• There are 14 types of Bravais lattice with varying degrees of symmetry (side lengths and angles)

• The fundamental requirements that the primitive cell can fill the ENTIRE space limits the 

rotational symmetries to 2𝜋𝜋,𝜋𝜋, 2𝜋𝜋/3,𝜋𝜋/2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜋𝜋/3

• For each lattice we can identify the primitive vectors and the Wigner-Seitz Primitive cell. 
 E.g. for the face centered cubic (FCC) lattice

• Elements such as Ag, Au, Al, Cu crystallize with FCC structure

Conventional unit cell

10



Crystal Structure and the Real Lattice
• There are 14 types of Bravais lattice with varying degrees of symmetry (side lengths and angles)

• The fundamental requirements that the primitive cell can fill the ENTIRE space limits the 

rotational symmetries to 2𝜋𝜋,𝜋𝜋, 2𝜋𝜋/3,𝜋𝜋/2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜋𝜋/3

• For each lattice we can identify the primitive vectors and the Wigner-Seitz Primitive cell. 
 E.g. for the face centered cubic (FCC) lattice

• Elements such as Ag, Au, Al, Cu, Pd, Pt, Rh crystallize with FCC structure
• A diamond structure is an FCC with a 2-atom base whose coordinates
• Elements such as C, Si, Ge crystallize with diamond structure
• A Zincblende structure is like a diamond structure but the two atom forming the base are different
• Elements such as GaAs, GaP, SiC, CdS, crystallize with Zincblende structure 

Conventional unit cell

Base atoms : 0 and a/4( �𝑥𝑥 + �𝑦𝑦 + 𝑧̂𝑧)

Zincblende structure 

11



Crystal Structure and the Real Lattice
• There are 14 types of Bravais lattice with varying degrees of symmetry (side lengths and angles)

• The fundamental requirements that the primitive cell can fill the ENTIRE space limits the 

rotational symmetries to 2𝜋𝜋,𝜋𝜋, 2𝜋𝜋/3,𝜋𝜋/2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜋𝜋/3

• For each lattice we can identify the primitive vectors and the Wigner-Seitz Primitive cell. 
 E.g. for the body centered cubic (BCC) lattice

• Elements such as Cr, Fe, K, Li, Mo, Na, W crystallize with body centered cubic (BCC)

Conventional unit cell

𝑎⃑𝑎3 =
𝑎𝑎
2

( �𝑥𝑥 + �𝑦𝑦 + 𝑧̂𝑧)𝑎⃑𝑎1 = 𝑎𝑎 �𝑥𝑥 𝑎⃑𝑎2 = 𝑎𝑎 �𝑦𝑦

12



Crystal Structure and the Real Lattice
• There are 14 types of Bravais lattice with varying degrees of symmetry (side lengths and angles)

• The fundamental requirements that the primitive cell can fill the ENTIRE space limits the 

rotational symmetries to 2𝜋𝜋,𝜋𝜋, 2𝜋𝜋/3,𝜋𝜋/2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜋𝜋/3

• Another important lattice structure is the hexagonal closed-pack structure. This is NOT a Bravais 
lattice but can be obtained as two interpenetrating simple hexagonal Bravais lattices. 

• Elements such as Mg, Hf, Ru, Ti, Zn crystallize with hexagonal closed-packed structure

Conventional unit cell

13



Fourier Transforms and the Reciprocal Lattice

• It is often convenient to calculate the Fourier transform of a signal (temporal or spatial) to identify the frequencies contained in it.

• Considering that a lattice is a periodic structure, by calculating its Fourier transform we can identify the fundamental frequencies that compose it

14



Fourier Transforms and the Reciprocal Lattice
We remember that a periodic function 𝑓𝑓(𝑥𝑥) with spatial period 𝑎𝑎 can be expressed as:

𝑓𝑓 𝑥𝑥 = �
𝑛𝑛=−∞

∞

(𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
2𝜋𝜋𝜋𝜋
𝑎𝑎

𝑥𝑥 + 𝑏𝑏𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐
2𝜋𝜋𝑛𝑛
𝑎𝑎

𝑥𝑥) = �
𝑛𝑛=−∞

∞

(𝑎𝑎′𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑏𝑏′𝑛𝑛𝑒𝑒−𝑖𝑖𝑖𝑖𝑘𝑘𝑥𝑥) = �
𝑛𝑛=−∞

∞

(𝑎𝑎′𝑛𝑛 − 𝑖𝑖𝑏𝑏′𝑛𝑛)𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘𝑥𝑥 where 𝑘𝑘𝑥𝑥 =
2𝜋𝜋
𝑎𝑎

𝑓𝑓 𝑟𝑟 = �
𝐺⃑𝐺

𝑓𝑓𝐺𝐺𝑒𝑒𝑖𝑖𝑟𝑟�𝐺⃑𝐺 = �
𝐺⃑𝐺

𝑓𝑓𝐺𝐺𝑒𝑒𝑖𝑖 𝑟𝑟+𝑅𝑅 �𝐺⃑𝐺 = 𝑓𝑓 𝑟𝑟 + 𝑅𝑅

If we now consider a 3D function that is invariant with any translational lattice vector 𝑅𝑅 = 𝑛𝑛1𝑎⃑𝑎1 + 𝑛𝑛2𝑎⃑𝑎2 + 𝑛𝑛3𝑎⃑𝑎3

𝑓𝑓 𝑟𝑟 = �
𝐺⃑𝐺

𝑓𝑓𝐺𝐺𝑒𝑒𝑖𝑖𝑟𝑟�𝐺⃑𝐺

Because of the periodicity:

𝑓𝑓𝐺𝐺 =
1
𝑉𝑉�𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓 𝑟𝑟 𝑒𝑒−𝑖𝑖𝑟𝑟�𝐺⃑𝐺where

𝑒𝑒𝑖𝑖𝑅𝑅�𝐺⃑𝐺 = 1

𝐺⃑𝐺 = 𝑚𝑚1𝑏⃑𝑏1 + 𝑚𝑚2𝑏⃑𝑏2 + 𝑚𝑚3𝑏⃑𝑏3

We can thus define:

𝑎𝑎𝑖𝑖 � 𝑏𝑏𝑗𝑗 = 2𝜋𝜋𝛿𝛿𝑖𝑖𝑖𝑖

where 𝑉𝑉 = 𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3𝑏𝑏2 = 2𝜋𝜋
𝑎⃑𝑎3 × 𝑎⃑𝑎1

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3
𝑏𝑏1 = 2𝜋𝜋

𝑎⃑𝑎2 × 𝑎⃑𝑎3
𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3

𝑏𝑏3 = 2𝜋𝜋
𝑎⃑𝑎1 × 𝑎⃑𝑎2

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3

Thus we have: 
𝑎𝑎2 � 𝑏𝑏1 = 0

𝑎𝑎3 � 𝑏𝑏1 = 0 𝑏⃑𝑏1 = 𝑐𝑐 𝑎⃑𝑎2 × 𝑎⃑𝑎3 In addition: 𝑎𝑎1 � 𝑏𝑏1 = 2𝜋𝜋 𝑐𝑐 =
2𝜋𝜋

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3

15



𝑮𝑮 = 𝒃𝒃𝟏𝟏 + 𝒃𝒃𝟐𝟐

Fourier Transforms and the Reciprocal Lattice

16

𝑎𝑎1 = 𝑎𝑎 �𝑥𝑥

𝑎𝑎2 = 2𝑎𝑎�𝑦𝑦

𝑎𝑎1 � 𝑏𝑏1 = 2𝜋𝜋 𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑎𝑎2 � 𝑏𝑏2 = 2𝜋𝜋 𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

In 2D we simply have :



𝑮𝑮 = 𝒃𝒃𝟏𝟏 + 𝟐𝟐𝒃𝒃𝟐𝟐

Fourier Transforms and the Reciprocal Lattice

17

𝑎𝑎1 = 𝑎𝑎 �𝑥𝑥

𝑎𝑎2 = 2𝑎𝑎�𝑦𝑦

𝑎𝑎1 � 𝑏𝑏1 = 2𝜋𝜋 𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑎𝑎2 � 𝑏𝑏2 = 2𝜋𝜋 𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

In 2D we simply have :



𝑮𝑮 = 𝒃𝒃𝟏𝟏 − 𝟑𝟑𝒃𝒃𝟐𝟐

Fourier Transforms and the Reciprocal Lattice

18

𝑎𝑎1 = 𝑎𝑎 �𝑥𝑥

𝑎𝑎2 = 2𝑎𝑎�𝑦𝑦

𝑎𝑎1 � 𝑏𝑏1 = 2𝜋𝜋 𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑎𝑎2 � 𝑏𝑏2 = 2𝜋𝜋 𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

In 2D we simply have :



Fourier Transforms and the Reciprocal Lattice
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𝑮𝑮 = 𝒃𝒃𝟏𝟏 + 𝒃𝒃𝟐𝟐

𝑮𝑮 = 𝒃𝒃𝟏𝟏 + 𝟐𝟐𝒃𝒃𝟐𝟐

𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

Reciprocal lattice vectors identify waves with periodicity equal to that of the lattice along different spatial directions. 

The spacing between lattice points along different spatial directions is different. 



Reciprocal Lattice and Brillouin Zone

Brillouin Zone 
(Reciprocal Lattice)

Wigner-Seitz Cell 
(Real Lattice)

FCC

FCC
BCC

BCC

Reciprocal lattice = the set of all wavevectors 𝐺⃑𝐺 that yield plane waves with the periodicity of a given Bravais lattice. 

Like a real lattice the reciprocal lattice has a set of primitive vectors, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 and it is possible to define its Wigner-Seitz cell, which is called Brillouin zone.

Note: the wavevectors lying on the surface of the Brillouin zone define the Nyquist condition for the 3D crystal. This means that any wavevector larger than the 
Brillouin zone can be expressed with a wavevector inside the Brillouin zone. 

20

𝑅𝑅 = 𝑛𝑛1𝑎⃑𝑎1 + 𝑛𝑛2𝑎⃑𝑎2 + 𝑛𝑛3𝑎⃑𝑎3

𝐺⃑𝐺 = 𝑚𝑚1𝑏𝑏1 + 𝑚𝑚2𝑏𝑏2 + 𝑚𝑚3𝑏𝑏3

𝑏⃑𝑏2 = 2𝜋𝜋
𝑎⃑𝑎3 × 𝑎⃑𝑎1

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3

𝑏⃑𝑏1 = 2𝜋𝜋
𝑎⃑𝑎2 × 𝑎⃑𝑎3

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3

𝑏⃑𝑏3 = 2𝜋𝜋
𝑎⃑𝑎1 × 𝑎⃑𝑎2

𝑎⃑𝑎1 � 𝑎⃑𝑎2 × 𝑎⃑𝑎3



Miller Indices
For any family of lattice planes separated by a distance 𝑑𝑑, there are reciprocal lattice 

vectors perpendicular to the planes, the shortest of which have a length of 2𝜋𝜋/𝑑𝑑.

The Miller Indices of a lattice plane are the coordinates of the shortest reciprocal 

lattice vector normal to that plane, with respect to a specified set of reciprocal lattice 

vectors Thus a Miller plane with indices 𝒉𝒉, 𝒍𝒍,𝒌𝒌 is normal to the reciprocal lattice 

vector 𝑮𝑮 = 𝒉𝒉𝒃𝒃𝟏𝟏 + 𝒍𝒍𝒃𝒃𝟐𝟐 + 𝒌𝒌𝒃𝒃𝟑𝟑 (see slide 17)

To obtain the Miller indices of a plane (see image on the top right):

• Consider the real lattice and identify the intercepts of the desired plane with 

the axes formed by the primitive vectors 𝑎⃑𝑎𝑖𝑖
 E.g. 1𝑎⃑𝑎1, 1𝑎⃑𝑎2, 2𝑎⃑𝑎3 (or 1/2𝑎⃑𝑎1, 1/2𝑎⃑𝑎2, 1𝑎⃑𝑎3)

• Take the reciprocal of the intercepts and reduce them to the three smallest 

integers that have the same ratio as the original set 

 E.g. 1
1

, 1
1

, 1
2
→ 2

2
, 2
2

, 1
2
→ (2,2,1)
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Miller Indices

We use the following notations:

 Miller plane:  𝒉𝒉𝒉𝒉𝒉𝒉

 If one of the plane indices is negative we write −𝒉𝒉, 𝒍𝒍,𝒌𝒌 = �𝒉𝒉𝒍𝒍𝒍𝒍

 Based on the real lattice symmetries, planes along different directions can exhibit the 

same atom arrangement. We call these equivalent planes and indicate them as 𝒉𝒉𝒉𝒉𝒉𝒉

 E.g. in a cubic lattice the planes 100 , 010 , 001 , �100 , 0�10 , 00�1

 Direction perpendicular to a Miller plane: 𝒉𝒉𝒉𝒉𝒉𝒉

 All equivalent directions in a crystal are indicated as 𝒉𝒉𝒉𝒉𝒉𝒉

22



In This Lecture…

• Crystal Structure, the Real and Reciprocal Lattice, Miller Indices

• Electron Energy States in Periodic Lattices – Intro to Periodic Potential

23



Summary of Solutions of Schrodinger Equation (electrons)

Potential Wavefunction Energy Levels
Quantu

m 
Numbers

Degene
racy

Free Particle 𝑼𝑼 = 𝟎𝟎 Ψ𝑡𝑡 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔+𝑘𝑘𝑘𝑘) + 𝐵𝐵𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘)

𝑘𝑘 = √(2𝑚𝑚𝑚𝑚/ћ^2 ) 𝐸𝐸 =
ћ2
2𝑚𝑚𝑘𝑘2 - -

1D Infinite 
Potential 
Well

𝑼𝑼 = 𝟎𝟎 for 𝟎𝟎 <
𝒙𝒙 < 𝑳𝑳 𝑼𝑼 = ∞
for 𝐱𝐱 < 𝟎𝟎 and 

𝐱𝐱 > 𝑳𝑳
Ψ𝑛𝑛,𝑡𝑡 𝑥𝑥, 𝑡𝑡 =

2
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 =
1
2𝑚𝑚

ћ𝑛𝑛𝜋𝜋
𝐿𝐿

2
𝑛𝑛 none

2D Infinite 
Potential 
Well

Ψ𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑡𝑡 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 =
2
𝐷𝐷
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑥𝑥𝜋𝜋
𝐿𝐿𝑥𝑥

𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑦𝑦𝜋𝜋
𝐿𝐿𝑦𝑦

𝑦𝑦 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 =
ћ𝜋𝜋 2

2𝑚𝑚
𝑛𝑛𝑥𝑥
𝐿𝐿𝑥𝑥

2

+
𝑛𝑛𝑦𝑦
𝐿𝐿𝑦𝑦

2

𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦
Depends 
on 𝑛𝑛𝑖𝑖,𝑗𝑗

Harmonic 
Oscillator 
(1D)

𝑼𝑼 =
𝑲𝑲𝒙𝒙𝟐𝟐

𝟐𝟐
Ψ𝑛𝑛,𝑡𝑡 𝑥𝑥, 𝑡𝑡 =

𝑚𝑚𝑚𝑚
𝜋𝜋ћ

1
2𝑛𝑛𝑛𝑛!

1/2

𝐻𝐻𝑛𝑛
𝑚𝑚𝑚𝑚𝑥𝑥2

ћ

1/2

𝑒𝑒−
𝑚𝑚𝑚𝑚𝑥𝑥2
2ћ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 = 𝑛𝑛 +

1
2 ћ𝜔𝜔 𝑛𝑛 none

Rigid Rotor 𝑌𝑌𝑙𝑙𝑚𝑚 𝜃𝜃,𝜑𝜑 = 𝜀𝜀𝑖𝑖𝑙𝑙
2𝑙𝑙 + 1 𝑙𝑙 − 𝑚𝑚 !
4𝜋𝜋 𝑙𝑙 + 𝑚𝑚 !

1/2

𝑃𝑃𝑙𝑙
𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑙𝑙 =

ћ2
2𝐼𝐼 𝑙𝑙 𝑙𝑙 + 1 l, m 2𝑙𝑙 + 1

Hydrogen 
Atom (3D) 𝑈𝑈 = −

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜖𝜖0

1
𝑟𝑟

Ψ𝑛𝑛,𝑙𝑙,𝑚𝑚 𝑟𝑟,θ,𝜑𝜑 = 𝑅𝑅𝑛𝑛,𝑙𝑙(𝑟𝑟)𝑌𝑌𝑙𝑙𝑚𝑚 θ,𝜑𝜑 𝐸𝐸𝑛𝑛 = −
𝑍𝑍2𝑒𝑒4𝜇𝜇

8𝜖𝜖02𝑛𝑛2ℎ2
𝑛𝑛, 𝑙𝑙,𝑚𝑚 Depends 

on n

The potential defines the wavefunctions and the energy states. In a crystal we will have a periodic potential. 
24



From Individuals to Crystals

+

-
r

Individual Atom
(electron)

3D Periodic 
Arrangement+ + + +

-

25

What are the electronic energy levels and wavefunctions in a periodic potential?



From Individuals to Crystals

+

-
r

Individual Atom
(electron)

+ + + +

-

What are the electronic energy levels and wavefunctions in a periodic potential?

+

Kronig-Penney Potential
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From Individuals to Crystals

27

𝑮𝑮 = 𝒃𝒃𝟏𝟏 + 𝒃𝒃𝟐𝟐

𝑮𝑮 = 𝒃𝒃𝟏𝟏 + 𝟐𝟐𝒃𝒃𝟐𝟐

𝑏𝑏1 =
2𝜋𝜋
𝑎𝑎 �𝑥𝑥

𝑏𝑏2 =
2𝜋𝜋
2𝑎𝑎 �𝑦𝑦

Reciprocal lattice vectors identify waves with periodicity equal to that of the lattice along different spatial directions. 

The spacing between lattice points along different spatial directions is different. 

Different directions in the lattice have different periodic potentials!



• Electron Energy States in Periodic Lattices 

 Band Structure and Material Properties

 Density of States

In the Next Lecture…
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