Nanoscale Heat Transfer
(and Energy Conversion)
ME469

Instructor: Giulia Tagliabue

Spring Semester




This Week EPFL

~—

fer—
L e

Energy Transport by
Particles (Ch. 6 -7)

J
I—’[ Classical Laws




Energy Transport EPFL

Higher

Kinetic Energy Lower

Kinetic Energy

Hot

; ) g, ?

* The transient process must be slow compared to the relaxation time of the carriers.
* The temperature variation within one mean free path must be small compared to the absolute temperature
* The characteristic length must be much larger than the mean free path of the carrier.

» f;'*—fo?T(V'=V:;f0+nEz'vao)

» Phonons — Fourier Law and thermal conductivity



In This Lecture EPFL

* Electrons — Ohm’s Law and Wiedemann-Franz Law



Electrons — Approximated Boltzmann Equation
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Let’s finally consider electrons flow in an isothermal conductor driven by an external electric field.
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Using the above reference system, we express the energy E and the chemical potential E; with respect to the conduction band. Indeed, with this choice 0E /dx = 0 .
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*Note: remember that the Fermi level is the chemical potential at zero K. Instead the chemical potential depends on the temperature and is related to the charge carrier density L9, slide 14. s



Electrons — Electrochemical Potential
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For the external force we observe:
_dE_ d(E-E.+E)  dE de, E = total potential
T dx dx T dx | dx @, = electrostatic potential

» e = —Ec/e

Yet the total force felt by the electrons will consist of the electrostatic part as well as the diffusion part
The diffusion part is the first term in the parenthesis of the approximated Boltzmann equation:

» Pc = _Ef/e

We so define the electrochemical potential: @& = @, + @, = —(E. + Ey)/e
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Electrons — Current Density EPFL
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The current density can be thus expressed as:
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» It is the electrochemical potential, and not just the electrostatic one, that is responsible for the current density.
In different materials the relative importance of the electrostatic and chemical potential varies.



Electrons — Metals and Ohm’s Law EPFL
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In metal the carrier density n is extremely large and therefore transport does not modify significantly
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We also observe that i ~0 everywhere except close to the chemical potential (or Fermi level). Drely?
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Therefore we can apprOX|mate %

~ — 8(E — Ef) such that the integral becomes: o= 3

» In metals, only electrons close to the chemical potential (practically coincident with the Fermi level) contribute to the current transport
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Electrons — Semiconductors and the Drift-Diffusion Equation =PFL
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In semiconductor the carrier concentration changes with the position and the chemical potential is not constant.
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T,, = momentum relaxation time Vd = e & =drift velocity O = enli,



Electrons — Thermal Conductivity and Wiedemann-Franz Law cPEL

Assuming no current flow one can estimate the thermal conductivity for the electrons:
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C, = volumetric specific heat

Interestingly most metals obey the Wiedemann-Franz law:
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Where from L9, sl. 18 we recalled :
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In semiconductors the Lorentz number should be calculated because the relationship between n and the fermi level depends on doping. Nonetheless, the
Lorentz number remain of the same order of magnitude. 10
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* The transient process must be slow compared to the relaxation time of the carriers.
* The temperature variation within one mean free path must be small compared to the absolute temperature
* The characteristic length must be much larger than the mean free path of the carrier.

» f;'*—fo?T(V'=V:;f0+nEz'vao)

Phonons — Fourier Law and thermal conductivity
Molecules — Newton’s Stress Law

Electrons — Ohm’s Law
11
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* The transient process must be slow compared to the relaxation time of the carriers.
* The temperature variation within one mean free path must be small compared to the absolute temperature
* The characteristic length must be much larger than the mean free path of the carrier.

» f;'*—fo?T(V'=V:;f0+nEz'vao)

» Electrons — Thermoelectric Effects (Seebeck, Peltier, Thomson)
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Content of the Exam EPFL

[ Energy States } [ Thermal Energy Storage ] [ Thermal Energy Transport } _
4 ) )
Introduction to Quantum Introduction to Statistical Energy Transport by Waves
Mechanics (Ch. 2) Thermodynamics (Ch. 4) (Ch. 5)
o J J
4 N )
Introduction to Solid State Energy Transport by
Physics (Ch. 3) Particles (Ch. 6 -7)
o J J
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Rules of the Mid-Term Exam EPFL

* Mid-term Exam will cover the course content up to Week 8.

* The Mid-term Exam will consist of exercises similar to the homeworks. A couple of theory questions could be asked as well.
* At the exam, you can bring the lecture slides but NOT the homework sets

* Bring a calculator and your camipro
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Supplementary EPFL



Molecules — Approximated Boltzmmann Equation EPFL

We recall that the Boltzmann equation is valid only under assumption of molecular chaos, i.e. dilute gas.

The approximated Boltzmann equation to start from is: f fo —T{Ve Vrfg + — e vaO

LY U The statistical distribution for molecules is the Maxwell distribution. However, when a net velocity is imposed due
to flow, we need to use the displaced Maxwell distribution. Considering the shear flow in the figure we have:
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And ultimately we get:
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Molecules — Newton’s Shear Stress Law in Gases EPFL

i U The shear stress 7,,, along the x-direction of a plane perpendicular to the x-axis is due to the momentum exchange
across that plane:

v

Rate of momentum change along x-direction due
to the flow of the molecule across the y-plane
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Momentum of one
particle along x-direction

Txy
Therefore we get:
du ’
Txy Tyy = 5—; Newton’s Shear Stress Law

o _/[[rvi (mvx)%dvx dvy dv, Dynamic Viscosity
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Molecules — Dynamic Viscosity EPFL
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If the relaxation time is a constant and we set v, = v, — u we get:
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By solving the Boltzmann equation in integral form we would have obtained the more accurate result:
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Molecules — Thermal Conductivity EPFL

i U Similarly, the energy of the carriers instead of the momentum, we can calculate the heat flux and as a consequence the
thermal conductivity as:
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