Nanoscale Heat Transfer
(and Energy Conversion)
ME469

Instructor: Giulia Tagliabue

Spring Semester




What we covered so far... EPFL

[ Energy States

Thermal Energy Storage ] [ Thermal Energy Transport

Introduction to Quantum
Mechanics (Ch. 2)

Introduction to Solid State
Physics (Ch. 3)

{

Introduction to Statistical Energy Transport by Waves
Thermodynamics (Ch. 4) (Ch. 5)
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From Quantum States to Macroscopic Properties
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Internal Energy and Specific Heat EPFL

Q
To calculate average quantities we recall that: (X) = Z X(s)P(s)
s=1
_Ei Nip—Ej
Therefore, for the average internal energy we will have: U= Z E;P(E;) P(E;))=e *BT/Z P(E;,N;) =e *8T JF
i
1/0U
We recall that the constant-volume specific heat per unit volume is defined as: Cy = v\aT
14

" . o Cy L ou

Thus the constant-volume specific heat per unit mass is defined as: ¢y = — and the heat capacity is C=mcy =VCy = T

We will now consider different particles and follow the procedure:

*  Pick the statistical distribution function (fermionic/bosonic particles)
* Calculate the total internal energy

* Calculate Cy



Internal Energy and Specific Heat
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Energy Transport EPFL
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Energy and velocity of a carrier Reflectivity and Transmissivity

Statistical distribution Interference phenomena



Energy Transport EPFL
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How can we describe transport in a particle view accounting for the wave nature?
When and how does the wave-behavior affects energy transport?



In This Lecture ... EPFL

*  Energy transfer in Nanostructures (Landauer formalism)
» Thermal boundary resistance and Universal quantum thermal conductance
» Near field heat transfer and Superlattices

*  From Waves to Particles
» Wave packets and group velocity

» Coherence lengths and heat transfer models



Energy Transfer in Nanostructures — Landauer Formalism EPFL

/ : In the Landauer formalism the transport is seen as a transmission process.

R Reservmr
| es;ivmr .1 <__:__> _

In other words, if we know the energy and velocity distribution as well as transmissivity of a given particle, we can
calculate the particle flux and from this the energy transport.

Let’s consider for example the case of heat transfer between two reservoirs. We know that heat is carried primarily by phonons, therefore we will write:

To get energy density Energy of
sum over al one carrier Statistical distribution

wavevectors T
. ; kmax = a
3m

max kmax kmax 1 kmax kmax kmax
Q12 = Z Z Z v, T12Ef(E, T | = Z 7 Z Z Z v, hwt, f(w,Ty) where m=atoms per basis
kxl— Kmax Ky1=—Kmax kz1=0 )  P=1] kxi=—kmaxky1=—Kmax kz1=0 Vor = U1COSO
z1 = V1
Average energy
) per quantum state
_ velocity -
Sum over all Propagation v 52
polarization in the positive transmissivity
z-direction Debye frequency Solid angle

/

“p1 D; (w)
Using the density of states we can turn the summation in an integral: 41-2 = ff [f Vi hwtyof (w,Ty) an dw] dQ
Q,>2m Lo

\ All solid angles for
positive z-direction 9



Energy Transfer in Nanostructures — Landauer Formalism EPFL

We note that there will be also a flux from reservoir 2 to reservoir 1. The NET heat flux between the reservoirs is:

“p1 D, (w) @p1 D, (w)
q=dq1-52 — Q251 = H f vy hwt, f(w, Tr) A dw|dQ — ff f Vo hwty f(w, Ty) A
Q1>2m LY0 Q,<2m Y0

Reservmr Reservonr
g . 4—':—_> =
X 1 4

I “p1 D;(w) “p1 D;(w)
At thermal equilibrium T; = T, : 0= v, hwt f(w,Ty) dw|dQ — Vyhwty f(w,Ty) dw|dQ
Q,>2m LYo 4 a,<2m Lo 4m

This is called a detailed balance and enables us to express the flux only based on the properties of one reservoir plus the transmissivity:

“p1 1 ()
qd=0q1-52 — Q251 = Jf f ”z1th12(f(w; T;) — dw|d€
Ql>2T[ 0
For a small difference in temperature:
@p1 df D;(w —1pr—
q= Q1o —Gosy = (Ty — T) H U v, hwTyy _f 1 )dw] dQ = KAT where K = thermal conductance [Wm~1K™1]
a,>2n 1o T 4rm

We note that the critical quantity to be calculate is the transmissivity 7,,. When the particles travel without scattering, i.e. collisions, which is also called ballistic

da)] dQ

transport, the transmissivity can be calculated based on the previous discussion of waves transport across interfaces. However, in most cases, scattering renders the

calculation very complex and the Landauer formalism less useful. Yet this approach proves most useful for the study of transport in nanostructures.
Let’s now see a few cases.

10



Thermal Boundary Resistance EPFL

Let’s consider the heat flux at the interface between two materials at respective temperatures T; > T, .
Phonons travelling towards the interface from both sides will be transmitted and reflected.

If we take an isotropic material with only one atom per basis, based on our previous analysis we can write:

“p1 af D1 (w) Tel - TeZ
q = qio2 — G2o1 = (Ter — Te2) jf U V100501 ATy o dw|dQ) = ——F——
7 Nasan Lo T 4rm R,

. R, = thermal boundary resistance

T, are the phonon temperatures. However, we are in a highly non-equilibrium situation and it is hard to correctly define a temperature.

Indeed, at the interface we have three distinct groups of phonons:
* Incoming phonons with temperature T,
* Reflected phonons with energy distribution depending on the convolution of the incoming phonons and the interface reflectivity
Transmitted phonons with an energy distribution depending on the convolution of the phonons arriving from the medium 2 and the interface transmittivity

It is then clear that, even for an ideal interface, there will be a thermal boundary resistance as long as reflection occurs at such interface.
For nearly ideal interfaces, the order of magnitude of R, is:

1 C = volumetric specfic heat =~ 10° J m3K~! @300 K

Re~—— ~10-8 — 10=-9K 21171
Cv v = phonon speed ~ 103 ms~! @300 K » R~10 107"Km*W

This result is consistent with experimental data. Non-ideal interfaces will have larger values.

Although this value is very small for a single interface, for nanoscale system with a large number of interfaces this resistance becomes dominant. Importantly,
multilayer systems can exhibit distinct behaviors due to interference effects.

In macro-scale systems, this value can also be large due to the absence of perfect contact. 11



Universal Quantum Thermal Conductance EPFL

Let’s now consider a nanowire with square cross section that connects two thermal reservoirs.

Let’s neglect internal scattering and assume that the phonon transmissivity is unity for each mode.
We now want to calculate the thermal conductance of the nanowire:

kmax kmax kmax

K = quisz where 12 = Z Z Z Z vaho(f(w,T1) — f(w,T2))

=1 kxl—_kmax kyl—_kmax kZl 0

We thus need to compute the allowable wavevectors in this system. In the xy plane the wire acts as a 2D potential well and therefore the allowable modes are

m nim
k, = 2rr’—"— = — ky=—(m,n=1=%1,%£2,...)
2a a ’ a
At low T and for the first w2kiT
mi 2 nm\2 = uantum thermal conductance of each modes
O=ck= c‘/(-—— + (—) + kz2 » few modes (small m,n) K 3h Q
a . a
dw

UV, = 5. = group velocity
Z

We observe that this conductance does NOT depend on the material properties. Thus it is the same for all the materials
This quantum thermal conductance has been observed experimentally [1], although recently deviations have been recently reported [2]

[1] https://www.sciencedirect.com/science/article/abs/pii/S0749603697905619; [2] https://www.nature.com/articles/s41467-018-06791-0
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https://www.sciencedirect.com/science/article/abs/pii/S0749603697905619
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Phonons have the same statistics as photons and similar phenomena can be observed.
In particular, when a superlattice is created, i.e. a periodic structure with repeated
thin films of different materials, interference effects (analogous to Bragg-reflector
effects) and tunneling effects can alter the thermal conductance.

Under the assumption of no scattering, the thermal conductance of a superlattice can
be computed and signatures of tunneling and interference have been identified.

13
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When and how does the wave-behavior affects energy transport?
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In This Lecture ... EPFL

*  Energy transfer in Nanostructures (Landauer formalism)
» Thermal boundary resistance and Universal quantum thermal conductance
» Near field heat transfer and Superlattices

*  From Waves to Particles
» Wave packets and group velocity

» Coherence lengths and heat transfer models

15



From Wave to Particle — Wave Packets and Group Velocity
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From Wave to Particle — Wave Packets and Group Velocity EPFL

Wave Packet HP: Aw < w

Aw Ak
Ey(x,t)=a COS[((D()—T>I—( ——2—)x]
+a cos[(wo+-A—w)t— (ko--%)x]
: 2 2

=2a cos(Awt — Akx) cos(wot — kox)

SRS LY,
COSzi(I Aw — xAk) » vg’x = E Group velocity

4a’n

Energy propagation: S(x,t) =

col

In the most general case:

Il The group velocity corresponds to the energy
propagation velocity only if Aw < w .

17



From Wave to Particle — Wave Packets and Group Velocity EPFL

Electrons
(h k)? Phase velocity Group velocity
* = om w _Ow hk hk
E=hw

We observe that it is the group velocity, and not the phase velocity, that satisfies the de Broglie relationship: p = hk

However, in crystals we have that the wavevectors determined by he Von Karmann boundary conditions do not satisfy the classical momentum relationship:

quantum p = hk #+ mv, = classical p

Thuswecall  p = Ak = crystal momentum

d(hk)
ot

And we use it to satisfy the momentum conservation rules and calculate the external force field: Fexe =

Indeed the periodic potential exerts its force onto the electrons. When using the crystal momentum however, one carries on the calculation as if the electrons were
NOT subject to this internal field of the crystal. The group velocity defines the actual speed of motion of the electrons.

18



Energy Transport EPFL
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Should a wave or particle model be used to compute energy transport?

If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (ballistic transport)

If the phase of the carriers in unimportant, a particle approach can be used (diffuse transport)

* In between we have the partially coherent regime

Therefore, it is critical to determine a coherence length for the different types of waves in order to determine the most suitable energy transport model. We will
now consider the three cases of electromagnetic waves, electron waves and acoustic waves.

19



Coherence Lengths — Electromagnetic Waves

Aw Ak
Ey(x,t)=a cos[(wo——2—>t— (kO—T)x]
Aw Ak
+a cos [(wo - —2 )t — (ko — —2-) x]

=2a cos(Awt -{ Akx)|cos(wot — kox)

2 2m
Ak Aw/c  Av

The spatial spread of a wave-packet is: Ax - Ak = 21 » Ax =1, =

As a rule of thumb, give a spatial domain of characteristic dimension d:
Coherent/ballistic transport : l.>d
Incoherent / diffusive transport: [. < d

Partially coherent regime : l.~d

=PrL
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Coherence Lengths — Electromagnetic Waves EPFL

Reflecte
1
:[ ‘:;ransmincd \
“A“M ' ' T
) - 1 Incident v - Ead
Different photons emitted by At an interface, the In a thick film (d > 1.), In a multilayer structure,
a source have no fixed phase incident and reflected transmitted and reflected the same wave packet is
relationship. Hence they do wave packets have a fixed  photons can overlap but split many times and
not interfere when they phase relationship. Hence  they do not have a fixed therefore can interfere
overlap and behave just like they can interfere and a phase relationship, hence with its previous reflection.
point particles. wave model is necessary. they only transiently A wave model is necessary.

interfere. They can be
treated as particles (ray
tracing)

Although the coherence length is a reasonable indicator of the type of regime, it can fail when multiple interfaces are involved.

21



Coherence Lengths — Electromagnetic Waves
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To calculate the transmissivity or reflectivity of a wave packet, it is possible to perform a
Fourier decomposition, calculate the transmissivity and reflectivity for each component and

then obtain for the wave packet:

¢ 1(@) i (w)dw =_ L9 R(w) i (w)dw
D&w Ji(w)dw ik 7{ - fOAw Ji(@)do

b
Il
S &

Where J; = Poynting vector and Aw is the spectral width of the incident photon.

£ =015

For the blackbody thermal radiation the energy spread is of the order of kg T therefore the thermal coherence length is T
Kgd

22



Coherence Lengths — Electromagnetic Waves

=PrL

var| * i
Thickness | + 30um For Bragg reflectors the transmissivity calculated with the transfer matrix method reaches a constant
value after a certain number of layer, independently of the thickness of the layers, while the ray-tracing
. SRSEs ,;,_;_ : method, which would be more suitable for a diffusive regime, shows a constantly decaying transmissivity
S o value.
. < Important parameters defining the most suitable model will be (i) surface roughness, (ii) non-parallel
' f~.\. RayToces =S | surfaces (iii) thickness variations.
'-,.'.. ‘

." % 2 " 2 " 3 S
6 14 196 20 25 30 38 40 45 5
Number of layers =

certain frequencies due superposition.

the behavior can go from a wave picture to a ray-tracing.

make even 2D structure effectively become 3D.

This result in wave localization at certain frequencies with a subsequent decrease in the transmissivity.
This is shown in the graph on the left where, as a function of the standard deviation of the randomness,

Localization is challenging to achieve in three-dimensional structures and often surface roughness can

Randomness plays a very important role in multilayer structures. Indeed, random thickness variations can
result in a phenomenon called Anderson localization which entails complete cancellation of waves at

23



Coherence Lengths — Acoustic Waves EPFL

Each phonon has an energy E = hw (quantum oscillator) and we also know that in the Debye approximation we have w = a./K/mk. The dominant phonon

hvg

YT At room temperature the phonon wavelength is of the order of = 10 — 20 A.
. B

wavelength is given by the Wien’s displacement law for phonons: 4, ,.qx =

As a consequence, roughness present at the interface can easily cause scattering of phonons. Therefore, although scattering of phonons with boundaries and
impurities is elastic, interface roughness tends to randomize the phase and the particle approach is likely to be valid in most situations. Nonetheless, it has been

shown that in superlattices thermal conductivities both in-plane and out-of-plane are significantly reduced compared to the bulk values. Also, they depend on the

structure of the superlattice.

wave particle y
100 | —r 4
£ i
S
Ph ing. © ;
‘ oton tunneling. € 10 ‘
increases Keross 2
Q
&)
E ;. P =interface specularity parameter
5 Dgaaigmﬁiﬁg 4 (specularly reflected phonons are
= 4| o g hL:L_ — , | assumed to be coherent)
0 10 20 -30 40 50 60
Period Thickness (A) o

https://www.nature.com/articles/srep46092
Phonon-phonon scattering is an inelastic process and its mean free path can be very long (2500 — 2300 A).

[1] https://www.sciencedirect.com/science/article/pii/S1631070516300871?via%3Dihub 24



Coherence Lengths — Electron Waves EPFL

While photon scattering is mostly an ELASTIC process (same energy and wavelength),

electron scattering can be both ELASTIC and INELASTIC (change in both direction and energy).

* Scattering with impurities and boundaries is typically elastic. Nonetheless, the random location of impurities can introduce sufficient randomness in the phase
to make the particle approach valid
* Scattering with phonons is inelastic. The location of the scattering event is ever changing and hence he phase becomes randomized, making the particle

approach valid.
For electrons it is possible to define three critical lengths:
° Mean free path: average distance between successive scattering events A =~ VrT Where T = relaxation time, Vg = fermi velocity
Ay = VpTy Where T4 = phase breaking time (inelastic scattering mean free path)
1/2
* Phase coherence length (Thouless length): depends on the diffusivity A¢> ~ (ar¢) / Where a = electron dif fusivity ~ v,%r

* Thermal length: due to the thermal broadening « kgT Ar = (ah/xgT)'/?

For Ap > Ad) » Inelastic scattering is the dominant phase destroying mechanism. If the structure characteristic length L > A4 then no quantum states are
formed and therefore the particle approach should be used.

For Ap < Af/) » Thermal excitation is the dominant dephasing mechanism. If L > A7 the wave and particle approach will converge to the same result

(except for periodic structures).
25



Energy Transport EPFL

Higher

Kinetic Energy Lower
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If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (ballistic transport)

If the phase of the carriers in unimportant, a particle approach can be used (diffuse transport)

In between we have the partially coherent regime

Therefore, it is critical to determine a coherence length for the different types of waves in order to determine the most suitable energy transport model. We will
now consider the three cases of electromagnetic waves, electron waves and acoustic waves.

26
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Thermal Boundary Resistance EPFL

Let’s consider the heat flux at the interface between two materials at respective temperatures T; > T, .
Phonons travelling towards the interface from both sides will be transmitted and reflected.
If we take an isotropic material with only one atom per basis, based on our previous analysis we can write:

152 = ﬂﬂ . me V1 hwTio f(w, Ter) 1( ) ]dﬂ

w1 3f Dy () To_T
q=dq1-2 —q2-1 = (Tel - Tez) j:[ j vlcoselha)'l'lz ! dw!|dQ = _el ez
Q1>2T[ aT

41

1 1 21 T/2 wp1 af(w' T)
» R, = thermal boundary resistance » —_— = do, f do, f v,€050,5inb; hwty, (w, ¢p1,0,) —=—D; (w)dw
0 0 0

R, 4m oT
1 1t ©p1 of (w,T)
For our isotropic material . = E_/ udulj V101 (w)T12(w, 1q) dw u = cosf G (w) = hw aT ———D1(w)
e 0 0

The above expression can be calculated using the Snell’s law for phonon only if phonon scattering at the interface is specular and elastic (no change in frequency).
This requirements are satisfied only at very low temperatures when the phonon wavelengths are long. In this regime we observe:

1
T3
At room temperature the phonon wavelength is of the order of ~ 10 — 20 A . As a consequence, roughness present at the interface can easily cause scattering of

phonons. Hence, specular and elastic conditions are no longer satisfied and we need a model for the transmissivity at high T to be able to calculate the boundary
resistance.

C(w) < T3 . R, x

29



Thermal Boundary Resistance EPFL

Diffuse mismatch model — phonons emerging from the interface bear no relationship with their origin

Rip=m10rl—112 =1 HP. linear dispersion of acoustic phonons w = a./K/mk

2
» T2 = L/v (Low T approximation)
1/ 2 1 2
fvi+1/v3

VU (Te) 1

» ta12(T,) = U (T,) + voUa(T,) % 1 + [vi U /v2U3]

(High T approximation)

wp T,
U= fha)f(w, T,)D(w)dw=fC(T)dT
0 | 0

We observe that this approximation cannot be valid when the two materials are very similar and fails completely when the two materials are equal, i.e. we are

considering an imaginary interface within the same material. Indeed in this limit the thermal boundary resistance should be zero but none of these models
capture this correctly.

This leads us to an important observation.

30



Thermal Boundary Resistance — Equilibrium Temperature EPFL

Previously we have written:

Where T, are the phonon temperatures. Yet, we now realizes that we are in a highly non-equilibrium situation and it is
hard to correctly define a temperature.

Indeed, at the interface we have three distinct groups of phonons:
* Incoming phonons with temperature T,
* Reflected phonons with energy distribution depending on the convolution of the incoming phonons and the interface reflectivity
Transmitted phonons with an energy distribution depending on the convolution of the phonons arriving from the medium 2 and the interface transmittivity

Therefore the phonon energy spectra at the interface are very different from those of the incoming phonons and cannot be represented by an equilibrium
distribution with a single temperature T.

Instead, assuming that the phonons adiabatically approach an equilibrium condition, we define an equivalent equilibrium temperature, which is a measure of the
local energy density rather than the spectral characteristics of the energy distribution:

AR V 1'17’ . e x ¢ | TEMPERATURE
=T — @~ T) [ raGde/2 |
e S e T » T,, EMITTED PHONGN

+ vk e

- TR e U DR B RET
Ty =Tor + (Te1 — Te2) f ww2)dua/2
PRCOR TR S SN RS

T, EQUILIBRIUM

1 EQUILIBRIUM

Tal EMII | ED PHUNUN
s

e
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Thermal Boundary Resistance — Equilibrium Temperature EPFL

We thus re-write:

_Ti=To _ 21— {fy ma(e)dun + fy m(ua)dua)/2]

R
q fol [[ 712 (1) viCr(w)dwlpid

In practice, we can rarely measure T, and therefore the thermal boundary resistance is obtained on the basis of the equivalent thermal equilibrium temperature.
This must be taken into account when analyzing the experimental data with the models discussed above.

It is then clear that, even for an ideal interface, there will be a thermal boundary resistance as long as reflection occurs at such interface.
For nearly ideal interfaces, the order of magnitude of R, is:

1 C = volumetric specfic heat ~ 10°  m~3K~1 @300 K

Re~— ~10-8 — 10-9Km21y7 -1
Cv v = phonon speed ~ 103 m s~ @300 K » Re~10 107"Km*W

This result is consistent with experimental data. Non-ideal interfaces will have larger values.

Although this value is very small for a single interface, for nanoscale system with a large number of interfaces this resistance becomes dominant. Importantly,
multilayer systems can exhibit distinct behaviors due to interference effects.

In macro-scale systems, this value can also be large due to the absence of perfect contact.

32



Universal Quantum Thermal Conductance EPFL

Let’s now consider a nanowire with square cross section that connects two thermal reservoirs.
Let’s neglect internal scattering and assume that the phonon transmissivity is unity for each mode.
We now want to calculate the thermal conductance of the nanowire:

kmax kmax kmax

K = quisz where 12 = Z Z Z Z vaho(f(w,T1) — f(w,T2))

=1 kxl—_kmax kyl—_kmax kZl 0

We thus need to compute the allowable wavevectors in this system. In the xy plane the wire acts as a 2D potential well and therefore the allowable modes are:

ke =2 = I8 k= (m,n =1, £2,...)
2a a ’ a
Gz = 3—2 [ vaho(r@, 1) = f, ) dk, =3 =N [ hogr@.m) - f@, ) do
mi 2 nm\2 mn
— AN o el 2 ’
w—ck—c‘/(a‘ +(a)+kz
T, —T. Wmax 0 w,T 2 2
dw qi2 = 3MZJ‘ thdw Where Omn = c\/(ﬂ) + (ﬂ)
Vg1 = = group velocity 2 it )ty aT _ a a
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