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𝒒𝒒𝒙𝒙 ?

• If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (ballistic transport)

• If the phase of the carriers in unimportant, a particle approach can be used (diffuse transport)

• In between we have the partially coherent regime



The phase-space and the Liouville Equation
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Phase Space 
Representation

𝑟𝑟(𝑖𝑖)

𝑝𝑝(𝑖𝑖)

𝑉𝑉(𝑟𝑟, 𝑡𝑡)

𝑟𝑟𝑖𝑖 , 𝑝⃑𝑝𝑖𝑖

System 1

Time-evolution 
of System 1

In a system with N particles, each particle can be described by a generalized spatial coordinate 𝑟𝑟 and a generalized momentum coordinate 𝑝⃑𝑝 which depend on the 
number of degrees of freedom in space, m. For example:

 Diatomic molecule:  𝑟𝑟1 = (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1,Δ𝑟𝑟1,𝜃𝜃1,𝜑𝜑1) and  𝑝𝑝1 = (𝑚𝑚𝑚𝑚𝑥𝑥1,𝑚𝑚𝑚𝑚𝑦𝑦1,𝑚𝑚𝑚𝑚𝑧𝑧1, mdΔ𝑟𝑟1/𝑑𝑑𝑑𝑑, 𝐼𝐼𝜃𝜃1, 𝐼𝐼𝜑𝜑1)

position

Vibrational 
coordinate

rotation

The total number of degrees of freedom for the system is 2𝑛𝑛 = 2𝑚𝑚𝑚𝑚 and the 2𝑛𝑛-dimensional space is called the phase-space.

A given system is represented by a point in the phase-space and its time evolution corresponds to a unique trajectory*.

*the evolution of a system is uniquely determined by the initial conditions

𝑖𝑖 = 1,2, … ,𝑛𝑛
𝑛𝑛 = 𝑚𝑚𝑚𝑚



The Boltzmann Equation: from 2𝑛𝑛 to 2𝑚𝑚-dimensional space
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𝑟𝑟(𝑖𝑖)

𝑝𝑝(𝑖𝑖)

1-particle in a system 

Phase Space 
Representation

2𝑚𝑚-dimensional instead of 
2𝑛𝑛-dimensional phase-space

𝑖𝑖 = 1,2, … , 𝑚𝑚

𝑟𝑟1, 𝑝⃑𝑝1

We can perform the same averaging on the Liouville equation and we would obtain: 

All Systems 
with 𝑟𝑟1,𝑝𝑝1

𝑟𝑟1, 𝑝⃑𝑝1

𝑟𝑟1, 𝑝⃑𝑝1

As particles interact with each other, the number of 
particles along a flow line is no longer conserved!

Boltzmann Equation

where

Scattering Term
Accounts for the collisions of this particle with all the 
other particles in the system (non-conserving nature 
of the 1-particle distribution function)



The Scattering Integral – Relaxation-time Approximation
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Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles: 

The scattering process can be caused by many different phenomena such as collision between equal particles (e.g. phonon-phonon), collision between different 
particles (e.g. electron-phonon), collision with boundaries or impurities. 
Each process will have its own relaxation time 𝜏𝜏𝑗𝑗 and, assuming that the scattering mechanisms are independent of each other, we can calculate 𝜏𝜏𝑡𝑡 as:

Matthiessen rule



The Boltzmann Equation – From Phonons to Molecules
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Particles Boltzmann Equation Scattering mechaninsms and relaxation time

Phonon

Photon

Scattering can be elastic, inelastic outgoing, elastic incoming

Electron

Molecule

1. 3-phonon Umklapp process (volume)
2. Scattering from impurities (volume)
3. Boundary scattering (surface)

Scattering dominated by electron-phonon interactions.

In metals:

In semiconductors complex processes.  

𝜕𝜕𝐼𝐼𝜈𝜈
𝜕𝜕𝜕𝜕 𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= −
𝐼𝐼𝜈𝜈 − 𝐼𝐼𝜈𝜈𝜈

Λ where Λ = 𝑣𝑣𝑣𝑣 and 𝐼𝐼𝜈𝜈𝜈 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜦𝜦 =
𝒎𝒎

𝝅𝝅 𝟐𝟐𝝆𝝆𝝆𝝆𝟐𝟐
𝝉𝝉 =

𝜦𝜦
𝒗𝒗
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𝒒𝒒𝒙𝒙 ?

How do classical laws emerge from the microscopic picture of energy transport?
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In This Lecture
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• Approximation of the Boltzmann Equation

• Phonons - Fourier Law and Phonon Thermal Conductivity



The Approximated Boltzmann Transport Equation
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We define: 𝑔𝑔 = 𝑓𝑓 − 𝑓𝑓0 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

We now make the following assumptions:

1. Negligible transient terms 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
≪ 𝑔𝑔

𝜏𝜏
2. The deviation from equilibrium is small 𝑓𝑓0 ≫ 𝑔𝑔
3. ∇𝑔𝑔 ≪ ∇𝑓𝑓 or alternatively 𝑔𝑔 ≫ ∇𝑔𝑔

Note: we would have arrived to the same result doing a Taylor expansion of Boltzmann eqn. and keeping only the first order expansion of f , 𝑓𝑓0 being the 0th order term

Approximated Boltzmann Equation

Let’s now look more closely at the meaning of the approximation we made. 



The Approximated Boltzmann Transport Equation
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𝑔𝑔 = 𝑓𝑓 − 𝑓𝑓0

Let’s look more closely at the meaning of the three approximations we did to get to this result:

1. Negligible transient terms 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏
≪ 𝒈𝒈

𝝉𝝉

2. The deviation from equilibrium is small 𝒇𝒇𝟎𝟎 ≫ 𝒈𝒈

3. 𝛁𝛁𝒈𝒈 ≪ 𝛁𝛁𝒇𝒇 or alternatively 𝒈𝒈 ≫ 𝛁𝛁𝒈𝒈

If a transient phenomenon (e.g. a laser pulse) occurs with a characteristic time 𝜏𝜏𝑐𝑐 then this condition requires that:    𝝉𝝉𝒄𝒄 ≫ 𝝉𝝉

Therefore the transient process must be slow compared to the relaxation time of the carriers. 

If we look at the approximated Boltzmann equation we see that 

Let’s then consider the case of phonons and let’s multiply the inequality by the phonon energy integrating then above all phonon states:

If 𝑈𝑈 = 𝐶𝐶𝐶𝐶

where

therefore the temperature variation within one mean free path must be small compared to the absolute temperature 

This condition can be rewritten also as 𝑔𝑔
𝜏𝜏
≫ 𝑣𝑣 � ∇𝑔𝑔 . If we approximate ∇𝑔𝑔~𝑔𝑔/𝐿𝐿 , where L is a characteristic length associated with the problem we get  𝜏𝜏𝜏𝜏

𝐿𝐿
= Λ

𝐿𝐿
≪ 1

Therefore the characteristic length must be much larger than the mean free path of the carrier. 



In This Lecture
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• Approximation of the Boltzmann Equation

• Phonons - Fourier Law and Phonon Thermal Conductivity



Phonons – Approximated Boltzmann Equation
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For phonons :

𝑭𝑭 = 𝟎𝟎

𝑇𝑇 = 𝑇𝑇(𝑟𝑟, 𝑡𝑡)



Phonons – Fourier Law and Thermal Conductivity
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Let’s consider the 1-dimensional problem of heat conduction along x-direction (i.e. temperature gradient along x).
The heat flux 𝑱𝑱𝒒𝒒𝒒𝒒(𝒙𝒙) can be calculated as*: 

where

velocity along x
Phonon energy

Nonequilibrium statistical distribution

*compare the 𝑱𝑱𝒒𝒒𝒒𝒒(𝒙𝒙) expression to L11, slide 7 (Landauer formalism). Observe that here we directly account for carrier moving in ALL directions at a given point.  
** every point in k-space occupies a 2𝜋𝜋/𝐿𝐿 3 space. Hence when we convert the discrete space into a continuum to obtain the correct number of points we need to use 𝑑𝑑𝑘𝑘/ 2𝜋𝜋/𝐿𝐿 3

Converting the sum into an integral**:

Furthermore we use the density of states to go from an integral over k to an integral over 𝜔𝜔,Ω where 𝜔𝜔 is the angular frequency and Ω is the solid angle:  



Phonons – Fourier Law and Thermal Conductivity
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We now insert the non-equilibrium statistical distribution

We immediately observe that this is exactly the classical Fourier Law:

where Thermal Conductivity

Specific heat per unit frequency

The equilibrium distribution is isotropic and therefore the integral of f0 is zero.



Phonons – Fourier Law and Thermal Conductivity
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 𝑣𝑣, 𝜏𝜏 isotropic 

 𝑣𝑣, 𝜏𝜏 frequency independent

We know that the relaxation time an be expressed as:

Therefore we can fit experimental data of the thermal conductivity to find the values of the 
coefficients and determine which scattering mechanism dominates at a given T. Yet, the simplest 
model 𝑘𝑘 = 1

3
𝐶𝐶𝐶𝐶Λ , leads to major inaccuracies due to: 

• Constant phase velocity instead of frequency dependent one (phonon dispersion)
• Optical phonons contribute to 𝐶𝐶 but only very little to 𝑘𝑘 because of low group velocities
• Phonon scattering is highly frequency dependent (high frequency phonons scatter more 

frequently)
• Although the normal 3-phonon scattering does not impede heat flow, the energy/momentum 

redistribution affects the likelihood of Umklapp processes. 

Thermal conductivity of GaAs fit with a model that accounts 
for the phonon dispersion as well as the different possible 
phonon branches. 

Crystalline solids typically have a dome-shaped thermal conductivity with a peak at ~20K. 

• At low T phonon-boundary scattering dominates and 𝑘𝑘 ∝ 𝐶𝐶 ∝ 𝑇𝑇3. 

• At high T phonon-phonon scattering dominates and k ∝ 1
𝑇𝑇
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Phonons – Fourier Law and thermal conductivity

• The transient process must be slow compared to the relaxation time of the carriers.
• The temperature variation within one mean free path must be small compared to the absolute temperature
• The characteristic length must be much larger than the mean free path of the carrier.  
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