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Nanoscale Heat Transfer (and Energy Conversion)
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Energy Transport in Liquids
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𝒒𝒒𝒙𝒙 ?

• If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (ballistic transport)

• If the phase of the carriers in unimportant, a particle approach can be used (diffuse transport)

• In between we have the partially coherent regime



In This Lecture …

4

• The Boltzmann equation

• Carrier Scattering (scattering integral and relaxation time approximation)



Systems at equilibrium and out-of-equilibrium

𝑉𝑉(𝑟𝑟, 𝑡𝑡)

𝑟𝑟𝑖𝑖 𝑡𝑡 , 𝑣⃑𝑣𝑖𝑖(𝑡𝑡)𝐹𝐹𝑖𝑖(𝑟𝑟, 𝑡𝑡)

5

𝑒𝑒𝑖𝑖 , 𝑝⃑𝑝𝑖𝑖
Fixed value of
𝑈𝑈,𝑉𝑉,𝑁𝑁,𝑇𝑇…

𝑒𝑒𝑖𝑖 , 𝑝⃑𝑝𝑖𝑖
Fixed value of
𝑈𝑈,𝑉𝑉,𝑁𝑁,𝑇𝑇…

𝑒𝑒𝑖𝑖 , 𝑝⃑𝑝𝑖𝑖
Fixed value of
𝑈𝑈,𝑉𝑉,𝑁𝑁,𝑇𝑇…

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫

In statistical thermodynamics we considered a system at equilibrium. 

We derived the equilibrium distribution functions that are dependent on the energy of the quantum state, the system temperature and the chemical potential. 

Equilibrium



Systems at equilibrium and out-of-equilibrium

𝑉𝑉(𝑟𝑟, 𝑡𝑡)

𝑟𝑟𝑖𝑖 𝑡𝑡 , 𝑣⃑𝑣𝑖𝑖(𝑡𝑡)𝐹𝐹𝑖𝑖(𝑟𝑟, 𝑡𝑡)
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Out-of-equilibrium the derived distribution functions are no longer valid and in principle we would trace the trajectory of each particle in the system. 

Because of the large number of atoms/molecules we again need to develop a statistical description of the particle trajectory.

We thus look for nonequilibrium distribution functions that depend on energy, temperature, position and other variables. 

Out-of-equilibrium 𝑉𝑉(𝑟𝑟, 𝑡𝑡)

𝑟𝑟𝑖𝑖 𝑡𝑡 , 𝑣⃑𝑣𝑖𝑖(𝑡𝑡)𝐹𝐹𝑖𝑖(𝑟𝑟, 𝑡𝑡)



The Phase Space 
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The Boltzmann Equation
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The Boltzmann Equation
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The Boltzmann Equation: Assumptions & Validity
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The Boltzmann equation can be expressed in three different forms using the relationships 𝑝𝑝 = 𝑚𝑚𝑣⃑𝑣 and 𝑝𝑝 = ℏ𝑘𝑘

Preferred for describing gases

Preferred for describing electrons/phonons

It is important to note that 

𝑣⃑𝑣 = ∇𝑘𝑘𝜔𝜔 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑝⃑𝑝 = ℏ𝑘𝑘 → 𝑘𝑘 = crystal momentum

There is a major assumptions that underscore the derivation of the Boltzmann equation: 

The N-particle distribution function can be expressed as the product distribution of each particle

The particles in the system are quite independent of each other

The distribution functions of one particle after collision are independent of the coordinate and momentum of the other particle (molecular chaos assumption)

Collisions are infrequent

The Boltzmann equation is valid for dilute systems (molecular gases, electron/photon/phonon gases) but not for dense fluids (liquids)

In addition the Boltzmann equation does not account explicitly for wave effects (i.e. interference & tunneling) . 



The Boltzmann Equation: Average Quantities
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The Boltzmann equation can be expressed in three different forms using the relationships 𝑝𝑝 = 𝑚𝑚𝑣⃑𝑣 and 𝑝𝑝 = ℏ𝑘𝑘

Preferred for describing gases

Preferred for describing electrons/phonons

It is important to note that 

𝑣⃑𝑣 = ∇𝑘𝑘𝜔𝜔 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑝⃑𝑝 = ℏ𝑘𝑘 → 𝑘𝑘 = crystal momentum

The Boltzmann equation gives us the distribution function. Similarly to the equilibrium, we can obtain the volume average of a microscopic quantity X as: 

Where s accounts for the polarization, if needed.  



In This Lecture …
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• The Boltzmann equation

• Carrier Scattering (scattering integral and relaxation time approximation)



The Scattering Integral
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Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles: 

Before the collision the two particles are in two quantum states characterized by (𝑘𝑘,𝐸𝐸) and (𝑘𝑘1,𝐸𝐸1). After the collision they are in (𝑘𝑘′,𝐸𝐸′) and (𝑘𝑘′1,𝐸𝐸′1).

The scattering term in the Boltzmann equation describes the net gain of particles in one quantum state. Therefore, if we consider that a particle can be added or 

removed by the given quantum state due to scattering, we can write: 

Transition rate
from the state [𝑘𝑘′, 𝑘𝑘′1] 
to the state [𝑘𝑘, 𝑘𝑘1]

Distribution function 
for the first particle

Distribution function 
for the second particle

Transition rate
from the state [𝑘𝑘, 𝑘𝑘1]
To the state [𝑘𝑘′, 𝑘𝑘′1]

Particle scattered out of the state (loss) Particle scattered into the state (gain)

Note that we have used the same 𝑟𝑟 for both particles, implicitly assuming that they do not have a finite volume. 



The Scattering Integral
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Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles: 

Before the collision the two particles are in two quantum states characterized by (𝑘𝑘,𝐸𝐸) and (𝑘𝑘1,𝐸𝐸1). After the collision they are in (𝑘𝑘′,𝐸𝐸′) and (𝑘𝑘′1,𝐸𝐸′1).

The collision is a time-dependent process and to describe it, it is necessary to solve the time-dependent Schrodinger equation of the system of the two particles. 

In the perturbation approximation, we can use the wave-functions of the unperturbed system to calculate the transition rate between the quantum states Ψ𝑖𝑖
and Ψ𝑓𝑓 using the Fermi Golden Rule:  

Scattering matrix

Eventually, accounting for energy and momentum conservation as well as reciprocity, it can be shown that:



The Scattering Integral – Relaxation-time Approximation
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Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles: 

We observe that the scattering term requires an integral, making the Boltzmann equation an integral-differential equation with 7 variables that is hard to solve.
A drastic simplification that we will use in the following is based on the relaxation time approximation, giving: 

If we ignore the spatial term, with this simplification the Boltzmann equation reduces to:

Relaxation-time
Time needed for a non-equilibrium system to relax back to the equilibrium distribution 𝑓𝑓0



The Scattering Integral – Relaxation-time Approximation
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Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles: 

The scattering process can be caused by many different phenomena such as collision between equal particles (e.g. phonon-phonon), collision between different 
particles (e.g. electron-phonon), collision with boundaries or impurities. 
Each process will have its own relaxation time 𝜏𝜏𝑗𝑗 and, assuming that the scattering mechanisms are independent of each other, we can calculate 𝜏𝜏𝑡𝑡 as:

Matthiessen rule



The Scattering Integral – Relaxation-time Approximation
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We can therefore consider the following forms of the Boltzmann equation to analyze energy transport in a system accounting for scattering processes:



In This Lecture …
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• The Boltzmann equation

• Carrier Scattering (scattering integral and relaxation time approximation)

 Phonons, Electrons and Molecules



If the potential is purely harmonic, lattice waves are decomposed in normal modes that do not interact with each other. 
This implies that phonon propagation is unimpeded and thermal conductivity should be infinite
Instead, anharmonic terms of the inter-atomic potential are responsible for scattering of the phonons

Scattering of Phonons

19

𝑈𝑈 𝑥𝑥′ = 𝑈𝑈 𝑥𝑥0 +
1
2
𝑑𝑑2𝑈𝑈
𝑑𝑑𝑥𝑥′2 𝑥𝑥′=𝑥𝑥0

𝑥𝑥′ − 𝑥𝑥0 2 + 𝑂𝑂[ 𝑥𝑥′ − 𝑥𝑥0 3]

Harmonic 
Potential

Anharmonic 
Potential

When using the Fermi golden rule with the third-order anharmonic potential as the perturbation Hamiltonian, it is found that this anharmonic force can result in:

Merging of two phonons 
(annihilation process)

Splitting of a phonon
(generation process)

𝒉𝒉𝝂𝝂𝟏𝟏 = 𝒉𝒉𝝂𝝂𝟐𝟐 + 𝒉𝒉𝝂𝝂𝟑𝟑

𝒌𝒌𝟏𝟏 − 𝒌𝒌𝟐𝟐 − 𝒌𝒌𝟑𝟑 = 𝑮𝑮



Scattering of Phonons
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Considering that phonons are massless and cannot be acted upon by an external force (quantization of the field), the Boltzmann equation reduces to:

The most important relaxation times that need to be considered are:

1. 3-phonon Umklapp process (volume)

2. Scattering from impurities (volume)

3. Boundary scattering (surface)

Typically, in a certain temperature range there is one scattering mechanism that dominates over the others.



Scattering of Electrons
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Electrons are predominantly scattered by phonons. Yet, in certain conditions, electron-electron scattering can become important.

For a phonon-creation process: 

The dominant scattering process has 𝐺𝐺 = 0 . 

In metals the number of phonons is proportional to the temperature (above the Debye temperature) and therefore:

In semiconductors the presence of acoustic and optical phonons as well as the large amounts of impurities (dopants) give rise to very complex scattering 
interactions that require specific treatment. 

For electrons, the Boltzmann transport equation expressed in the relaxation time approximation is:



Scattering of Molecules
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𝜦𝜦 =
𝒎𝒎

𝝅𝝅 𝟐𝟐𝝆𝝆𝝆𝝆𝟐𝟐

𝑛𝑛 = 𝜌𝜌
𝑚𝑚

= molecular number concentration 

𝑑𝑑 = effective diameter of a molecule

𝜌𝜌 = density

𝑚𝑚 = molecular weight

In lecture 2, slide 9, we calculated the mean free path for a gas of molecules:

Thus the mean free path can be obtained as : 𝝉𝝉 =
𝜦𝜦
𝒗𝒗

We now know that molecules will follow the Maxwell distribution and therefore their average velocity, at temperature T, will be: 



The Boltzmann Equation – From Phonons to Molecules
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Particles Boltzmann Equation Scattering mechaninsms and relaxation time

Phonon

Electron

Molecule

1. 3-phonon Umklapp process (volume)
2. Scattering from impurities (volume)
3. Boundary scattering (surface)

𝜦𝜦 =
𝒎𝒎

𝝅𝝅 𝟐𝟐𝝆𝝆𝝆𝝆𝟐𝟐
𝝉𝝉 =

𝜦𝜦
𝒗𝒗

Scattering dominated by electron-phonon interactions.

In metals:

In semiconductors complex processes.  



Energy Transport
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𝒒𝒒𝒙𝒙 ?

Knowing the nonequilibrium statistical distribution 𝒇𝒇 we can calculate the transport of energy within a material. 



Energy Transport
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𝒒𝒒𝒙𝒙 ?

How do classical laws emerge from the microscopic picture of energy transport?



Next Week
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Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Thermal Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

Energy Transport by Waves
(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)
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The phase-space and the Liouville Equation

28

Phase Space 
Representation

𝑟𝑟(𝑖𝑖)

𝑝𝑝(𝑖𝑖)

𝑉𝑉(𝑟𝑟, 𝑡𝑡)

𝑟𝑟𝑖𝑖 , 𝑝⃑𝑝𝑖𝑖

System 1

Time-evolution 
of System 1

In a system with N particles, each particle can be described by a generalized spatial coordinate 𝑟𝑟 and a generalized momentum coordinate 𝑝⃑𝑝 which depend on the 
number of degrees of freedom in space, m. For example:

 Diatomic molecule:  𝑟𝑟1 = (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1,Δ𝑟𝑟1,𝜃𝜃1,𝜑𝜑1) and  𝑝𝑝1 = (𝑚𝑚𝑚𝑚𝑥𝑥1,𝑚𝑚𝑚𝑚𝑦𝑦1,𝑚𝑚𝑚𝑚𝑧𝑧1, mdΔ𝑟𝑟1/𝑑𝑑𝑑𝑑, 𝐼𝐼𝜃𝜃1, 𝐼𝐼𝜑𝜑1)

position

Vibrational 
coordinate

rotation

The total number of degrees of freedom for the system is 2𝑛𝑛 = 2𝑚𝑚𝑚𝑚 and the 2𝑛𝑛-dimensional space is called the phase-space.

A given system is represented by a point in the phase-space and its time evolution corresponds to a unique trajectory*.

*the evolution of a system is uniquely determined by the initial conditions

𝑖𝑖 = 1,2, … ,𝑛𝑛
𝑛𝑛 = 𝑚𝑚𝑚𝑚



The phase-space and the Liouville Equation
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Phase Space 
Representation

𝑟𝑟(𝑖𝑖)

𝑝𝑝(𝑖𝑖) The flow lines 
never intersect !

Ensemble

We now consider an ensemble. Each system in the ensemble is a point in the phase space and the trajectories of all these system do not intersect.

Given that the number of systems in an ensemble is very large, (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≫ 𝑁𝑁), we can consider the points in phase-space to form a continuum.  

Thus, we define a particle density 𝑓𝑓 𝑁𝑁 in phase-space such as, surrounding any point  𝑟𝑟 𝑛𝑛 = 𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟𝑛𝑛 , 𝑝⃑𝑝 𝑛𝑛 = (𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛) : 

𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓 𝑁𝑁 𝑡𝑡, 𝑟𝑟 𝑛𝑛 , 𝑝⃑𝑝 𝑛𝑛 Δ𝑟𝑟 𝑛𝑛 Δ𝑝⃑𝑝 𝑛𝑛

𝑓𝑓 𝑁𝑁 𝑡𝑡, 𝑟𝑟 𝑛𝑛 , 𝑝⃑𝑝 𝑛𝑛 is the N-particle distribution function and represent the probability density of finding a specific system at a specific state 𝑟𝑟 𝑛𝑛 , 𝑝⃑𝑝 𝑛𝑛

For an ergodic ensemble 𝑓𝑓 𝑁𝑁 𝑡𝑡, 𝑟𝑟 𝑛𝑛 , 𝑝⃑𝑝 𝑛𝑛 represent the probability of observing one system at a particular state over a period of time smaller than a 
characteristic time of the system. 

𝑖𝑖 = 1,2, … ,𝑛𝑛
𝑛𝑛 = 𝑚𝑚𝑚𝑚



The phase-space and the Liouville Equation
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Phase Space 
Representation

𝑟𝑟(𝑖𝑖)

𝑝𝑝(𝑖𝑖) The flow lines 
never intersect !

Control volume 
in phase space

𝑟𝑟(𝑖𝑖) 𝑟𝑟(𝑖𝑖) + Δ𝑟𝑟(𝑖𝑖)

𝑝𝑝(𝑖𝑖)

𝑝𝑝(𝑖𝑖) + Δ𝑝𝑝(𝑖𝑖)

Ensemble

We now describe the evolution of the ensemble by describing the evolution of 𝑓𝑓 𝑁𝑁 in phase-space. Given that the flow lines do not intersect and the points in 
phase-space are conserved we can use a control volume approach to derive the equation for the distribution function: 

where

Using 𝜕𝜕𝑟̇𝑟
𝑖𝑖

𝜕𝜕𝑟𝑟 𝑖𝑖 + 𝜕𝜕𝑝̇𝑝 𝑖𝑖

𝜕𝜕𝑝𝑝 𝑖𝑖 = 0 we obtain:
Liouville equation 
Valid for classic and quantum systems
The number of variables is 𝑛𝑛~𝑁𝑁𝐴𝐴 (Avogadro’s constant)

Flow rates of points

𝑖𝑖 = 1,2, … ,𝑛𝑛
𝑛𝑛 = 𝑚𝑚𝑚𝑚



The Boltzmann Equation: from 2𝑛𝑛 to 2𝑚𝑚-dimensional space
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𝑟𝑟(𝑖𝑖)

𝑝𝑝(𝑖𝑖)

1-particle in a system 

Phase Space 
Representation

2𝑚𝑚-dimensional instead of 
2𝑛𝑛-dimensional phase-space

𝑖𝑖 = 1,2, … , 𝑚𝑚

𝑟𝑟1, 𝑝⃑𝑝1

We consider a representative particle in a system and we average the N-particle distribution  function over the N-1 particles to obtain a 1-particle distribution: 

𝑓𝑓 1 𝑡𝑡, 𝑟𝑟1, 𝑝⃑𝑝1 is the 1-particle distribution function and represent the number density of systems having coordinates 𝑟𝑟1, 𝑝⃑𝑝1

All Systems 
with 𝑟𝑟1,𝑝𝑝1

𝑟𝑟1, 𝑝⃑𝑝1

𝑟𝑟1, 𝑝⃑𝑝1

As particles interact with each other, the number of 
particles along a flow line is no longer conserved!



The Boltzmann Equation: from 2𝑛𝑛 to 2𝑚𝑚-dimensional space
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𝑟𝑟(𝑖𝑖)

𝑝𝑝(𝑖𝑖)

1-particle in a system 

Phase Space 
Representation

2𝑚𝑚-dimensional instead of 
2𝑛𝑛-dimensional phase-space

𝑖𝑖 = 1,2, … , 𝑚𝑚

𝑟𝑟1, 𝑝⃑𝑝1

We can perform the same averaging on the Liouville equation and we would obtain: 

All Systems 
with 𝑟𝑟1,𝑝𝑝1

𝑟𝑟1, 𝑝⃑𝑝1

𝑟𝑟1, 𝑝⃑𝑝1

As particles interact with each other, the number of 
particles along a flow line is no longer conserved!

Boltzmann Equation

where

Scattering Term
Accounts for the collisions of this particle with all the 
other particles in the system (non-conserving nature 
of the 1-particle distribution function)



Boltzmann Equation
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The Scattering Integral

36

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles: 

Before the collision the two particles are in two quantum states characterized by (𝑘𝑘,𝐸𝐸) and (𝑘𝑘1,𝐸𝐸1). After the collision they are in (𝑘𝑘′,𝐸𝐸′) and (𝑘𝑘′1,𝐸𝐸′1).

The collision is a time-dependent process and to describe it, it is necessary to solve the time-dependent Schrodinger equation of the system of the two particles. 

The calculation can be simplified using the perturbation method, i.e. considering the Hamiltonian of the system composed of a non-interacting, steady state part 

and a small time-dependent perturbation term: 
where 𝐻𝐻′ ≪ 𝐻𝐻0

In this approximation, we can thus use the wave-functions of the unperturbed system to calculate the transition rate between the quantum states Ψ𝑖𝑖 and Ψ𝑓𝑓 as:  

Fermi 
golden 
rule

Scattering matrix



The Scattering Integral

37

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles: 

We re-write the scattering term as an integral: 

where

We also observe that the energy and momentum conservation require: 

While a detailed balance analysis gives the reciprocity relation: 

Giving the final form of the collision integral: 



Scattering of Phonons

38

𝑎𝑎

𝑁𝑁𝑁𝑁

𝑗𝑗 − 1 𝑗𝑗 𝑗𝑗 + 1

𝑢𝑢𝑗𝑗

Hypothesis: 
1. Force interactions occur only between nearest neighbors
2. Harmonic interaction force (Hooke’s law) 
3. Equal mass 𝑀𝑀 and spring constant 𝐾𝐾

𝑢𝑢𝑗𝑗 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗0

𝐹𝐹𝑗𝑗 = −
𝜕𝜕 𝑈𝑈ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝑢𝑢𝑗𝑗
= 𝐾𝐾 𝑢𝑢𝑗𝑗+1 − 𝑢𝑢𝑗𝑗 − 𝐾𝐾 𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗−1

displacement

force

𝑈𝑈ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =
1
2
𝐾𝐾�

𝑗𝑗

𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗+1
2

potential

Longitudinal Waves Transversal Waves

Acoustic 
Phonons

Optical 
Phonons

3 branches of acoustic 
phonons (1x longitudinal,  
2x transversal)

3(𝑝𝑝 − 1) branches 
of optical phonons 

𝑝𝑝 = #𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

If the potential is purely harmonic, lattice waves are decomposed in normal modes that do not interact with each other. 

This implies that phonon propagation is unimpeded and thermal conductivity should be infinite

Instead, anharmonic terms of the inter-atomic potential are responsible for scattering of the phonons
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Let’s consider the annihilation process.

Looking more closely at the momentum requirements, we observe that there are two possible cases:

a) 𝑘𝑘1 + 𝑘𝑘2 < 𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 . Therefore 𝐺𝐺 = 0

b) 𝑘𝑘1 + 𝑘𝑘2 > 𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 . Therefore 𝐺𝐺 ≠ 0 and the process is called Umklapp process

In case a) the resulting phonon continue to move along the same direction of the initial two phonons, hence heat is conducted in an unimpeded manner.

In case b) we observe that the addition of the reciprocal lattice wavevector, changes the net direction of the phonon propagation. 

It is the Umklapp process that gives rise to the thermal resistance
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Photons are also massless particles that cannot be acted upon by an external force, hence the Boltzmann equation is:

For photons, it is more common to consider the energy flux, i.e. the intensity, rather than the particle flux.

We observe that, along each wavevector direction, a photon will move at group velocity 𝑣𝑣𝑔𝑔 𝑘𝑘 . 

Given the single-particle distribution, 𝑓𝑓, we can thus say that for a given quantum state the energy flux is 

The rate of energy, i.e. intensity, propagating along a wavevector direction, per unit solid angle is

We recall that

Considering the steady state Boltzmann equation : along the direction of propagation, s, we have: 𝑣𝑣 speed of light in medium

Thus we can recast the steady-state Boltzmann equation in terms of intensity as:
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Scattering of photons can be elastic or inelastic (absorption/emission).  

For the inelastic term: 𝜕𝜕𝐼𝐼𝜈𝜈
𝜕𝜕𝜕𝜕

𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
= −

𝐼𝐼𝜈𝜈 − 𝐼𝐼𝜈𝜈𝜈
Λ

where Λ = 𝑣𝑣𝑣𝑣 and 𝐼𝐼𝜈𝜈𝜈 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

In radiation it is more common to refer to the absorption coefficient: 

For the elastic term there are two contributions, the outgoing scattering, proportional to the scattering coefficient, and the incoming scattering resulting from the 
fraction of the photons that are scattered from the direction Ω′ to Ω per unit solid angle of the incident radiation, 𝜙𝜙(Ω′ → Ω). We express these two terms as:  

Equation of the radiative transfer
(replaces Boltzmann transport)

𝜕𝜕𝐼𝐼𝜈𝜈
𝜕𝜕𝜕𝜕 = −𝐾𝐾𝑒𝑒𝑒𝑒𝐼𝐼𝜈𝜈 + 𝛼𝛼𝜈𝜈𝐼𝐼𝜈𝜈𝜈 +

𝜎𝜎𝑠𝑠𝑠𝑠
4𝜋𝜋 � 𝐼𝐼𝜈𝜈′ Ω′ 𝜙𝜙 Ω′ → Ω 𝑑𝑑Ω′

𝛼𝛼𝜈𝜈 =
1
Λ

=
1
𝑣𝑣𝑣𝑣

=
4𝜋𝜋𝜋𝜋
𝜆𝜆0

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐾𝐾𝑒𝑒𝑒𝑒 = 𝛼𝛼𝜈𝜈 + 𝜎𝜎𝑠𝑠𝑠𝑠 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜎𝜎𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜙𝜙 Ω′ → Ω = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
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