Nanoscale Heat Transfer
(and Energy Conversion)
ME469

Instructor: Giulia Tagliabue

Spring Semester
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* If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (ballistic transport)
* If the phase of the carriers in unimportant, a particle approach can be used (diffuse transport)

* In between we have the partially coherent regime



The phase-space and the Liouville Equation EPFL
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Time-evolution
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In a system with N particles, each particle can be described by a generalized spatial coordinate 7 and a generalized momentum coordinate p which depend on the
number of degrees of freedom in space, m. For example:

= Diatomic molecule: 77 = (xq,y1,21,A11,61,91) and p; = (Mvyq, Mvy,, My, mdAry /dt, gy, 1)
position l rotation

Vibrational
coordinate

The total number of degrees of freedom for the system is 2n = 2mN and the 2n-dimensional space is called the phase-space.

A given system is represented by a point in the phase-space and its time evolution corresponds to a unique trajectory*.

*the evolution of a system is uniquely determined by the initial conditions 4



The Boltzmann Equation: from 2n to 2Zm-dimensional space EPFL

1-particle in a system

Fl, 131 0 As particles interact with each other, the number of
p ) particles along a flow line is no longer conserved!

71, P1 2m-dimensional instead of
° 2n-dimensional phase-space All Systems
\ﬂ/ with Fl' 51
R Phase Space \
1, P1 Representation

\/ > T(l) L= 1,2, s 1

We can perform the same averaging on the Liouville equation and we would obtain:

af J d af Scattering Term
r p » Accounts for the collisions of this particle with all the
1 —— —_—
Boltzmann Equation '57 + Z'- o Vi f + -d—t. = fo e ( ot ) other particles in the system (non-conserving nature
. ¢ of the 1-particle distribution function)

| af . of. Of. af . of . of .
where il : Vaf = 4+ —p, + —
Vi f = X+ 8yy+ e pf 3p. > apypy 5p. P



The Scattering Integral — Relaxation-time Approximation EPFL

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles:

of F _ . |/of
a—+Verf+E-ka—(-£)c  pnd

(E) __f_fO(T-E-“')
o), T(r, k)

The scattering process can be caused by many different phenomena such as collision between equal particles (e.g. phonon-phonon), collision between different
particles (e.g. electron-phonon), collision with boundaries or impurities.
Each process will have its own relaxation time 7; and, assuming that the scattering mechanisms are independent of each other, we can calculate 7; as:

1
— = Z — Matthiessen rule



The Boltzmann Equation — From Phonons to Molecules EPFL

m Boltzmann Equation Scattering mechaninsms and relaxation time

T—l - Be‘eD"bT T3w2

5 1. 3-phonon Umklapp process (volume) u B and b are constants and fp is the Debye temperature.
Phonon _f +veVif =— f—Jfo 2. Scattering from impurities (volume) -L-I—l = Aw?
ot ‘ T 3. Boundary scattering (surface) B
Ty =bsV/L [, is a characteristic length, bs is™a shape factor
81, 1 (BI\,) Scattering can be elastic, inelastic outgoing, elastic incoming
as v\at/, <61v> I, — Lo here A dI blackbod Li J
- === where A = vt and [, = blackbody spectral intensity
PhOtOﬂ c,inelastic A ’
W kb v +ﬂ/1'(§z’) @ - ouae 1[0l 1 (aly 1 /a1 o
2 Belytalo oo | ()80 = (_) = —agply + — (__) = (_") = _"lfgl”({z'w(ﬁf — Q)dQ’  0sv is the scattering coefficient
v at ¢, elastic v ar e, elastic, in v ot c,elastic,in 4x
Scattering dominated by electron-phonon interactions.
d ‘ F =
Electron 3_{+"‘Vrf+g'ka,=_frf0 Inmetals: 1 _ o
T
In semiconductors complex processes.
af F f - fO A m 00 o0 00
Y i VeVif+—eV, f=—1 "
Molecule o 'Y/t ne T =T T== A=—— 5= [ [ [ orodue vy an = |22
v Tl'\/ipdz 000 i
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How do classical laws emerge from the microscopic picture of energy transport?
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In This Lecture EPFL

Approximation of the Boltzmann Equation

Phonons - Fourier Law and Phonon Thermal Conductivity

10



The Approximated Boltzmann Transport Equation EPFL

(af) = f_fD(TlElp:')
ot

0 F . (@
—f'+V'Vrf+—'ka ( f) ar (1, k)

We define: g = f — fo = deviation from equilibrium

d = : ¥ F
» """"'"IO‘'|"”'VrfO"“"VrS"‘l'"""Vvﬁ)""‘"wvg:_g
dt erm o T

We now make the following assumptions:

.. . d
1. Negligible transient terms a_]; K %

2. The deviation from equilibrium is small f, > g
3. Vg K Vf oralternatively g > Vg

» g=—1 (V o Vrfo+ E- [ V‘,fo) » f = fo -7 (v °. VrfO + E ® vaO) Approximated Boltzmann Equation

Let’s now look more closely at the meaning of the approximation we made.

Note: we would have arrived to the same result doing a Taylor expansion of Boltzmann egn. and keeping only the first order expansion of f, f, being the 0t order term 11



The Approximated Boltzmann Transport Equation EPFL

g=f—f » _+ﬁ+VoVrf0+v.Vrlgi-}-_;1—ovvf0+govvg=—§ » f%fo—t(v-=?,f0+n—z.vvfo)

Let’s look more closely at the meaning of the three approximations we did to get to this result:

1.

. . . a
Negligible transient terms a_); K %

If a transient phenomenon (e.g. a laser pulse) occurs with a characteristic time 7, then this condition requires that: 7. > t

Therefore the transient process must be slow compared to the relaxation time of the carriers.

The deviation from equilibriumis small f, > g

‘ F
If we look at the approximated Boltzmann equation we see that fo > 7 (v *Vrfo+ = vao)

Let’s then consider the case of phonons and let’s multiply the inequality by the phonon energy integrating then above all phonon states:

_S_ hw fo > E hwotveVefo ®» U —ii—T ~ —CAj—T where k= CvA/3 1 is the average phonon velocity;
—~l X X
k k
AdT N s
IfU =CT » T dx &« 1 therefore the temperature variation within one mean free path must be small compared to the absolute temperature

Vg < Vf or alternatively g > Vg
This condition can be rewritten also as% » v - Vg . If we approximate Vg~g/L , where L is a characteristic length associated with the problem we get % =7 K1

Therefore the characteristic length must be much larger than the mean free path of the carrier.

12



In This Lecture EPFL

Approximation of the Boltzmann Equation

Phonons - Fourier Law and Phonon Thermal Conductivity

13



Phonons — Approximated Boltzmann Equation EPFL

f=fo — 1 (V '=V1"f0 + g ° vao)

For phonons : f(l', k) = fo — r—;i]-;gv o VT T =T(r,t)
1 _

fo= exp (hw/kgT) — 1

F=0

14



Phonons — Fourier Law and Thermal Conductivity EPFL

Let’s consider the 1-dimensional problem of heat conduction along x-direction (i.e. temperature gradient along x).
The heat flux J 4, (x) can be calculated as*:

1 00 oo co
Jgx(x) = Z v Z Z E vehwf where  f(r,k) = fp — rif.;gv VT

¥ ky1=—00 kyj=—00 kzl=‘7/ - 5

velocity along x Nonequilibrium statistical distribution
Phonon energy

0o 00 00
3
Converting the sum into an integral**: Jq.l:(-r) — (1/ V) Z: f f f U;h(ﬂf dk-" dk}’ dk!f(zr/l’)
¥ —o0~-00—00
Furthermore we use the density of states to go from an integral over k to an integral over w, { where w is the angular frequency and Q is the solid angle:
max 2n [ =
d sohof 222 sinods | do
JQI '(I) = @ v.Co ! 4
0 0 0

*compare the J 4, (x) expression to L11, slide 7 (Landauer formalism). Observe that here we directly account for carrier moving in ALL directions at a given point.
** every point in k-space occupies a (21/L)? space. Hence when we convert the discrete space into a continuum to obtain the correct number of points we need to use dk/(2m/L)3 15



Phonons — Fourier Law and Thermal Conductivity EPFL

We now insert the non-equilibrium statistical distribution  f(r, k) = fy Tif_‘)v o VT
: T

®max 2 T
Jq;(x) = f d@ ,:f [/ vcosfhw [fg — r%%u cosﬁ:l DAL(;)) sin9d9] dqo]

0 0 0

The equilibrium distribution is isotropic and therefore the integral of fO is zero.

Wmax n
1dT d

» qu(.r) = o dw frvz sin @ cos® @ x th(m)-&iquel

0 0

dT
We immediately observe that this is exactly the classical Fourier Law: Jq.r = —kz—;
1 ax n
where k = 5 f f w?cm siné x cos®0d8 § dw Thermal Conductivity
0 0

Co = hwD(w)dfo/dT Specific heat per unit frequency

16



Phonons — Fourier Law and Thermal Conductivity EPFL

1 Wmax JT
k= 5 f [rsza,sinf} x c0s20d6 § dw
0 0

10 2

L] llIllIll Tlllﬁll‘] L T 1T al

o Holland (1964)
A Amith et al, (1965)

THERMAL CONDUCTIVITY (W/cm.K)

TEMPERATURE (K)

Thermal conductivity of GaAs fit with a model that accounts
for the phonon dispersion as well as the different possible
phonon branches.

A | 2c,d
> v, T isotropic =3 ) tVtedw

1
» v,7 frequency independent k& = ECUA A=tV

L 1 sV 4 —8p/bT 3 2
We know that the relaxation time an be expressed as: it T + Aw” + Be™7P/% T g

Therefore we can fit experimental data of the thermal conductivity to find the values of the
coefficients and determine which scattering mechanism dominates at a given T. Yet, the simplest

1 . :
model k = ECUA , leads to major inaccuracies due to:

* Constant phase velocity instead of frequency dependent one (phonon dispersion)
*  Optical phonons contribute to C but only very little to k because of low group velocities
*  Phonon scattering is highly frequency dependent (high frequency phonons scatter more

frequently)
*  Although the normal 3-phonon scattering does not impede heat flow, the energy/momentum
redistribution affects the likelihood of Umklapp processes.

Crystalline solids typically have a dome-shaped thermal conductivity with a peak at ~20K.

« Atlow T phonon-boundary scattering dominates and k o< C « T3.

e At high T phonon-phonon scattering dominates and k « %

17
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* The transient process must be slow compared to the relaxation time of the carriers.
* The temperature variation within one mean free path must be small compared to the absolute temperature
* The characteristic length must be much larger than the mean free path of the carrier.

» f=f0_T(V'=Vrf0+n_z'va0)
» Phonons — Fourier Law and thermal conductivity

18
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