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What we covered so far…
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Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Thermal Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

Energy Transport by Waves
(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)



From Quantum States to Macroscopic Properties

1
2
𝑏⃑𝑏

Allowed quantum states
(steady-state Schrodinger eqn)

Specific heat of H2 gas

Specific heat of gold

Macroscopic properties and 
their dependence on 

temperature

Probability that matter will be 
in a given quantum state when 

it is at equilibrium.
(Statistical Thermodynamics)
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𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Connect quantum
states and energy
levels with the
temperature

Investigate the
properties of
matter at finite
temperatures

Localized potential

Periodic potential



Internal Energy and Specific Heat
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We recall that the constant-volume specific heat per unit volume is defined as: 𝐶𝐶𝑉𝑉 =
1
𝑉𝑉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑉𝑉

We will now consider different particles and follow the procedure:

• Pick the statistical distribution function (fermionic/bosonic particles)

• Calculate the total internal energy 

• Calculate 𝐶𝐶𝑉𝑉

𝑈𝑈 = �
𝑖𝑖

𝐸𝐸𝑖𝑖𝑃𝑃(𝐸𝐸𝑖𝑖)

To calculate average quantities we recall that: 𝑋𝑋 = �
𝑠𝑠=1

Ω

𝑋𝑋(𝑠𝑠)𝑃𝑃 𝑠𝑠

Therefore, for the average internal energy we will have:

Thus the constant-volume specific heat per unit mass is defined as: 𝑐𝑐𝑉𝑉 =
𝐶𝐶𝑉𝑉
𝜌𝜌 and the heat capacity is ℂ = 𝑚𝑚𝑐𝑐𝑉𝑉 = V𝐶𝐶𝑉𝑉 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑃𝑃 𝐸𝐸𝑖𝑖 = 𝑒𝑒−
𝐸𝐸𝑖𝑖
𝜅𝜅𝐵𝐵𝑇𝑇/𝑍𝑍 𝑃𝑃 𝐸𝐸𝑖𝑖 ,𝑁𝑁𝑖𝑖 = 𝑒𝑒

𝑁𝑁𝑖𝑖𝜇𝜇−𝐸𝐸𝑖𝑖
𝜅𝜅𝐵𝐵𝑇𝑇 /ℱ



Internal Energy and Specific Heat
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Particle Internal Energy Specific Heat

Gases 𝑈𝑈 = �
𝑖𝑖

𝐸𝐸𝑖𝑖𝑃𝑃(𝐸𝐸𝑖𝑖) = 𝜅𝜅𝐵𝐵𝑇𝑇2
𝜕𝜕𝜕𝜕𝜕𝜕𝑍𝑍𝑁𝑁
𝜕𝜕𝜕𝜕

𝐶𝐶𝑉𝑉 = 𝐶𝐶𝑉𝑉,𝑡𝑡 + 𝐶𝐶𝑉𝑉,𝑟𝑟 + 𝐶𝐶𝑉𝑉,𝑣𝑣 + 𝐶𝐶𝑉𝑉,𝑒𝑒

𝐶𝐶𝑉𝑉,𝑡𝑡 = 1
𝑉𝑉
3𝑁𝑁𝜅𝜅𝐵𝐵
2

, 𝐶𝐶𝑉𝑉,𝑟𝑟 = 𝑁𝑁𝜅𝜅𝐵𝐵
𝑉𝑉

for 𝑇𝑇 ≫ 𝜃𝜃𝑟𝑟, 

𝐶𝐶𝑉𝑉,𝑣𝑣 = 𝑁𝑁𝜅𝜅𝐵𝐵
𝑉𝑉

𝜃𝜃𝑣𝑣2

𝑇𝑇2
𝑒𝑒 ⁄𝜃𝜃𝑣𝑣 𝑇𝑇

𝑒𝑒 ⁄𝜃𝜃𝑣𝑣 𝑇𝑇−1
2 ≈

𝑁𝑁𝜅𝜅𝐵𝐵
𝑉𝑉

for 𝑇𝑇 ≫ 𝜃𝜃𝑣𝑣 , 𝐶𝐶𝑉𝑉,𝑒𝑒 = 0

Electrons 𝑈𝑈 𝑇𝑇 = �𝐸𝐸𝐸𝐸 𝐸𝐸,𝑇𝑇,𝜇𝜇 𝐷𝐷 𝐸𝐸 𝑑𝑑𝑑𝑑 𝐶𝐶𝑉𝑉,𝑒𝑒(𝑇𝑇) =
1
2𝜋𝜋

2𝑛𝑛𝑒𝑒𝜅𝜅𝐵𝐵
𝑇𝑇
𝑇𝑇𝑓𝑓
∝ 𝑇𝑇

Phonons 𝑈𝑈 𝜔𝜔 = �
0

𝜔𝜔𝐷𝐷
ћ𝜔𝜔𝑓𝑓(𝜔𝜔,𝑇𝑇) 𝐷𝐷 𝜔𝜔 𝑑𝑑𝑑𝑑

𝐶𝐶𝑝𝑝,𝐷𝐷(𝑇𝑇) = 36𝜋𝜋4𝜅𝜅𝐵𝐵
15

𝑁𝑁
𝑉𝑉

𝑇𝑇
𝜃𝜃𝐷𝐷

3
∝ 𝑇𝑇3 (low T)

𝐶𝐶𝑝𝑝,𝐸𝐸 𝑇𝑇 = 𝑁𝑁𝑝𝑝𝜅𝜅𝐵𝐵𝑁𝑁′

𝑉𝑉

ћ𝜔𝜔𝐸𝐸
𝜅𝜅𝐵𝐵𝑇𝑇

2
𝑒𝑒𝑒𝑒𝑒𝑒 ћ𝜔𝜔𝐸𝐸

𝜅𝜅𝐵𝐵𝑇𝑇

𝑒𝑒𝑒𝑒𝑒𝑒 ћ𝜔𝜔𝐸𝐸
𝜅𝜅𝐵𝐵𝑇𝑇

−1
2 ~𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (high T) 

Photons 𝑈𝑈𝜔𝜔 = ћ𝜔𝜔𝑓𝑓 𝜔𝜔,𝑇𝑇 𝐷𝐷 𝜔𝜔 𝐼𝐼𝜔𝜔 =
ћ

4𝜋𝜋3𝑐𝑐2
𝜔𝜔3

𝑒𝑒𝑒𝑒𝑒𝑒 ћ𝜔𝜔
𝜅𝜅𝐵𝐵𝑇𝑇

− 1



Energy Transport
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Particle View Wave View

x

y
z

Hot Cold

Higher 
Kinetic Energy

Lower
Kinetic Energy

𝒒𝒒𝒙𝒙 ?

Energy and velocity of a carrier

Statistical distribution

Reflectivity and Transmissivity

Interference phenomena



Energy Transport
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Particle View Wave View

x

y
z

Hot Cold

Higher 
Kinetic Energy

Lower
Kinetic Energy

𝒒𝒒𝒙𝒙 ?

How can we describe transport in a particle view accounting for the wave nature?
When and how does the wave-behavior affects energy transport?



In This Lecture …
• Energy transfer in Nanostructures (Landauer formalism)

 Thermal boundary resistance and Universal quantum thermal conductance

 Near field heat transfer and Superlattices

• From Waves to Particles

 Wave packets and group velocity

 Coherence lengths and heat transfer models

8



Energy Transfer in Nanostructures – Landauer Formalism
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In the Landauer formalism the transport is seen as a transmission process. 

In other words, if we know the energy and velocity distribution as well as transmissivity of a given particle, we can 
calculate the particle flux and from this the energy transport.  

Let’s consider for example the case of heat transfer between two reservoirs. We know that heat is carried primarily by phonons, therefore we will write:

Using the density of states we can turn the summation in an integral: 𝑞𝑞1→2 = �
Ω1>2𝜋𝜋

�
0

𝜔𝜔𝐷𝐷𝐷
𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔𝜏𝜏12𝑓𝑓 𝜔𝜔,𝑇𝑇1

𝐷𝐷1(𝜔𝜔)
4𝜋𝜋

𝑑𝑑𝑑𝑑 𝑑𝑑Ω

All solid angles for 
positive z-direction

Debye frequency Solid angle

𝑞𝑞1→2 = �
𝑝𝑝

1
𝑉𝑉

�
𝑘𝑘𝑥𝑥1=−𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑦𝑦𝑦=−𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑧𝑧𝑧=0

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣𝑧𝑧𝑧𝜏𝜏12𝐸𝐸𝐸𝐸 𝐸𝐸,𝑇𝑇1 = �
𝑝𝑝=1

3𝑚𝑚
1
𝑉𝑉

�
𝑘𝑘𝑥𝑥1=−𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑦𝑦𝑦=−𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑧𝑧𝑧=0

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔𝜏𝜏12𝑓𝑓 𝜔𝜔,𝑇𝑇1

velocity

Energy of 
one carrier

transmissivity

Statistical distribution

Propagation 
in the positive 
z-direction

Sum over all 
wavevectors

Sum over all 
polarization

Average energy 
per quantum state

To get energy density

where

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜋𝜋
𝑎𝑎

𝑚𝑚=atoms per basis

𝑣𝑣𝑧𝑧𝑧 = 𝑣𝑣1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



Energy Transfer in Nanostructures – Landauer Formalism
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At thermal equilibrium 𝑇𝑇1 = 𝑇𝑇2 :

This is called a detailed balance and enables us to express the flux only based on the properties of one reservoir plus the transmissivity:

We note that there will be also a flux from reservoir 2 to reservoir 1. The NET heat flux between the reservoirs is:

𝑞𝑞 = 𝑞𝑞1→2 − 𝑞𝑞2→1 = �
Ω1>2𝜋𝜋

�
0

𝜔𝜔𝐷𝐷𝐷
𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔𝜏𝜏12𝑓𝑓 𝜔𝜔,𝑇𝑇1

𝐷𝐷1 𝜔𝜔
4𝜋𝜋

𝑑𝑑𝑑𝑑 𝑑𝑑Ω −�
Ω2<2𝜋𝜋

�
0

𝜔𝜔𝐷𝐷𝐷
𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔𝜏𝜏21𝑓𝑓 𝜔𝜔,𝑇𝑇2

𝐷𝐷2 𝜔𝜔
4𝜋𝜋

𝑑𝑑𝑑𝑑 𝑑𝑑Ω

0 = �
Ω1>2𝜋𝜋

�
0

𝜔𝜔𝐷𝐷𝐷
𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔𝜏𝜏12𝑓𝑓 𝜔𝜔,𝑇𝑇1

𝐷𝐷1 𝜔𝜔
4𝜋𝜋

𝑑𝑑𝑑𝑑 𝑑𝑑Ω−�
Ω2<2𝜋𝜋

�
0

𝜔𝜔𝐷𝐷𝐷
𝑣𝑣𝑧𝑧2ℏ𝜔𝜔𝜏𝜏21𝑓𝑓 𝜔𝜔,𝑇𝑇1

𝐷𝐷2 𝜔𝜔
4𝜋𝜋

𝑑𝑑𝑑𝑑 𝑑𝑑Ω

𝑞𝑞 = 𝑞𝑞1→2 − 𝑞𝑞2→1 = �
Ω1>2𝜋𝜋

�
0

𝜔𝜔𝐷𝐷𝐷
𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔𝜏𝜏12 𝑓𝑓 𝜔𝜔,𝑇𝑇1 − 𝑓𝑓 𝜔𝜔,𝑇𝑇2

𝐷𝐷1 𝜔𝜔
4𝜋𝜋

𝑑𝑑𝑑𝑑 𝑑𝑑Ω

𝑞𝑞 = 𝑞𝑞1→2 − 𝑞𝑞2→1 = 𝑇𝑇1 − 𝑇𝑇2 �
Ω1>2𝜋𝜋

�
0

𝜔𝜔𝐷𝐷𝐷
𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔𝜏𝜏12

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐷𝐷1 𝜔𝜔
4𝜋𝜋

𝑑𝑑𝑑𝑑 𝑑𝑑Ω = 𝐾𝐾Δ𝑇𝑇

For a small difference in temperature:

where 𝐾𝐾 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [𝑊𝑊𝑚𝑚−1𝐾𝐾−1]

We note that the critical quantity to be calculate is the transmissivity 𝜏𝜏12. When the particles travel without scattering, i.e. collisions, which is also called ballistic 
transport, the transmissivity can be calculated based on the previous discussion of waves transport across interfaces. However, in most cases, scattering renders the 
calculation very complex and the Landauer formalism less useful. Yet this approach proves most useful for the study of transport in nanostructures. 
Let’s now see a few cases.  



Thermal Boundary Resistance

11

Let’s consider the heat flux at the interface between two materials at respective temperatures 𝑇𝑇1 > T2 . 
Phonons travelling towards the interface from both sides will be transmitted and reflected. 
If we take an isotropic material with only one atom per basis, based on our previous analysis we can write:

𝑞𝑞 = 𝑞𝑞1→2 − 𝑞𝑞2→1 = 𝑇𝑇𝑒𝑒𝑒 − 𝑇𝑇𝑒𝑒𝑒 �
Ω1>2𝜋𝜋

�
0

𝜔𝜔𝐷𝐷𝐷
𝑣𝑣1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1ℏ𝜔𝜔𝜏𝜏12

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐷𝐷1 𝜔𝜔
4𝜋𝜋

𝑑𝑑𝑑𝑑 𝑑𝑑Ω =
𝑇𝑇𝑒𝑒𝑒 − 𝑇𝑇𝑒𝑒𝑒

𝑅𝑅𝑒𝑒

𝑅𝑅𝑒𝑒 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑒𝑒 are the phonon temperatures. However, we are in a highly non-equilibrium situation and it is hard to correctly define a temperature.  

Indeed, at the interface we have three distinct groups of phonons:
• Incoming phonons with temperature 𝑇𝑇𝑒𝑒𝑒
• Reflected phonons with energy distribution depending on the convolution of the incoming phonons and the interface reflectivity
• Transmitted phonons with an energy distribution depending on the convolution of the phonons arriving from the medium 2 and the interface transmittivity

It is then clear that, even for an ideal interface, there will be a thermal boundary resistance as long as reflection occurs at such interface. 
For nearly ideal interfaces, the order of magnitude of 𝑅𝑅𝑒𝑒 is:

𝑅𝑅𝑒𝑒~
1
𝐶𝐶𝐶𝐶

𝐶𝐶 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 106 𝐽𝐽 𝑚𝑚−3𝐾𝐾−1 @300 𝐾𝐾

𝑣𝑣 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 103 𝑚𝑚 𝑠𝑠−1 @300 𝐾𝐾 𝑅𝑅𝑒𝑒~10−8 − 10−9𝐾𝐾𝑚𝑚2𝑊𝑊−1

This result is consistent with experimental data. Non-ideal interfaces will have larger values. 
Although this value is very small for a single interface, for nanoscale system with a large number of interfaces this resistance becomes dominant. Importantly, 
multilayer systems can exhibit distinct behaviors due to interference effects. 
In macro-scale systems, this value can also be large due to the absence of perfect contact.  



Universal Quantum Thermal Conductance
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Let’s now consider a nanowire with square cross section that connects two thermal reservoirs. 
Let’s neglect internal scattering and assume that the phonon transmissivity is unity for each mode.
We now want to calculate the thermal conductance of the nanowire: 

𝐾𝐾 =
𝑞𝑞12

𝑇𝑇1 − 𝑇𝑇2
𝑞𝑞12 = �

𝑝𝑝=1

3𝑚𝑚
1
𝑉𝑉

�
𝑘𝑘𝑥𝑥1=−𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑦𝑦𝑦=−𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑧𝑧𝑧=0

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔(𝑓𝑓 𝜔𝜔,𝑇𝑇1 − 𝑓𝑓 𝜔𝜔,𝑇𝑇2 )where

We thus need to compute the allowable wavevectors in this system. In the xy plane the wire acts as a 2D potential well and therefore the allowable modes are:

𝑣𝑣𝑧𝑧𝑧 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑘𝑘𝑧𝑧

= 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

At low T and for the first 
few modes (small m,n) 𝐾𝐾1 =

𝜋𝜋2κ𝐵𝐵2𝑇𝑇
3ℎ

Quantum thermal conductance of each modes

We observe that this conductance does NOT depend on the material properties. Thus it is the same for all the materials.
This quantum thermal conductance has been observed experimentally [1], although recently deviations have been recently reported [2] 

[1] https://www.sciencedirect.com/science/article/abs/pii/S0749603697905619; [2] https://www.nature.com/articles/s41467-018-06791-0

https://www.sciencedirect.com/science/article/abs/pii/S0749603697905619
https://www.nature.com/articles/s41467-018-06791-0
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https://www.nature.com/articles/srep46092

Phonons have the same statistics as photons and similar phenomena can be observed. 
In particular, when a superlattice is created, i.e. a periodic structure with repeated 
thin films of different materials, interference effects (analogous to Bragg-reflector 
effects) and tunneling effects can alter the thermal conductance. 

Under the assumption of no scattering, the thermal conductance of a superlattice can 
be computed and signatures of tunneling and interference have been identified. 
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Particle View Wave View
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𝒒𝒒𝒙𝒙 ?

How can we describe transport in a particle view accounting for the wave nature?
When and how does the wave-behavior affects energy transport?



In This Lecture …
• Energy transfer in Nanostructures (Landauer formalism)

 Thermal boundary resistance and Universal quantum thermal conductance

 Near field heat transfer and Superlattices

• From Waves to Particles

 Wave packets and group velocity

 Coherence lengths and heat transfer models
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From Wave to Particle – Wave Packets and Group Velocity

16

Wave Packet
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Wave Packet

Energy propagation: Group velocity

In the most general case:

HP: Δ𝜔𝜔 ≪ 𝜔𝜔

!!! The group velocity corresponds to the energy 
propagation velocity only if Δ𝜔𝜔 ≪ 𝜔𝜔 .  
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Electrons

Phase velocity Group velocity

𝐸𝐸 = ℏ𝜔𝜔

𝑣𝑣 =
𝜔𝜔
𝑘𝑘

𝑣𝑣𝑔𝑔 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜔𝜔 = 𝐸𝐸/ℏ 𝑣𝑣 =

ℏ𝑘𝑘
2𝑚𝑚

𝑣𝑣𝑔𝑔 =
ℏ𝑘𝑘
𝑚𝑚

We observe that it is the group velocity, and not the phase velocity, that satisfies the de Broglie relationship: 𝑝𝑝 = ℏ𝑘𝑘

However, in crystals we have that the wavevectors determined by he Von Karmann boundary conditions do not satisfy the classical momentum relationship:

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑝𝑝 = ℏ𝑘𝑘 ≠ 𝑚𝑚𝑣𝑣𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝

Thus we call  𝑝𝑝 = ℏ𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

And we use it to satisfy the momentum conservation rules and calculate the external force field: 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 =
𝜕𝜕 ℏ𝑘𝑘
𝜕𝜕𝜕𝜕

Indeed the periodic potential exerts its force onto the electrons. When using the crystal momentum however, one carries on the calculation as if the electrons were 
NOT subject to this internal field of the crystal. The group velocity defines the actual speed of motion of the electrons. 
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Should a wave or particle model be used to compute energy transport?

• If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (ballistic transport)

• If the phase of the carriers in unimportant, a particle approach can be used (diffuse transport)

• In between we have the partially coherent regime

Therefore, it is critical to determine a coherence length for the different types of waves in order to determine the most suitable energy transport model. We will 
now consider the three cases of electromagnetic waves, electron waves and acoustic waves.  



Coherence Lengths – Electromagnetic Waves
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The spatial spread of a wave-packet is: Δ𝑥𝑥 ⋅ Δ𝑘𝑘 ≈ 2𝜋𝜋 Δ𝑥𝑥 = 𝑙𝑙𝑐𝑐 ≈
2𝜋𝜋
Δ𝑘𝑘

=
2𝜋𝜋
Δ𝜔𝜔/𝑐𝑐

=
𝑐𝑐
Δ𝜈𝜈

As a rule of thumb, give a spatial domain of characteristic dimension 𝑑𝑑:

• Coherent/ballistic transport :

• Incoherent / diffusive transport :

• Partially coherent regime : 

𝑙𝑙𝑐𝑐 > 𝑑𝑑

𝑙𝑙𝑐𝑐 < 𝑑𝑑

𝑙𝑙𝑐𝑐 ≈ 𝑑𝑑



Coherence Lengths – Electromagnetic Waves

21

Different photons emitted by 
a source have no fixed phase 
relationship. Hence they do 
not interfere when they 
overlap and behave just like 
point particles. 

At an interface, the 
incident and reflected 
wave packets have a fixed 
phase relationship. Hence 
they can interfere and a 
wave model is necessary.

In a thick film (𝑑𝑑 ≫ 𝑙𝑙𝑐𝑐), 
transmitted and reflected 
photons can overlap but 
they do not have a fixed 
phase relationship, hence 
they only transiently 
interfere. They can be 
treated as particles (ray 
tracing)

In a multilayer structure, 
the same wave packet is 
split many times and 
therefore can interfere 
with its previous reflection. 
A wave model is necessary.

Although the coherence length is a reasonable indicator of the type of regime, it can fail when multiple interfaces are involved. 
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To calculate the transmissivity or reflectivity of a wave packet, it is possible to perform a 
Fourier decomposition, calculate the transmissivity and reflectivity for each component and 
then obtain for the wave packet:

Where 𝐽𝐽𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and Δ𝜔𝜔 is the spectral width of the incident photon. 

For the blackbody thermal radiation the energy spread is of the order of 𝑘𝑘𝐵𝐵𝑇𝑇 therefore the thermal coherence length is



Coherence Lengths – Electromagnetic Waves
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For Bragg reflectors the transmissivity calculated with the transfer matrix method reaches a constant 
value after a certain number of layer, independently of the thickness of the layers, while the ray-tracing 
method, which would be more suitable for a diffusive regime, shows a constantly decaying transmissivity 
value. 

Important parameters defining the most suitable model will be (i) surface roughness, (ii) non-parallel 
surfaces (iii) thickness variations.  

Randomness plays a very important role in multilayer structures. Indeed, random thickness variations can 
result in a phenomenon called Anderson localization which entails complete cancellation of waves at 
certain frequencies due superposition. 

This result in wave localization at certain frequencies with a subsequent decrease in the transmissivity. 
This is shown in the graph on the left where, as a function of the standard deviation of the randomness, 
the behavior can go from a wave picture to a ray-tracing. 

Localization is challenging to achieve in three-dimensional structures and often surface roughness can 
make even 2D structure effectively become 3D. 
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Each phonon has an energy 𝐸𝐸 = ℏ𝜔𝜔 (quantum oscillator) and we also know that in the Debye approximation we have 𝜔𝜔 = 𝑎𝑎 𝐾𝐾/𝑚𝑚𝑘𝑘. The dominant phonon 

wavelength is given by the Wien’s displacement law for phonons: 𝜆𝜆𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ℎ𝑣𝑣𝑠𝑠
4.965𝑘𝑘𝐵𝐵𝑇𝑇

. At room temperature the phonon wavelength is of the order of ≈ 10 − 20 Å . 

As a consequence, roughness present at the interface can easily cause scattering of phonons. Therefore, although scattering of phonons with boundaries and 

impurities is elastic, interface roughness tends to randomize the phase and the particle approach is likely to be valid in most situations. Nonetheless, it has been 

shown that in superlattices thermal conductivities both in-plane and out-of-plane are significantly reduced compared to the bulk values.  Also, they depend on the 

structure of the superlattice. 

Phonon-phonon scattering is an inelastic process and its mean free path can be very long (2500− 2300 Å). 

[1] https://www.sciencedirect.com/science/article/pii/S1631070516300871?via%3Dihub

https://www.nature.com/articles/srep46092

P = interface specularity parameter
(specularly reflected phonons are 
assumed to be coherent)

wave particle

Photon tunneling 
increases 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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While photon scattering is mostly an ELASTIC process (same energy and wavelength) , 

electron scattering can be both ELASTIC and INELASTIC (change in both direction and energy). 

• Scattering with impurities and boundaries is typically elastic. Nonetheless, the random location of impurities can introduce sufficient randomness in the phase  

to make the particle approach valid

• Scattering with phonons is inelastic. The location of the scattering event is ever changing and hence he phase becomes randomized, making the particle 

approach valid. 

For electrons it is possible to define three critical lengths:

• Mean free path: average distance between successive scattering events

• Phase coherence length (Thouless length): depends on the diffusivity

• Thermal length: due to the thermal broadening ∝ κ𝐵𝐵𝑇𝑇

Λ ≈ 𝑣𝑣𝐹𝐹𝜏𝜏 Where 𝜏𝜏 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑣𝑣𝐹𝐹 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
Λ𝑖𝑖𝑖𝑖 ≈ 𝑣𝑣𝐹𝐹𝜏𝜏𝜙𝜙 Where 𝜏𝜏𝜙𝜙 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (inelastic scattering mean free path)

Λ𝜙𝜙 ≈ 𝑎𝑎𝜏𝜏𝜙𝜙
1/2

Where a = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ 𝑣𝑣𝐹𝐹2𝜏𝜏

Λ𝑇𝑇 ≈ 𝑎𝑎𝑎/κ𝐵𝐵𝑇𝑇 1/2

For Λ𝑇𝑇 > Λ𝜙𝜙 Inelastic scattering is the dominant phase destroying mechanism. If the structure characteristic length 𝐿𝐿 > Λ𝜙𝜙 then no quantum states are 
formed and therefore the particle approach should be used.

For Λ𝑇𝑇 < Λ𝜙𝜙 Thermal excitation is the dominant dephasing mechanism. If 𝐿𝐿 > Λ𝑇𝑇 the wave and particle approach will converge to the same result 
(except for periodic structures).  
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• If the phase of the carriers is important (interference effects), transport is coherent and the wave approach must be used (ballistic transport)

• If the phase of the carriers in unimportant, a particle approach can be used (diffuse transport)

• In between we have the partially coherent regime

Therefore, it is critical to determine a coherence length for the different types of waves in order to determine the most suitable energy transport model. We will 
now consider the three cases of electromagnetic waves, electron waves and acoustic waves.  
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Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Thermal Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

Energy Transport by Waves
(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)
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Let’s consider the heat flux at the interface between two materials at respective temperatures 𝑇𝑇1 > T2 . 
Phonons travelling towards the interface from both sides will be transmitted and reflected. 
If we take an isotropic material with only one atom per basis, based on our previous analysis we can write:

𝑞𝑞 = 𝑞𝑞1→2 − 𝑞𝑞2→1 = 𝑇𝑇𝑒𝑒𝑒 − 𝑇𝑇𝑒𝑒𝑒 �
Ω1>2𝜋𝜋

�
0
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• The above expression can be calculated using the Snell’s law for phonon only if phonon scattering at the interface is specular and elastic (no change in frequency). 
This requirements are satisfied only at very low temperatures when the phonon wavelengths are long. In this regime we observe:

• At room temperature the phonon wavelength is of the order of ≈ 10 − 20 Å . As a consequence, roughness present at the interface can easily cause scattering of 
phonons. Hence, specular and elastic conditions are no longer satisfied and we need a model for the transmissivity at high T to be able to calculate the boundary 
resistance. 

𝑅𝑅𝑒𝑒 ∝
1
𝑇𝑇3

𝐶𝐶 𝜔𝜔 ∝ 𝑇𝑇3
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Diffuse mismatch model – phonons emerging from the interface bear no relationship with their origin 

HP. linear dispersion of acoustic phonons 𝜔𝜔 = 𝑎𝑎 𝐾𝐾/𝑚𝑚𝑘𝑘

(Low T approximation)

(High T approximation)

We observe that this approximation cannot be valid when the two materials are very similar and fails completely when the two materials are equal, i.e. we are 
considering an imaginary interface within the same material. Indeed in this limit the thermal boundary resistance should be zero but none of these models 
capture this correctly. 

This leads us to an important observation. 
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Previously we have written:

𝑞𝑞 =
𝑇𝑇𝑒𝑒𝑒 − 𝑇𝑇𝑒𝑒𝑒

𝑅𝑅𝑒𝑒

Where 𝑇𝑇𝑒𝑒 are the phonon temperatures. Yet, we now realizes that we are in a highly non-equilibrium situation and it is 
hard to correctly define a temperature.  

Indeed, at the interface we have three distinct groups of phonons:
• Incoming phonons with temperature 𝑇𝑇𝑒𝑒𝑒
• Reflected phonons with energy distribution depending on the convolution of the incoming phonons and the interface reflectivity
• Transmitted phonons with an energy distribution depending on the convolution of the phonons arriving from the medium 2 and the interface transmittivity

Therefore the phonon energy spectra at the interface are very different from those of the incoming phonons and cannot be represented by an equilibrium 
distribution with a single temperature 𝑇𝑇. 

Instead, assuming that the phonons adiabatically approach an equilibrium condition, we define an equivalent equilibrium temperature, which is a measure of the 
local energy density rather than the spectral characteristics of the energy distribution: 
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We thus re-write:

In practice, we can rarely measure 𝑇𝑇𝑒𝑒 and therefore the thermal boundary resistance is obtained on the basis of the equivalent thermal equilibrium temperature. 
This must be taken into account when analyzing the experimental data with the models discussed above. 

It is then clear that, even for an ideal interface, there will be a thermal boundary resistance as long as reflection occurs at such interface. 
For nearly ideal interfaces, the order of magnitude of 𝑅𝑅𝑒𝑒 is:

𝑅𝑅𝑒𝑒~
1
𝐶𝐶𝐶𝐶

𝐶𝐶 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 106 𝐽𝐽 𝑚𝑚−3𝐾𝐾−1 @300 𝐾𝐾

𝑣𝑣 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 103 𝑚𝑚 𝑠𝑠−1 @300 𝐾𝐾 𝑅𝑅𝑒𝑒~10−8 − 10−9𝐾𝐾𝑚𝑚2𝑊𝑊−1

This result is consistent with experimental data. Non-ideal interfaces will have larger values. 
Although this value is very small for a single interface, for nanoscale system with a large number of interfaces this resistance becomes dominant. Importantly, 
multilayer systems can exhibit distinct behaviors due to interference effects. 
In macro-scale systems, this value can also be large due to the absence of perfect contact.  
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Let’s now consider a nanowire with square cross section that connects two thermal reservoirs. 
Let’s neglect internal scattering and assume that the phonon transmissivity is unity for each mode.
We now want to calculate the thermal conductance of the nanowire: 

𝐾𝐾 =
𝑞𝑞12

𝑇𝑇1 − 𝑇𝑇2
𝑞𝑞12 = �

𝑝𝑝=1

3𝑚𝑚
1
𝑉𝑉

�
𝑘𝑘𝑥𝑥1=−𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑦𝑦𝑦=−𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑧𝑧𝑧=0

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔(𝑓𝑓 𝜔𝜔,𝑇𝑇1 − 𝑓𝑓 𝜔𝜔,𝑇𝑇2 )where

We thus need to compute the allowable wavevectors in this system. In the xy plane the wire acts as a 2D potential well and therefore the allowable modes are:

𝑞𝑞12 = 3
1
2𝜋𝜋

�
𝑚𝑚,𝑛𝑛

�𝑣𝑣𝑧𝑧𝑧ℏ𝜔𝜔(𝑓𝑓 𝜔𝜔,𝑇𝑇1 − 𝑓𝑓 𝜔𝜔,𝑇𝑇2 )𝑑𝑑𝑘𝑘𝑧𝑧 = 3
1
2𝜋𝜋

�
𝑚𝑚,𝑛𝑛

�ℏ𝜔𝜔(𝑓𝑓 𝜔𝜔,𝑇𝑇1 − 𝑓𝑓 𝜔𝜔,𝑇𝑇2 )𝑑𝑑𝜔𝜔

𝑣𝑣𝑧𝑧𝑧 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑘𝑘𝑧𝑧

= 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑞𝑞12 = 3

(𝑇𝑇1 − 𝑇𝑇2)
2𝜋𝜋

�
𝑚𝑚,𝑛𝑛

�
𝜔𝜔𝑚𝑚𝑚𝑚

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
ℏ𝜔𝜔

𝜕𝜕𝜕𝜕(𝜔𝜔,𝑇𝑇)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 Where 

𝐾𝐾 =
3
2𝜋𝜋

�
𝑚𝑚,𝑛𝑛

�
𝜔𝜔𝑚𝑚𝑚𝑚

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
ℏ𝜔𝜔

𝜕𝜕𝜕𝜕(𝜔𝜔,𝑇𝑇)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
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