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Wave-particle Duality EPFL

The wave nature of material particles gives rise to quantum mechanical effects!
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Describing the Material Waves — The Schrodinger Equation* =PFL

To understand the dynamics of the material waves (and hence of the associated particles) we use the Schrodinger equation:
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Together with the problem symmetry determines the energy levels and the wavefunctions

*Normally we would model the physics and derive the equations. Here we proceed in the opposite way.
We start from the equation and we show that the physics that follows corresponds to the observed physical phenomena 3



Summary of Solutions of Schrodinger Equation
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From Individual Elements to Periodic Arrangements EPFL
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This Lecture EPFL
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In This Lecture... EPFL

e Crystal Structure, the Real and Reciprocal Lattice, Miller Indices

e Electron Energy States in Periodic Lattices — Intro to Periodic Potential



Crystal Structure and the Real Lattice EPFL
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A crystal is a 3D periodic arrangement of atoms.

To describe it we use a lattice, i.e. a periodic array of points that replicates the periodicity.

Importantly, the periodicity of the crystal structure might become apparent only if we consider the regular repetition of a group of more the one atom.
This is called the base.

» Crystal = lattice + base



Crystal Structure and the Real Lattice EPFL

Lattice * A Bravais lattice is an infinite array of discrete points with an arrangement AND orientation

that appears EXACTLY the same from whichever of the points the array is viewed

* A 3D Bravais lattice consists of all points with position vectors R of the form:

—_

R = nlal + nzaz + n3(33

We observe that the choice of the primitive lattice vectors (vectors connecting nearest
neighbors in the lattice) entails a degree of arbitrariness.

We define a primitive unit cell as a parallelepiped defined by three primitive lattice vectors
that contains only one lattice point.

A construction that always ensures we have identified a primitive unit cell is the Wigner-
Seitz construction. It consists in connecting all neighboring points surrounding an arbitrary
lattice point and then to draw the bisecting plane perpendicular to each connection line.

o . o ° Sometimes we describe the lattice by a , that can contain more than
one lattice point but has a more intuitive shape. It is important to recognize this is not a
primitive unit cell.



Crystal Structure and the

Conventional unit cell
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Real Lattice

There are 14 types of Bravais lattice with varying degrees of

The fundamental requirements that the primitive cell can fill

rotational symmetries to 2m, w, 2n/3, /2 and /3

=PrL

symmetry (side lengths and angles)

the ENTIRE space limits the

For each lattice we can identify the primitive vectors and the Wigner-Seitz Primitive cell.

» E.g. for the face centered cubic (FCC) lattice

a, =g(?+2), azf%(2+ﬁ), a3

Elements such as Ag, Au, Al, Cu crystallize with FCC structure

a

= 5(3 + ¥).
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Crystal Structure and the Real Lattice
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There are 14 types of Bravais lattice with varying degrees of symmetry (side lengths and angles)

The fundamental requirements that the primitive cell can fill the ENTIRE space limits the

rotational symmetries to 2m, w, 2n/3, /2 and /3

For each lattice we can identify the primitive vectors and the Wigner-Seitz Primitive cell.
» E.g. for the face centered cubic (FCC) lattice

a a a
a, =§(§'+2}, az=‘_~§(2+g)a 33"5(3"'3')-

Base atoms: 0 anda/4(X +y + 2)

» Zincblende structure

Elements such as Ag, Au, Al, Cu, Pd, Pt, Rh crystallize with FCC structure

A diamond structure is an FCC with a 2-atom base whose coordinates

Elements such as C, Si, Ge crystallize with diamond structure

A Zincblende structure is like a diamond structure but the two atom forming the base are different
Elements such as GaAs, GaP, SiC, CdS, crystallize with Zincblende structure
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Crystal Structure and the

Conventional unit cell
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=PrL

There are 14 types of Bravais lattice with varying degrees of symmetry (side lengths and angles)

The fundamental requirements that the primitive cell can fill the ENTIRE space limits the

rotational symmetries to 2m, w, 2n/3, /2 and /3

For each lattice we can identify the primitive vectors and the Wigner-Seitz Primitive cell.
» E.g. for the body centered cubic (BCC) lattice
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Elements such as Cr, Fe, K, Li, Mo, Na, W crystallize with body centered cubic (BCC)
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Crystal Structure and the Real Lattice
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* There are 14 types of Bravais lattice with varying degrees of symmetry (side lengths and angles)

* The fundamental requirements that the primitive cell can fill the ENTIRE space limits the

rotational symmetries to 2m, w, 2n/3, /2 and /3

* Another important lattice structure is the hexagonal closed-pack structure. This is NOT a Bravais
lattice but can be obtained as two interpenetrating simple hexagonal Bravais lattices.

* Elements such as Mg, Hf, Ru, Ti, Zn crystallize with hexagonal closed-packed structure
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Fourier Transforms and the Reciprocal Lattice EPFL

Erightness

/ frequency

Amplitude

time

Spatial Frequency

It is often convenient to calculate the Fourier transform of a signal (temporal or spatial) to identify the frequencies contained in it.

Considering that a lattice is a periodic structure, by calculating its Fourier transform we can identify the fundamental frequencies that compose it
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Fourier Transforms and the Reciprocal Lattice EPFL

We remember that a periodic function f (x) with spatial period a can be expressed as:
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Fourier Transforms and the Reciprocal Lattice EPFL

a = 2ay

a, = ax

In 2D we simply have :
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Fourier Transforms and the Reciprocal Lattice EPFL
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In 2D we simply have :
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Fourier Transforms and the Reciprocal Lattice EPFL
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In 2D we simply have :




Fourier Transforms and the Reciprocal Lattice EPFL

Reciprocal lattice vectors identify waves with periodicity equal to that of the lattice along different spatial directions.

The spacing between lattice points along different spatial directions is different.
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=PrL

Reciprocal Lattice and Brillouin Zone

Reciprocal lattice = the set of all wavevectors G that yield plane waves with the periodicity of a given Bravais lattice

Like a real lattice the reciprocal lattice has a set of primitive vectors, b, b,, b; and it is possible to define its Wigner-Seitz cell, which is called Brillouin zone

Brillouin Zone

Wigner-Seitz Cell
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Note: the wavevectors lying on the surface of the Brillouin zone define the Nyquist condition for the 3D crystal. This means that any wavevector larger than the

Brillouin zone can be expressed with a wavevector inside the Brillouin zone
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Miller Indices EPFL

For any family of lattice planes separated by a distance d, there are reciprocal lattice

lane (111 4 plane 221 . .
. | - plane (221) . vectors perpendicular to the planes, the shortest of which have a length of 2rr/d.
z=1 F/' L
III Illll

P y=k Iu' L4 The Miller Indices of a lattice plane are the coordinates of the shortest reciprocal
=3 1 | .

] ”'II x= B r lattice vector normal to that plane, with respect to a specified set of reciprocal lattice
|

| \ vectors Thus a Miller plane with indices h, [, k is normal to the reciprocal lattice

vector G = hBl + IBZ + k53 (see slide 17)

To obtain the Miller indices of a plane (see image on the top right):

* Consider the real lattice and identify the intercepts of the desired plane with

the axes formed by the primitive vectors a;
> E.g.lay, la,, 2as (or1/2ay,1/2a,,1as)
* Take the reciprocal of the intercepts and reduce them to the three smallest

integers that have the same ratio as the original set

- e (1)~ (G2 - ean
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Miller Indices

+ plane [111) + plane [221)

=PrL

We use the following notations:

» Miller plane: (hlk)
> If one of the plane indices is negative we write (—h, 1 k) = (hlk)

» Based on the real lattice symmetries, planes along different directions can exhibit the
same atom arrangement. We call these equivalent planes and indicate them as {hkl}

E.g. in a cubic lattice the planes (100), (010), (001), (100), (010), (001)

» Direction perpendicular to a Miller plane: [hkl]

» All equivalent directions in a crystal are indicated as (hkl)

22



In This Lecture... EPFL

e Crystal Structure, the Real and Reciprocal Lattice, Miller Indices

* Electron Energy States in Periodic Lattices — Intro to Periodic Potential
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Summary of Solutions of Schrodinger Equation (electrons)
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» The potential defines the wavefunctions and the energy states. In a crystal we will have a periodic potential.
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rom Individuals to Crystals EPFL
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» What are the electronic energy levels and wavefunctions in a periodic potential?
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From Individuals to Crystals EPFL
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» What are the electronic energy levels and wavefunctions in a periodic potential?
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From Individuals to Crystals EPFL

Reciprocal lattice vectors identify waves with periodicity equal to that of the lattice along different spatial directions.

The spacing between lattice points along different spatial directions is different.

» Different directions in the lattice have different periodic potentials!
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In the Next Lecture... EPFL

* Electron Energy States in Periodic Lattices
» Band Structure and Material Properties

» Density of States

28
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