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* The transient process must be slow compared to the relaxation time of the carriers.
* The temperature variation within one mean free path must be small compared to the absolute temperature
* The characteristic length must be much larger than the mean free path of the carrier.

» f;'*—fo?T(V'=V:;f0+nEz'vao)

Phonons — Fourier Law and thermal conductivity
Molecules — Newton’s Stress Law

Electrons — Ohm’s Law



In This Lecture

Thermoelectric Effects
Seebeck coefficient
Peltier coefficient

Thomson effects
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Electrons — Thermoelectric Effects 1: Seebeck Coefficient EPFL

Let’s now consider electrons flow in an conductor subject to both a temperature gradient and an electric field
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However we now have* that both the chemical potential and the temperature change with position along the conductor therefore:
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Electrons — Current Density
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Electrons — Thermoelectric Effects 1: Seebeck Coefficient EPFL

T T We can therefore compute the electrical current as:
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Electrons — Thermoelectric Effects 1: Seebeck Coefficient
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At open circuit voltage conditions the current is zero and therefore:
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The Seebeck coefficient is a measure of the average heat current carried per electron.

We thus observe that along a conductor subject to a temperature gradient, at open circuit condition:

—(02 — @) = S(T> —)=-V

Thus in a conductor or semiconductor, a temperature difference generates a voltage difference because electrons from the hot side have higher thermal

energy and will diffuse to the cold side.

Under open-circuit conditions, the charge build-up generate a steady-state voltage equal to the Seebeck coefficient that counteracts further charge diffusion.

If the material is uniform the generated voltage is independent of the temperature profile and this is the principle used for the thermocouples.



Electrons — Thermoelectric Effects 1: Seebeck Coefficient

Energy

Example 6.1

The relaxation time usually depends on the electron energy as't ~ EY, where
r differs among scattering mechanisms for electron transport (y = —1/2 for acoustic
phonon scattering, y = 1/2 for optical phonon scattering, and y = 3/2 for impurity
scattering). Derive an expressmn for the Seebeck coefficient of a nondegenerate
semiconductor.

Solution: A nondegenerate semiconductor is one with the Fermi level inside the
bandgap. In this case, the Fermi—Dirac distribution function can be approximated by
the Boltzmann distribution
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The Seebeck coefficient can be calculated from eq. (6.94). Assuming a parabclac

band, the density of states is i
It
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Substituting (E6.1.2) and the relaxation time into eq. (6.94), we obtain the Seebeck
coefficient as :
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where E is the chemical potential, which can be controlled by doping. Using’

eq. (4.64) (E; = 0 for the reference system here), we can write the above!
equation as o

@ e

Comment. The value of kp/e is 86 WV K1, which gives an idea of the order of thc j

magnitude of the Seebeck coefficient in many materials.
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Electrons — Thermoelectric Effects 2: Peltier Coefficient EPFL

We now consider a small control volume within the conductor and we write the first law of thermodynamics

- accounting for both the flux of heat and particles:
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Convection of electrons under Diffusion of electrons under a
an electrochemical potential temperature gradient
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Electrons — Thermoelectric Effects 2: Peltier Coefficient EPFL

T; T, By eliminating the electrochemical potential between:
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This shows that in addition to normal heat conduction by the electrons, the charge flow carries another
s \an i heat that is proportional to the current through the Peltier coefficient. When two materials with different
’ (LI | Peltier coefficients are joined together and a current flows through the junction, heat must be supplied or
— Fh{L-Th) ; rejected based on the difference between the Peltier coefficients:
q=J,(I1;-11)) *
11, i :
e ! q > 0 energy is absorbed

g = (Il — IT) Je

q < 0 energy is rejected

The heat absorption/release depends on the sign of the current and therefore, contrary to normal heat
conduction, it can be reversed by reversing the current flow.

This is the basis of thermoelectric refrigerators and heat pumps. 1



Electrons — Thermoelectric Effects 3: Thomson Effect EPFL

Let’s now consider again our conductor subject to an electric field and a temperature gradient and let’s look

at the energy deposited in a differential volume due to the heat flux variation and the electrochemical
ST T i

potential drop:
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Thomson Effect Heat conduction  joyle heating

Heat can be absorbed or released depending on the current direction (Thomson Effect).
We define the rate of cooling as:

=Gk / (J d—T = Tiii Thomson Coefficient & Kelvin relation with §
dx dT

where the negative sign in the first term of eq. (6.105) does not appear because a positive
Thomson effect is based on coolm g whereas q is the heat generation.
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* The transient process must be slow compared to the relaxation time of the carriers.
* The temperature variation within one mean free path must be small compared to the absolute temperature
* The characteristic length must be much larger than the mean free path of the carrier.

» f;'*—fo?T(V'=V:;f0+nEz'vao)

Phonons — Fourier Law and thermal conductivity
Molecules — Newton’s Stress Law

Electrons — Ohm’s Law & Thermoelectric Effects
13



Outlook - The Conservation Equations
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Previously we have used the Boltzmann equation to calculate the probability distribution function and subsequently we have calculated the average quantities as
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We now want to find the equations governing the average value of X. For this reason we rather calculate:
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When the quantity X is a conserved quantity such as mass, momentum or energy, then the integral of the collision term (right-hand side) must vanish.

Mass X =m

Momentum X = mv

Energy X = mv? /2 +myrn  Vine s the potential energy per unit mass of a particle.
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