Nanoscale Heat Transfer
(and Energy Conversion)
ME469

Instructor: Giulia Tagliabue
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* If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (ballistic transport)
* If the phase of the carriers in unimportant, a particle approach can be used (diffuse transport)

* In between we have the partially coherent regime



In This Lecture ... EPFL

* The Boltzmann equation

* Carrier Scattering (scattering integral and relaxation time approximation)



Systems at equilibrium and out-of-equilibrium EPFL

Fermi Dirac Distribution

1 o |
go.s 2
€, ﬁ ° o g o 0k
° . g -
o, %o Fixed value of St —
° [} o SR
e o @ : e
.o, U,V,N,T .. e
[ J R
€, Di o () .. %01 M0 0.5 04
[}
. .
- ° ° ‘... Fixed value of » Bose Einstein Distribution
o ) .. [ ] U; V; N, T nen S E H U \l' T T
Equilibrium hd -
. ) 3 ..
€, ° (] . . ,E. . 5000 K :
“ oo Fixed value of g 1000 o
° [} gl =
[} ° ’. [} ® U,V,N,T... § ;ODK
) 8 H ]
100K 1 \"“----_____________-____J

A i
02 03
FREQUENCY (X10™ Hz)

o
o
°
ol
FS
o
o

In statistical thermodynamics we considered a system at equilibrium.

We derived the equilibrium distribution functions that are dependent on the energy of the quantum state, the system temperature and the chemical potential.



Systems at equilibrium and out-of-equilibrium EPFL

F;(7,t) r; (), vi (1)

Out-of-equilibrium V(r,t)

Out-of-equilibrium the derived distribution functions are no longer valid and in principle we would trace the trajectory of each particle in the system.
Because of the large number of atoms/molecules we again need to develop a statistical description of the particle trajectory.

We thus look for nonequilibrium distribution functions that depend on energy, temperature, position and other variables.



The Phase Space
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The set of all possible positions r and momenta p is called the phase space of the system; in other words a set of three
coordinates for each position coordinate x, y, z, and three more for each momentum component p,, Dy P-- The entire space is 6-

dimensional: a point in this space is (r, p) = (x, ¥, z, Dx Py p__), and each coordinate is parameterized by time t. The small
volume ("differential volume element") is written

dPrd®p = dz dydzdp, dp, dp..

Since the probability of N molecules, which all have r and p within d°r dsp, is in question, at the heart of the equation is a
quantity /' which gives this probability per unit phase-space volume, or probability per unit length cubed per unit momentum
cubed, at an instant of time . This is a probability density function: f(r, p, ?), defined so that,

dN = f(r,p,t) d’rd’p

is the number of molecules which all have positions lying within a volume element d®r about r and momenta lying within a

momentum space element d3p about p, at time 1.5! Integrating over a region of position space and momentum space gives the
total number of particles which have positions and momenta in that region:

N = fd3p /d?’rf(r,p,t)

momenta positions

- /ff [/f f(mayaz:p:t:apy'}pzat)dmddedp:t: dpydpz

momenta positions

which is a 6-fold integral. While fis associated with a number of particles, the phase space is for one-particle (not all of them,
which is usually the case with deterministic many-body systems), since only one r and p is in question. It is not part of the
analysis to use ry, p; for particle 1, r,, p, for particle 2, etc. up to ry;, p, for particle N.

It is assumed the particles in the system are identical (so each has an identical mass m). For a mixture of more than one
chemical species, one distribution is needed for each, see below.



The Boltzmann Equation

— DI

The force and diffusion terms [edi]

Consider particles described by f, each experiencing an external force F not due to other particles (see the collision term for the latter treatment).

Suppose at time  some number of particles all have position I' within element d®r and momentum P within dsp. If a force F instantly acts on each

particle, then at time 7 + At their position will ber + Ar = r + L At and momentum p + Ap = p + FA?% Then, in the absence of collisions, f must
m

Principal statement [edit] satisfy
The general equation can then be written as!®!
P p ]
f (r + —At,p+FAL L+ At) drd’p = f(r,p,t)d’r d°p
() (3t (3) " |
dt ot force ot diff ot co].l’
3. 33 - , T .

where the "force" term corresponds o the forces exerted on the particles by an extemal Influence (not by the particies Note that we have used the fact that the phase space volume element d°r d” p is constant, which can be shown using Hamilton's equations (see the

. ‘ L - . . T 3. 93
themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term — accounting for the forces acting discussion under Liouville's theorem). However, since collisions do occur, the particle density in the phase-space volume d°r d° p changes, so
between particles in collisions. Expressions for each term on the right side are provided below.[®!

dNeon = (ﬂ) Atd’rdp
ot coll

= (e+ %At,p +FAL L+ At) drd’p — f(r,p,t) d'r d'p M

= Afd’rd®p

where Af'is the fotal change in f. Dividing (1) by d*r d*p At and taking the limits Af — 0 and Af — 0, we have

if  (of
E_ (at)call (2)

The total differential of fis:

df—gdt—i— (gdo:—&- ﬁdy-‘r gdz)-i—(af dpﬁ+i;dpy+ﬁdpz)
y

ot oz oy Oz ap,, 17, Ip.

af af

5 +Vf-dr+ ap P @)
of of

P
= —dt 'f.—dt + — -Fdt
5t VI +3

where V is the gradient operator, - is the dot product,



The Boltzmann Equation EPFL

of _ Of . 0f . 0f
ap mapx yapy zaj-)z

is a shorthand for the momentum analogue of V, and &, E}, €, are Cartesian unit vectors.

.—_‘Tp_f

Final statement [edit]

Dividing (3) by df and substituting into (2) gives:

81‘ p of of
% m VIt (a)cﬁu

In this context, F(r, t) is the force field acting on the particles in the fluid, and m is the mass of the particles. The term on the right hand side is added to
describe the effect of collisions between particles; if it is zero then the particles do not collide. The collisionless Boltzmann equation, where individual

collisions are replaced with long-range aggregated interactions, e.g. Coulomb interactions, is often called the Vlasov equation.

This equation is more useful than the principal one above, yet still incomplete, since f'cannot be solved unless the collision term in f’is known. This term
cannot be found as easily or generally as the others — it is a statistical term representing the particle collisions, and requires knowledge of the statistics
the particles obey, like the Maxwell-Boltzmann, Fermi—Dirac or Bose—Einstein distributions.



The Boltzmann Equation: Assumptions & Validity EPFL

The Boltzmann equation can be expressed in three different forms using the relationships p = mv and p = hk

af dr dp af
‘5"‘(1— rf+ fo (3!)

It is important to note that
—  Preferred for describing gases

af v = Vyw = group velocity
ot )

d F
—a-f—-]—VoVrf—f-—onf (
hk — k = crystal momentum

)\
=)
[l

of - (af _ -

L tveVif+t—eVif=[—= Preferred for describing electrons/phonons
t _ 0t /i

There is a major assumptions that underscore the derivation of the Boltzmann equation:

1
The N-particle distribution function can be expressed as the product distribution of each particle ~ f{M (¢, r® p®™) = f(l)(r, r,p) SO, 2, p2) .. FO@, ry, pN)

B The particles in the system are quite independent of each other
B The distribution functions of one particle after collision are independent of the coordinate and momentum of the other particle (molecular chaos assumption)
B Collisions are infrequent

B The Boltzmann equation is valid for dilute systems (molecular gases, electron/photon/phonon gases) but not for dense fluids (liquids)

In addition the Boltzmann equation does not account explicitly for wave effects (i.e. interference & tunneling) .
10



The Boltzmann Equation: Average Quantities EPFL

The Boltzmann equation can be expressed in three different forms using the relationships p = mv and p = hk

af dr dp (af)
- + — eV
ot dt rf pf = dat It is important to note that
—  Preferred for describing gases _
3 9 v = Vi,w = group velocity
—f—-]—VOVrf—f-—Ova: —f_
at - \adt/,

hk >k = crystal momentum

\
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a_f_ +veVif+—e Vi f = (?i) — Preferred for describing electrons/phonons
¢

The Boltzmann equation gives us the distribution function. Similarly to the equilibrium, we can obtain the volume average of a microscopic quantity X as:

(X(r)) = ZX(r ) f =53 fX(r,k)fcﬁk :

Where s accounts for the polarization, if needed.

11



In This Lecture ... EPFL

* The Boltzmann equation

* Carrier Scattering (scattering integral and relaxation time approximation)

12



The Scattering Integral EPFL

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles:

of F _ . |/8f
a"+vl.vrf+5'ka—('a_{)c ﬁ

klv”El’

Before the collision the two particles are in two quantum states characterized by (E, E)and (kT, E,). After the collision they are in (F, E") and (kﬁ'b E').

The scattering term in the Boltzmann equation describes the net gain of particles in one quantum state. Therefore, if we consider that a particle can be added or

removed by the given quantum state due to scattering, we can write:

Particle scattered out of the state (loss) Particle scattered into the state (gain)

A \
| [ |

[
a -
(a—{-) = — Z f,r, k)f(t. r, kl)W(k, k; o kd" k’i) + Z f(t, r, k,)f(f, l',ki)W(k’, k.i -k, k;)

ke, k' K} / \ kg, k', K} l

Distribution function

for the first particle Transition rate - Transition rate .
Distribution function from the state [k, k] from the state [k, k'4]
for the second particle To the state [k', k'] to the state [k, k]

Note that we have used the same 7 for both particles, implicitly assuming that they do not have a finite volume. 13



The Scattering Integral EPFL

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles:

ot

g—+v-Vrf+§--ka¥(?i)  pnd

klv”El’

Before the collision the two particles are in two quantum states characterized by (E, E)and (kj, E;). After the collision they are in (F, E") and (ITL E').

The collision is a time-dependent process and to describe it, it is necessary to solve the time-dependent Schrodinger equation of the system of the two particles.

In the perturbation approximation, we can use the wave-functions of the unperturbed system to calculate the transition rate between the quantum states ¥;

and ¥ using the Fermi Golden Rule:

2 -
8(Ef — E;) My = (ilH’lf) = f\ll}H’lIl,-d:"r Scattering matrix

i

2 .3
W: _?‘f‘P}H\P,dr

Eventually, accounting for energy and momentum conservation as well as reciprocity, it can be shown that:

(%{—) =—K f W x [f(t, 1, K f(t v, k1) — £, v, K) £ (2, 7, K14 ky d° K'd” Ky’

14



The Scattering Integral — Relaxation-time Approximation EPFL

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles:

of F _ . |/of
a—+Verf+E-ka—(-£)c  pnd

klv”El’

(g_) =—K [ W x [f@,rK)f@ k)~ f@,r,K)f@r, k)ld ki d’ k'd’ ki’

We observe that the scattering term requires an integral, making the Boltzmann equation an integral-differential equation with 7 variables that is hard to solve.
A drastic simplification that we will use in the following is based on the relaxation time approximation, giving:

(g) __f-hT.Ew
ar ), 7(r, k)

If we ignore the spatial term, with this simplification the Boltzmann equation reduces to:

af Crw . fr =0 = = CetT Relaxation-time
ar .. T f fO S Time needed for a non-equilibrium system to relax back to the equilibrium distribution f

15



The Scattering Integral — Relaxation-time Approximation EPFL

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles:

ot

g—+v-Vrf+§--ka¥(?i)  pnd

(E) __f_fO(T-E-“')
o), T(r, k)

The scattering process can be caused by many different phenomena such as collision between equal particles (e.g. phonon-phonon), collision between different
particles (e.g. electron-phonon), collision with boundaries or impurities.
Each process will have its own relaxation time 7; and, assuming that the scattering mechanisms are independent of each other, we can calculate 7; as:

1 1
— = Z — Matthiessen rule

16



The Scattering Integral — Relaxation-time Approximation EPFL

We can therefore consider the following forms of the Boltzmann equation to analyze energy transport in a system accounting for scattering processes:

¥, orsFov o Lo
ot : - m T
F . F _  f—f
3_t+v.vrf+E.ka’_ -

17



In This Lecture ... EPFL

* The Boltzmann equation
* Carrier Scattering (scattering integral and relaxation time approximation)

» Phonons, Electrons and Molecules

18



Scattering of Phonons EPFL

2 A
5}
n -
M | le—Repulsion
Harmonic Potential
Approximation
Interatomic
Distance x’
¥~ Attraction
Equilibrium Position

If the potential is purely harmonic, lattice waves are decomposed in normal modes that do not interact with each other.
This implies that phonon propagation is unimpeded and thermal conductivity should be infinite
Instead, anharmonic terms of the inter-atomic potential are responsible for scattering of the phonons

Harmonic Anharmonic
Potential Potential
1 J
[ | )
/ 1 dZU / 2 / 3
U(x)=U(x0)+§ ax?| | (x" = x0)* + O[(x" — x0)°]
X =X

N/

H = Ho(r) + H'(r, ?)

When using the Fermi golden rule with the third-order anharmonic potential as the perturbation Hamiltonian, it is found that this anharmonic force can result in:

ky,v,

Merging of two phonons
(annihilation process)

3 1 2 _’ V,k

Ky ‘-"MS; 4
Splitting of a phonon
(generation process)

hvi + hvy = hvs hv, = hv, + hv;

ki+k;—ks=G ki—k, —kz =G

19



Scattering of Phonons EPFL

Considering that phonons are massless and cannot be acted upon by an external force (quantization of the field), the Boltzmann equation reduces to:

of ' f=Jfo
VeV f=—"—"
ot | T
The most important relaxation times that need to be considered are:
1. 3-phonon Umklapp process (volume) -':u"l — Be /6T 73,2 B and b are constants and &p is the Debye temperature.
2. Scattering from impurities (volume) 1:1_1 = Aw?
3. Boundary scattering (surface) T, I = bsv/L L 1s a characteristic length, &; isa shape factor

Typically, in a certain temperature range there is one scattering mechanism that dominates over the others.

20



Scattering of Electrons EPFL

For electrons, the Boltzmann transport equation expressed in the relaxation time approximation is:

f—J

d | F
—f+VoVrf+E'kaF— -

ot

Electrons are predominantly scattered by phonons. Yet, in certain conditions, electron-electron scattering can become important.

For a phonon-creation process: Ei=Ef+hyp

hv, and k;, are the energy and wavevector of the created phonon

The dominant scattering process has G = 0.

In metals the number of phonons is proportional to the temperature (above the Debye temperature) and therefore: - T
T

In semiconductors the presence of acoustic and optical phonons as well as the large amounts of impurities (dopants) give rise to very complex scattering
interactions that require specific treatment.

21



Scattering of Molecules EPFL

ﬂ{+varf+£.vvf:_f;ﬁ

ot T
In lecture 2, slide 9, we calculated the mean free path for a gas of molecules:
A m
2 pd?
Thus the mean free path can be obtained as : . /_1 d = effective diameter of a molecule m = molecular weight
v n= % = molecular number concentration p = density

We now know that molecules will follow the Maxwell distribution and therefore their average velocity, at temperature T, will be:

oo o0 OO
_ 8T
v=fffvf0(v)dvxdvydvz= ==
000

22



The Boltzmann Equation — From Phonons to Molecules EPFL

m Boltzmann Equation Scattering mechaninsms and relaxation time

T—l - Be‘eD"bT T3w2

| 1. 3-phonon Umklapp process (volume) u B and b are constants and fp is the Debye temperature.
Phonon Q +veVrf =— f—Jfo 2. Scattering from impurities (volume) -L-I—l = Aw?
ot ‘ T 3. Boundary scattering (surface)

S -
T =bsv/L [ is a characteristic length, &5 is a shape factor

Scattering dominated by electron-phonon interactions.

Electron %+v.v,f+g.ka=—f:f° Inmetals: L r
T

In semiconductors complex processes.

<2

of F Ty
Molecule ar TV Vel e Vef = =0 I
v V2 pd?

oo o 00
8kpT
=ff/uf0(v)dvx dvy dv, = ==
000

23



Energy Transport EPFL
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,\Kinetic Energy

Hot
z[ -
X

g.l.v.vrf_'__li.vvf:_f_fo
ot : o om T
F o F _ _ f—f
3_t+v.vrf+E.ka‘_ :

Knowing the nonequilibrium statistical distribution f we can calculate the transport of energy within a material.

24



Energy Transport EPFL
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Kinetic Energy

Hot

How do classical laws emerge from the microscopic picture of energy transport?

25



Next Week EPFL
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The phase-space and the Liouville Equation EPFL

p®

7 N

Time-evolution
of System 1

System 1

Phase Space
Representation

In a system with N particles, each particle can be described by a generalized spatial coordinate 7 and a generalized momentum coordinate p which depend on the
number of degrees of freedom in space, m. For example:

= Diatomic molecule: 77 = (xq,y1,21,A11,61,91) and p; = (Mvyq, Mvy,, mv,,, mdAry /dt, Iy, 1)
position l rotation

Vibrational
coordinate

The total number of degrees of freedom for the system is 2n = 2mN and the 2n-dimensional space is called the phase-space.

A given system is represented by a point in the phase-space and its time evolution corresponds to a unique trajectory*.

*the evolution of a system is uniquely determined by the initial conditions 28



The phase-space and the Liouville Equation EPFL

Ensemble .
p(l) The flow lines

e e o I never intersect !

Phase Space
Representation O

We now consider an ensemble. Each system in the ensemble is a point in the phase space and the trajectories of all these system do not intersect.

Given that the number of systems in an ensemble is very large, (Nystems > N), we can consider the points in phase-space to form a continuum.

Thus, we define a particle density f(N) in phase-space such as, surrounding any point (F(") = (rl,r? ...r"),ﬁ(") = (pt,p? ...,p")):
No.of systems = f™ (¢, 7™, pW)Ar@Ap™

» f(N)(t, @, ﬁ(n)) is the N-particle distribution function and represent the probability density of finding a specific system at a specific state (F(n), ﬁ(n))

» For an ergodic ensemble f(N)(t, r, ﬁ(")) represent the probability of observing one system at a particular state over a period of time smaller than a

characteristic time of the system. ’9



The phase-space and the Liouville Equation EPFL

Ensemble .
p(l)

The flow lines
°e o e o 1 never intersect !

p® 4+ ap® Lo
Control volume
in phase space

(ST -
Phase Space p

Representation

We now describe the evolution of the ensemble by describing the evolution off(N) in phase-space. Given that the flow lines do not intersect and the points in
phase-space are conserved we can use a control volume approach to derive the equation for the distribution function:

n n :
d or® 3 ap®\  af@™
9 () _ wm ™) _ Bl = v am |
; PE) ( o1 ) Z ap® (f a1 Py where  3p®) /3t = p) and 8r® /3t = #@ Flow rates of points
ar®  p® f( ) Liouville equation
Using — + ap(l) = 0 we obtain: Z @) x- Z 50 x D 0 Valid for classic and quantum systems
: P The number of variables is n~N4 (Avogadro’s constant)

i=1
30



The Boltzmann Equation: from 2n to 2Zm-dimensional space EPFL

1-particle in a system
Fli ﬁl
[ ]
71, D1 2m-dimensional instead of
2n-dimensional phase-space

°
o Phase Space
T, P1 Representation

N

p(i)‘

As particles interact with each other, the number of
particles along a flow line is no longer conserved!

X

All Systems
with Fl ) ﬁl

X

» r  i=12,..,m

We consider a representative particle in a system and we average the N-particle distribution function over the N-1 particles to obtain a 1-particle distribution:

O rm) = ——— (N_l),

f f F™ ¢, r™ p™dr,...drydp, . ..dpy

» f(¢,7,,p,) is the 1-particle distribution function and represent the number density of systems having coordinates (74, ;)

f(¢, r, p)d°rd>p = number of systems in d°rd’p

31



The Boltzmann Equation: from 2n to 2Zm-dimensional space EPFL

1-particle in a system
Fli ﬁl
[ ]
T1, D1
°
Flt ﬁl

N

2m-dimensional instead of
2n-dimensional phase-space

—>

Phase Space
Representation

We can perform the same averaging on the Liouville equation and we would obtain:

d d 9
Boltzmann Equation %{- Z'l: L Vrf als ’d—l:' ® fo = (3{)6
. af. af. of., e
where - . Y i xt o Byt o
Vif =52t 3y oz PI = 55 T op, P

p(i)‘

As particles interact with each other, the number of
particles along a flow line is no longer conserved!

X

All Systems
with Fl ) ﬁl

X

af .
T Pz

[=12,..

Scattering Term

Accounts for the collisions of this particle with all the
other particles in the system (non-conserving nature
of the 1-particle distribution function)

32



Boltzmann Equation EPFL

PM@%& S@@CQ_, CFI@) = <><1(ﬁ)2¢t"x,Py,Fg)

@/\

f F(Owﬁ C\,QL;;J—D @u& gl
5 2 qu(ﬂf t)‘g A

d¢
>f“9

—

if(ﬁw&) prFst trat) = (7 o)=L
@Aéﬂésﬁg






Lo

EPFL



The Scattering Integral EPFL

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles:

of F _ . |/of
a—+Verf+E-ka—(-£)c  pnd

klv”El’

Before the collision the two particles are in two quantum states characterized by (E, E)and (kj, E;). After the collision they are in (F, E"and (k' E'y).
The collision is a time-dependent process and to describe it, it is necessary to solve the time-dependent Schrodinger equation of the system of the two particles.

The calculation can be simplified using the perturbation method, i.e. considering the Hamiltonian of the system composed of a non-interacting, steady state part

and a small time-dependent perturbation term:
H = Hy(r) + H'(r,t) where H < H,

In this approximation, we can thus use the wave-functions of the unperturbed system to calculate the transition rate between the quantum states ¥; and ¥ as:

2

Fermi Wff - ‘[ ‘I’}H"P,'d:;r d(Ef — Ej) My = (i|H'|f) = f\II;H'lIJ,-d3r Scattering matrix
golden 2T ' :
rule = —-|(H| f)*8(Es — E)
1 E;=E
S(E —E.-)=[ ‘0T and [ s(n)dx =
= z—nMga(Ef — Ej) 4 0 E;+#Ef Jooo8(x)dx =1

h

36



The Scattering Integral EPFL

Let’s now look more closely at the scattering term in the Boltzmann equation and in particular let’s consider the collision between two particles:

af F _ . |/8f
a—+Verf+E-ka—(-£)c  pnd

We re-write the scattering term as an integral:

of
(5) =-k f fe, B f¢r, k)W k — K, k)dkdk'd’k) + K f fe K fE kW, k] — k,Kk;)d k d°KdK]
. ,

where K = V3/(27)°

We also observe that the energy and momentum conservation require:  E(k) + E(k1) = E(k) + E(k’l) k+ki=k+ k'l
While a detailed balance analysis gives the reciprocity relation: W (k, kl —- K, k’i) = WK, k’l — k, k1)

Giving the final form of the collision integral:

(g—) = wa x £, e K f0 k)~ f,r,K)f@ 1, K)d ki d”Kd> k'

37



Scattering of Phonons

Na

v

-
«

a
— -1 (+1

@11 @ i1 @ 111, @111 @ iin @ i @ 1) @ Vi1 @ vy, @ 1in @ i @ i @
Q@ 11@ i@ vin@ i@ W, \wa\‘ @ Wi i@ i@ i@ i@

—

uj

Hypothesis:

1. Force interactions occur only between nearest neighbors
2. Harmonicinteraction force (Hooke’s law)

3. Equal mass M and spring constant K

uj = xj— X, displacement
harm _ 1 2 .
4 U = EK [uj — uj+1] potential
Jj
0 Uharm
. F= _T = K(uj+1 - uj) - K(uj - uj—l) force

]

Longitudinal Waves

=PrL

Transversal Waves

Acoustic e | e
25 N
Phonons WOV VVAS TOUD Meor” Neer”
Phonons |  \WURMS TR MS TR T e aad
p = #atoms per lattice point

: w(k)

—

- 3(p — 1) branches

o — of optical phonons

3 branches of acoustic
phonons (1x longitudinal,
2x transversal)

If the potential is purely harmonic, lattice waves are decomposed in normal modes that do not interact with each other.

» This implies that phonon propagation is unimpeded and thermal conductivity should be infinite

Instead, anharmonic terms of the inter-atomic potential are responsible for scattering of the phonons

38



Scattering of Phonons EPFL

Let’s consider the annihilation process.

Looking more closely at the momentum requirements, we observe that there are two possible cases:

a) @ kgritiouin - Therefore G = 0

b) ki + ks > kgritiouin - Therefore G # 0 and the process is called Umklapp process
_——

In case a) the resulting phonon continue to move along the same direction of the initial two phonons, hence heat is conducted in an unimpeded manner.

In case b) we observe that the addition of the reciprocal lattice wavevector, changes the net direction of the phonon propagation.

» It is the Umklapp process that gives rise to the thermal resistance

39



Scattering of Photons EPFL

Photons are also massless particles that cannot be acted upon by an external force, hence the Boltzmann equation is:

¥ | vevr o (¥
) S V,-f (3:)

Power

For photons, it is more common to consider the energy flux, i.e. the intensity, rather than the particle flux. F = JA. dCdv
L

We observe that, along each wavevector direction, a photon will move at group velocity @(E)

Given the single-particle distribution, f, we can thus say that for a given quantum state the energy fluxis E x vg(k) x f

The rate of energy, i.e. intensity, propagating along a wavevector direction, per unit solid angle is I1(t, E,K) = E x vo(K) f(t,r,K)YdD(E, k)
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We recall that  dD(E, k) = No. of States within (E, E + dF)anddQ _ D(E) » 1(t, E, k) = EE x vg(k) f (¢, r, k) D(E)
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Considering the steady state Boltzmann equation: vy e V of = ' (af) along the direction of propagation, s, we have: ve Vrf = vg—f v speed of light in medium
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Thus we can recast the steady-state Boltzmann equation in terms of intensity as:

1
v c,
40



Scattering of Photons EPFL
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Scattering of photons can be elastic or inelastic (absorption/emission).

For the inelastic term: ol L —1]
(_E_’[) = _f —Jo 0> <a_v> =Y 0 vo where A = vt and I, = blackbody spectral intensity
at c,inelastic T t c,inelastic
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In radiation it is more common to refer to the absorption coefficient: «a, = AT LT absorption coef ficient
0

For the elastic term there are two contributions, the outgoing scattering, proportional to the scattering coefficient, and the incoming scattering resulting from the
fraction of the photons that are scattered from the direction Q' to Q per unit solid angle of the incident radiation, ¢(Q' — Q). We express these two terms as:
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dl, Equation of the radiative transfer
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» g = _Kevlv -+ avlvo + ﬁj 11', (Q')(]ﬁ(ﬂ’ — Q)d.Q’ (replaces Boltzmann transport)

K., = a, + g5, = extinction coef ficient »
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