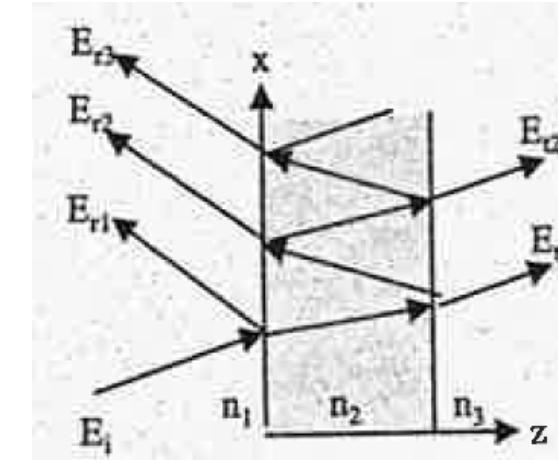
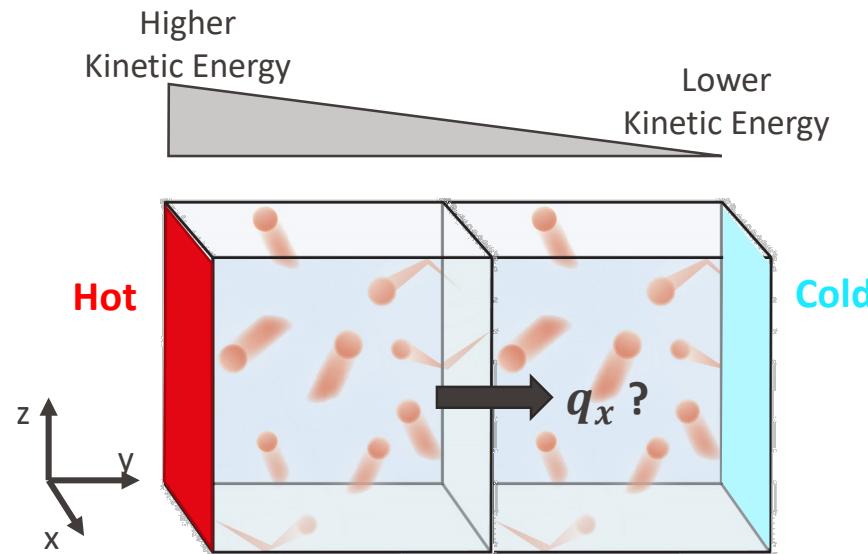
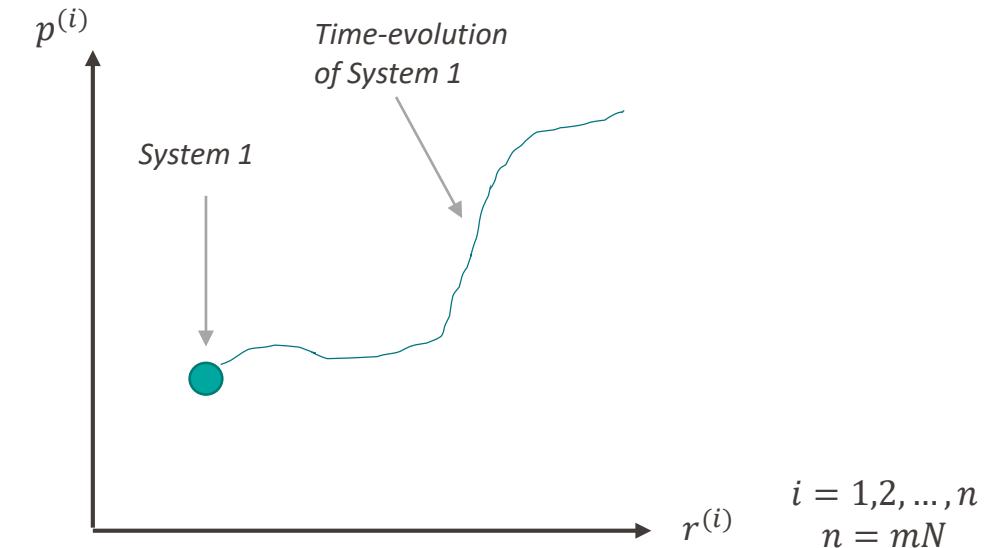
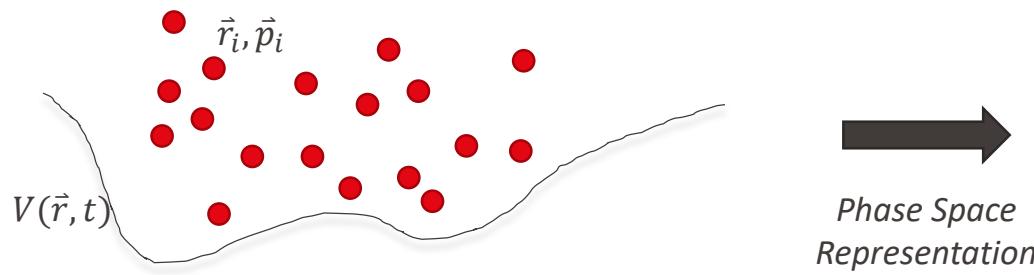

Nanoscale Heat Transfer (and Energy Conversion)

ME469



Instructor: Giulia Tagliabue

Nanoscale Heat Transfer (and Energy Conversion)

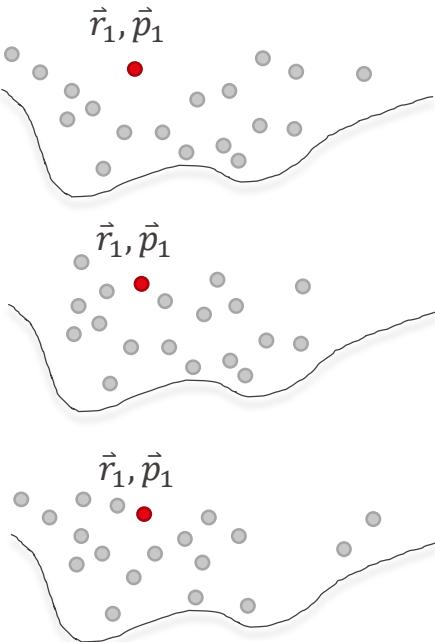
Energy Transport

- If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (**ballistic transport**)
- **If the phase of the carriers is unimportant, a particle approach can be used (**diffuse transport**)**
- In between we have the **partially coherent regime**

The phase-space and the Liouville Equation

In a system with N particles, each particle can be described by a generalized spatial coordinate \vec{r} and a generalized momentum coordinate \vec{p} which depend on the number of degrees of freedom in space, m . For example:

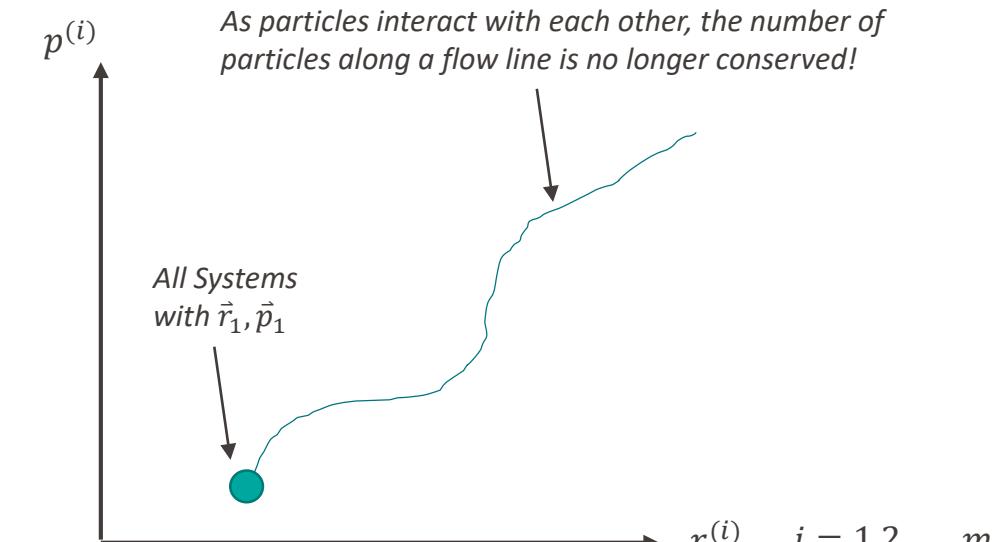
- Diatomic molecule: $\vec{r}_1 = (x_1, y_1, z_1, \Delta r_1, \theta_1, \varphi_1)$ and $\vec{p}_1 = (mv_{x1}, mv_{y1}, mv_{z1}, m\Delta r_1/dt, I_{\theta1}, I_{\varphi1})$


The total number of degrees of freedom for the system is $2n = 2mN$ and the $2n$ -dimensional space is called the **phase-space**.

A given system is represented by a point in the phase-space and its time evolution corresponds to a unique trajectory*.

The Boltzmann Equation: from $2n$ to $2m$ -dimensional space

EPFL


1-particle in a system

2m-dimensional instead of
2n-dimensional phase-space

Phase Space
Representation

We can perform the same averaging on the Liouville equation and we would obtain:

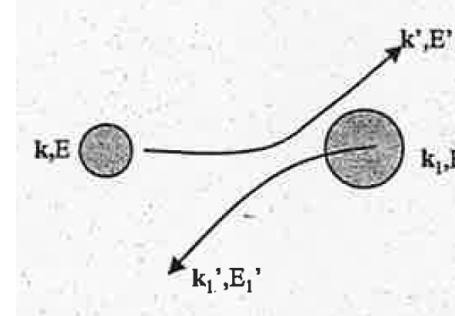
Boltzmann Equation

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{r}}{dt} \cdot \nabla_{\mathbf{r}} f + \frac{d\mathbf{p}}{dt} \cdot \nabla_{\mathbf{p}} f = \left(\frac{\partial f}{\partial t} \right)_c$$

Scattering Term

Accounts for the collisions of this particle with all the other particles in the system (**non-conserving nature** of the 1-particle distribution function)

where


$$\nabla_{\mathbf{r}} f = \frac{\partial f}{\partial x} \hat{\mathbf{x}} + \frac{\partial f}{\partial y} \hat{\mathbf{y}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

$$\nabla_{\mathbf{p}} f = \frac{\partial f}{\partial p_x} \hat{\mathbf{p}}_x + \frac{\partial f}{\partial p_y} \hat{\mathbf{p}}_y + \frac{\partial f}{\partial p_z} \hat{\mathbf{p}}_z$$

The Scattering Integral – Relaxation-time Approximation

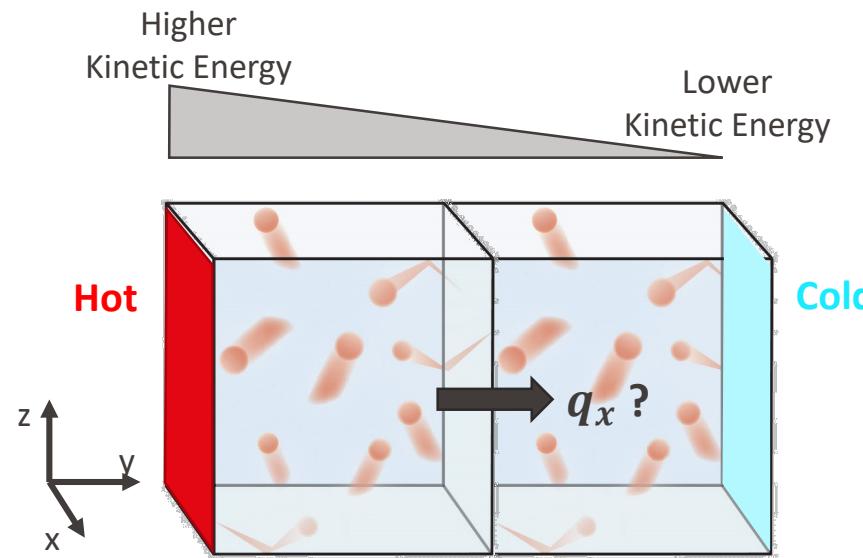
Let's now look more closely at the scattering term in the Boltzmann equation and in particular let's consider the collision between two particles:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{\hbar} \cdot \nabla_{\mathbf{k}} f = \left(\frac{\partial f}{\partial t} \right)_c$$

$$\left(\frac{\partial f}{\partial t} \right)_c = - \frac{f - f_0(T, E, \mu)}{\tau(\mathbf{r}, \mathbf{k})}$$

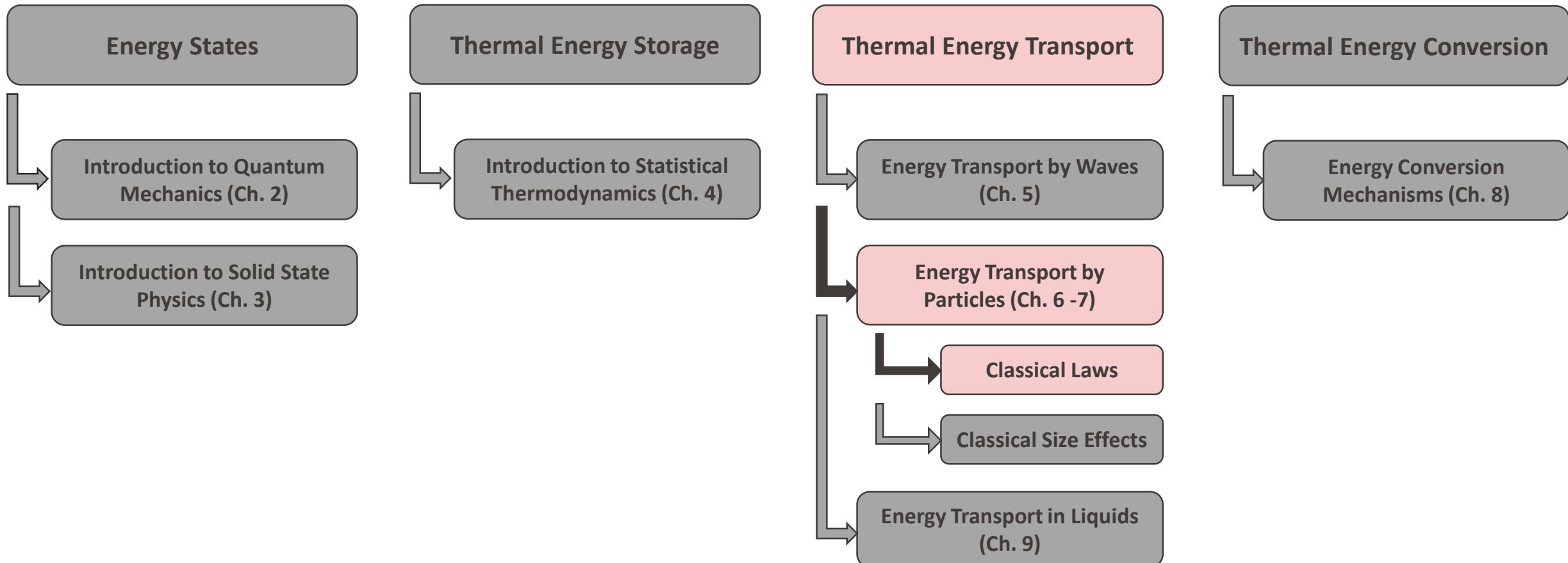
The scattering process can be caused by many different phenomena such as collision between equal particles (e.g. phonon-phonon), collision between different particles (e.g. electron-phonon), collision with boundaries or impurities.

Each process will have its own relaxation time τ_j and, **assuming that the scattering mechanisms are independent of each other**, we can calculate τ_t as:


$$\frac{1}{\tau_t} = \sum_j \frac{1}{\tau_j}$$

Matthiessen rule

The Boltzmann Equation – From Phonons to Molecules


Particles	Boltzmann Equation	Scattering mechanisms and relaxation time
Phonon	$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{r}} f = -\frac{f - f_0}{\tau}$	<ol style="list-style-type: none"> 1. 3-phonon Umklapp process (volume) 2. Scattering from impurities (volume) 3. Boundary scattering (surface) <p>$\tau_u^{-1} = B e^{-\theta_D/bT} T^3 \omega^2$ B and b are constants and θ_D is the Debye temperature.</p> <p>$\tau_I^{-1} = A \omega^4$</p> <p>$\tau_b^{-1} = b_s v / L$ L is a characteristic length, b_s is a shape factor</p>
Photon	$\frac{\partial I_{\nu}}{\partial s} = \frac{1}{v} \left(\frac{\partial I_{\nu}}{\partial t} \right)_c$ $\frac{\partial I_{\nu}}{\partial s} = -K_{\nu\nu} I_{\nu} + \alpha_{\nu} I_{\nu 0} + \frac{\sigma_{s\nu}}{4\pi} \int I'_{\nu}(\hat{\Omega}') \phi(\hat{\Omega}' \rightarrow \Omega) d\Omega'$	<p>Scattering can be elastic, inelastic outgoing, elastic incoming</p> $\left(\frac{\partial I_{\nu}}{\partial t} \right)_{c, \text{inelastic}} = -\frac{I_{\nu} - I_{\nu 0}}{\Lambda} \quad \text{where } \Lambda = v\tau \text{ and } I_{\nu 0} = \text{blackbody spectral intensity}$ $\frac{1}{v} \left(\frac{\partial I_{\nu}}{\partial t} \right)_{c, \text{elastic}} = -\sigma_{s\nu} I_{\nu} + \frac{1}{v} \left(\frac{\partial I_{\nu}}{\partial t} \right)_{c, \text{elastic, in}} \quad \frac{1}{v} \left(\frac{\partial I_{\nu}}{\partial t} \right)_{c, \text{elastic, in}} = \frac{\sigma_{s\nu}}{4\pi} \int I'_{\nu}(\hat{\Omega}') \phi(\hat{\Omega}' \rightarrow \Omega) d\Omega' \quad \sigma_{s\nu} \text{ is the scattering coefficient}$
Electron	$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{\hbar} \cdot \nabla_{\mathbf{k}} f = -\frac{f - f_0}{\tau}$	<p>Scattering dominated by electron-phonon interactions.</p> <p>In metals: $\frac{1}{\tau} \propto T$</p> <p>In semiconductors complex processes.</p>
Molecule	$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{v}} f = -\frac{f - f_0}{\tau}$	$\tau = \frac{\Lambda}{v} \quad \Lambda = \frac{m}{\pi \sqrt{2} \rho d^2}$ $\bar{v} = \sqrt{\frac{8k_B T}{\pi m}}$ $\bar{v} = \sqrt{\frac{8k_B T}{\pi m}} = \sqrt{\frac{8k_B T}{\pi m}}$

Energy Transport

How do classical laws emerge from the microscopic picture of energy transport?

Nanoscale Heat Transfer (and Energy Conversion)

In This Lecture

- **Approximation of the Boltzmann Equation**
- Phonons - Fourier Law and Phonon Thermal Conductivity

The Approximated Boltzmann Transport Equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \bullet \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{\hbar} \bullet \nabla_{\mathbf{k}} f = \left(\frac{\partial f}{\partial t} \right)_c$$
$$\left(\frac{\partial f}{\partial t} \right)_c = -\frac{f - f_0(T, E, \mu)}{\tau(\mathbf{r}, \mathbf{k})}$$

We define:

$g = f - f_0 = \text{deviation from equilibrium}$

$$\frac{\partial g}{\partial t} + \frac{\partial f_0}{\partial t} + \mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 + \mathbf{v} \bullet \nabla_{\mathbf{r}} g + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} f_0 + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} g = -\frac{g}{\tau}$$

We now make the following assumptions:

1. Negligible transient terms $\frac{\partial f}{\partial t} \ll \frac{g}{\tau}$
2. The deviation from equilibrium is small $f_0 \gg g$
3. $\nabla g \ll \nabla f$ or alternatively $g \gg \nabla g$

$$g = -\tau \left(\mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} f_0 \right)$$

$$f = f_0 - \tau \left(\mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} f_0 \right)$$

Approximated Boltzmann Equation

Let's now look more closely at the meaning of the approximation we made.

The Approximated Boltzmann Transport Equation

$$g = f - f_0 \quad \Rightarrow \quad \frac{\partial g}{\partial t} + \frac{\partial f_0}{\partial t} + \mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 + \mathbf{v} \bullet \nabla_{\mathbf{r}} g + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} f_0 + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} g = -\frac{g}{\tau} \quad \Rightarrow \quad f = f_0 - \tau \left(\mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} f_0 \right)$$

Let's look more closely at the meaning of the three approximations we did to get to this result:

1. **Negligible transient terms** $\frac{\partial f}{\partial t} \ll \frac{g}{\tau}$

If a transient phenomenon (e.g. a laser pulse) occurs with a characteristic time τ_c then this condition requires that: $\tau_c \gg \tau$

Therefore **the transient process must be slow compared to the relaxation time of the carriers.**

2. **The deviation from equilibrium is small** $f_0 \gg g$

If we look at the approximated Boltzmann equation we see that $f_0 \gg \tau \left(\mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} f_0 \right)$

Let's then consider the case of phonons and let's multiply the inequality by the phonon energy integrating then above all phonon states:

$$\sum_{\mathbf{k}} \hbar \omega f_0 \gg \sum_{\mathbf{k}} \hbar \omega \tau \mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 \quad \Rightarrow \quad U \gg -\frac{k}{\bar{v}} \frac{dT}{dx} \sim -C\Lambda \frac{dT}{dx} \quad \text{where} \quad k = C\bar{v}\Lambda/3 \quad \bar{v} \text{ is the average phonon velocity;}$$

If $U = CT$ $\Rightarrow \frac{\Lambda}{T} \frac{dT}{dx} \ll 1$ therefore **the temperature variation within one mean free path must be small compared to the absolute temperature**

3. **$\nabla g \ll \nabla f$ or alternatively $g \gg \nabla g$**

This condition can be rewritten also as $\frac{g}{\tau} \gg v \cdot \nabla g$. If we approximate $\nabla g \sim g/L$, where L is a characteristic length associated with the problem we get $\frac{\tau v}{L} = \frac{\Lambda}{L} \ll 1$

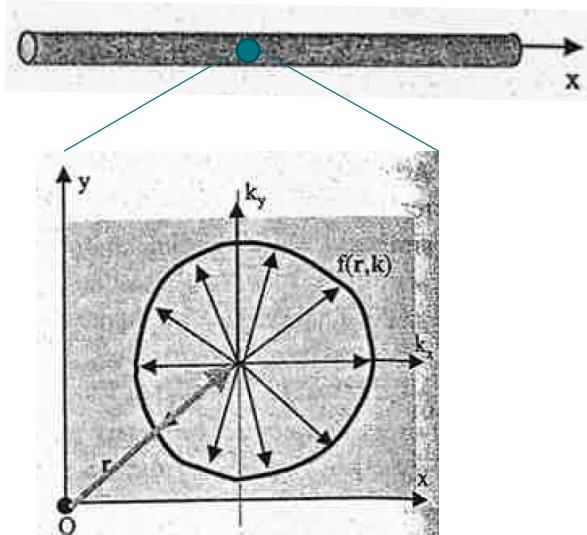
Therefore **the characteristic length must be much larger than the mean free path of the carrier.**

In This Lecture

- Approximation of the Boltzmann Equation
- **Phonons - Fourier Law and Phonon Thermal Conductivity**

Phonons – Approximated Boltzmann Equation

$$f = f_0 - \tau \left(\mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} f_0 \right)$$


For phonons :

$$f_0 = \frac{1}{\exp(\hbar\omega/k_B T) - 1}$$

$$\mathbf{F} = \mathbf{0}$$

$$f(\mathbf{r}, \mathbf{k}) = f_0 - \tau \frac{df_0}{dT} \mathbf{v} \bullet \nabla T \quad T = T(\vec{r}, t)$$

Phonons – Fourier Law and Thermal Conductivity

Let's consider the 1-dimensional problem of heat conduction along x-direction (i.e. temperature gradient along x). The **heat flux** $J_{qx}(x)$ can be calculated as*:

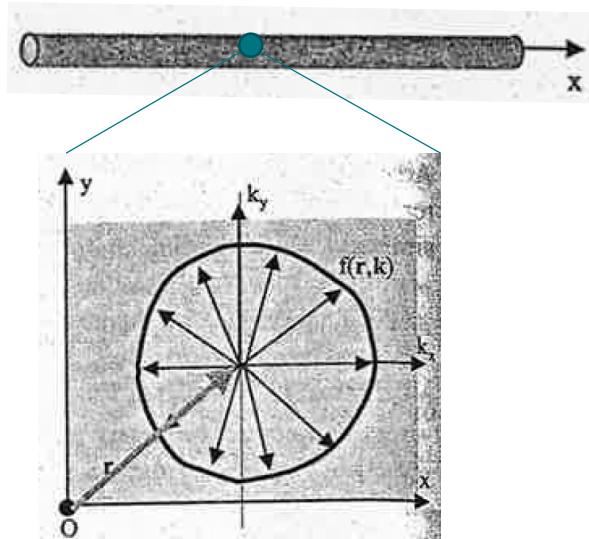
$$J_{qx}(x) = \sum_s \left[\frac{1}{V} \sum_{k_x1=-\infty}^{\infty} \sum_{k_y1=-\infty}^{\infty} \sum_{k_z1=-\infty}^{\infty} v_x \hbar \omega f \right]$$

velocity along x
Nonequilibrium statistical distribution
Phonon energy

where $f(\mathbf{r}, \mathbf{k}) = f_0 - \tau \frac{df_0}{dT} \mathbf{v} \cdot \nabla T$

Converting the sum into an integral**:

$$J_{qx}(x) = (1/V) \sum_s \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v_x \hbar \omega f \, dk_x \, dk_y \, dk_z / (2\pi/L)^3$$


Furthermore we use the density of states to go from an integral over k to an integral over ω, Ω where ω is the angular frequency and Ω is the solid angle:

$$J_{qx}(x) = \int_0^{\omega_{\max}} d\omega \left[\int_0^{2\pi} \left\{ \int_0^{\pi} v \cos \theta \hbar \omega f \frac{D(\omega)}{4\pi} \sin \theta d\theta \right\} d\varphi \right]$$

*compare the $J_{qx}(x)$ expression to L11, slide 7 (Landauer formalism). Observe that here we directly account for carrier moving in ALL directions at a given point.

** every point in k-space occupies a $(2\pi/L)^3$ space. Hence when we convert the discrete space into a continuum to obtain the correct number of points we need to use $d\vec{k}/(2\pi/L)^3$

Phonons – Fourier Law and Thermal Conductivity

We now insert the non-equilibrium statistical distribution

$$f(\mathbf{r}, \mathbf{k}) = f_0 - \tau \frac{df_0}{dT} \mathbf{v} \bullet \nabla T$$

$$J_{qx}(x) = \int_0^{\omega_{\max}} d\omega \left[\int_0^{2\pi} \left\{ \int_0^{\pi} v \cos \theta \hbar \omega \left[f_0 - \tau \frac{df_0}{dT} \frac{dT}{dx} v \cos \theta \right] \frac{D(\omega)}{4\pi} \sin \theta d\theta \right\} d\varphi \right]$$

The equilibrium distribution is isotropic and therefore the integral of f_0 is zero.

$$\Rightarrow J_{qx}(x) = -\frac{1}{2} \frac{dT}{dx} \int_0^{\omega_{\max}} d\omega \left\{ \int_0^{\pi} \tau v^2 \sin \theta \cos^2 \theta \times \hbar \omega D(\omega) \frac{df_0}{dT} d\theta \right\}$$

We immediately observe that this is exactly the classical Fourier Law:

$$J_{qx} = -k \frac{dT}{dx}$$

where

$$k = \frac{1}{2} \int_0^{\omega_{\max}} \left\{ \int_0^{\pi} \tau v^2 C_{\omega} \sin \theta \times \cos^2 \theta d\theta \right\} d\omega$$

Thermal Conductivity

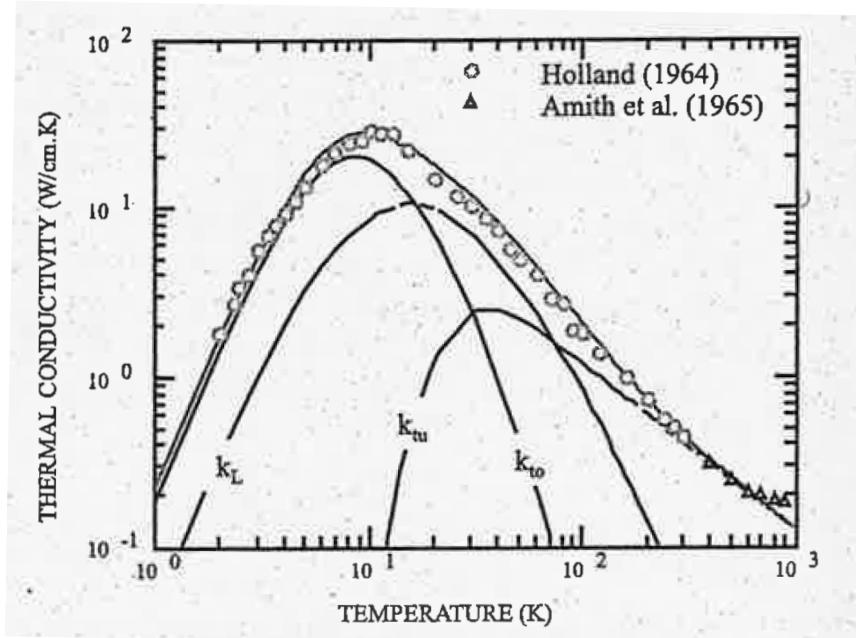
$$C_{\omega} = \hbar \omega D(\omega) \boxed{df_0/dT}$$

Specific heat per unit frequency

Phonons – Fourier Law and Thermal Conductivity

$$k = \frac{1}{2} \int_0^{\omega_{\max}} \left\{ \int_0^{\pi} \tau v^2 C_{\omega} \sin \theta \times \cos^2 \theta d\theta \right\} d\omega$$

➤ v, τ isotropic


$$k = \frac{1}{3} \int \tau v^2 C_{\omega} d\omega$$

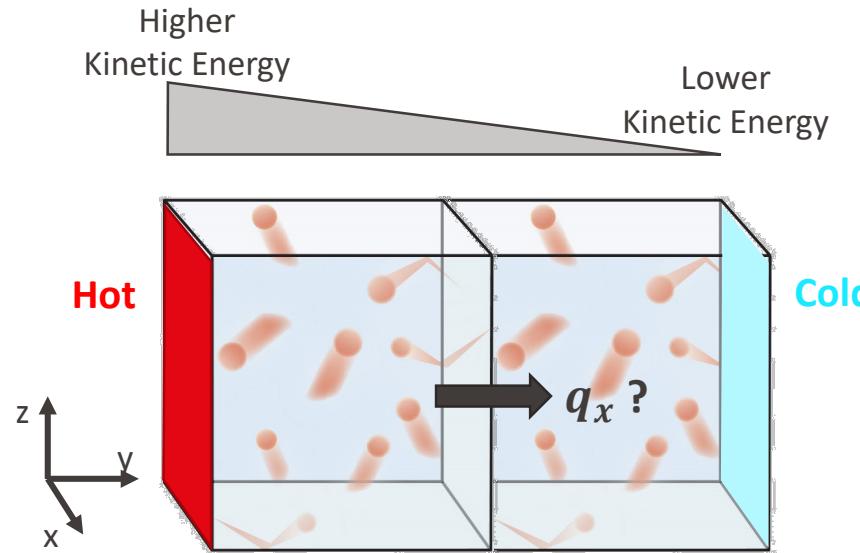
➤ v, τ frequency independent

$$k = \frac{1}{3} C v \Lambda \quad \Lambda = \tau v$$

We know that the relaxation time can be expressed as:

$$\frac{1}{\tau} = \frac{b_s v}{L} + A \omega^4 + B e^{-\theta_D/bT} T^3 \omega^2$$

Thermal conductivity of GaAs fit with a model that accounts for the phonon dispersion as well as the different possible phonon branches.

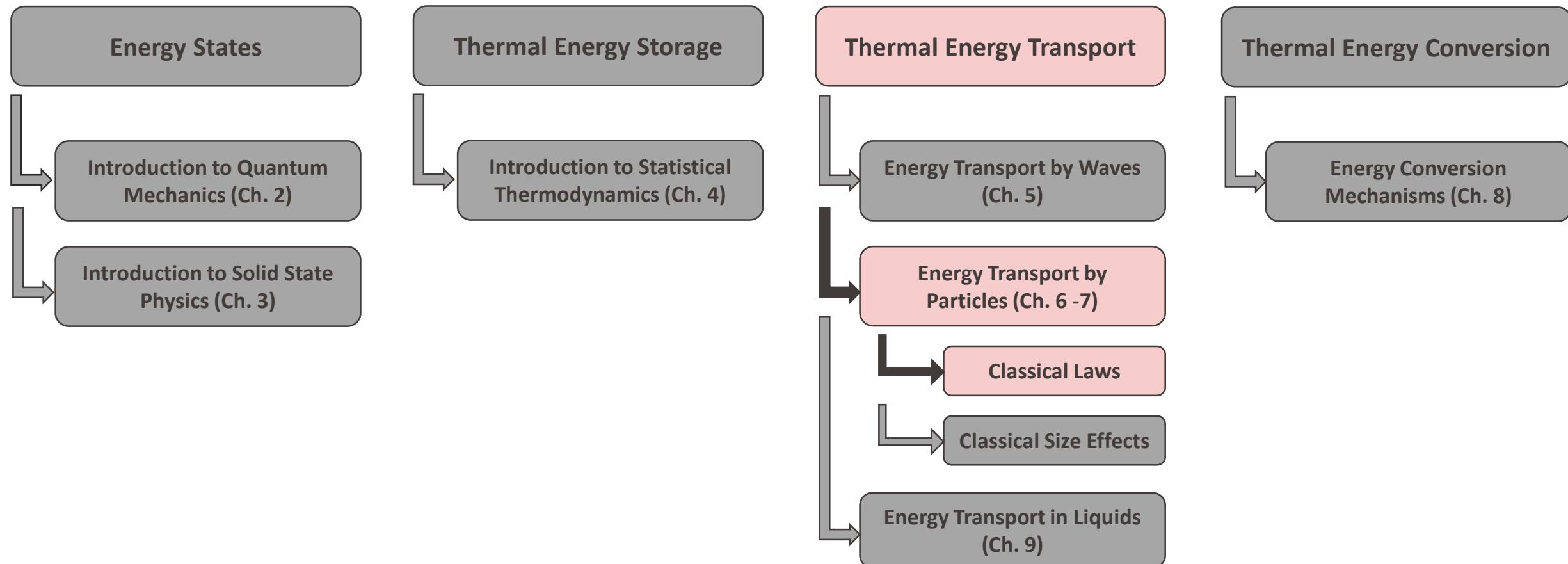

Therefore we can fit experimental data of the thermal conductivity to find the values of the coefficients and determine which scattering mechanism dominates at a given T. Yet, the simplest model $k = \frac{1}{3} C v \Lambda$, leads to major inaccuracies due to:

- Constant phase velocity instead of frequency dependent one (phonon dispersion)
- Optical phonons contribute to C but only very little to k because of low group velocities
- Phonon scattering is highly frequency dependent (high frequency phonons scatter more frequently)
- Although the normal 3-phonon scattering does not impede heat flow, the energy/momentum redistribution affects the likelihood of Umklapp processes.

Crystalline solids typically have a dome-shaped thermal conductivity with a peak at ~ 20 K.

- At low T phonon-boundary scattering dominates and $k \propto C \propto T^3$.
- At high T phonon-phonon scattering dominates and $k \propto \frac{1}{T}$

Energy Transport



- The transient process must be slow compared to the relaxation time of the carriers.
- The temperature variation within one mean free path must be small compared to the absolute temperature
- The characteristic length must be much larger than the mean free path of the carrier.

$$\rightarrow f = f_0 - \tau \left(\mathbf{v} \bullet \nabla_{\mathbf{r}} f_0 + \frac{\mathbf{F}}{m} \bullet \nabla_{\mathbf{v}} f_0 \right)$$

\rightarrow Phonons – Fourier Law and thermal conductivity

Nanoscale Heat Transfer (and Energy Conversion)

