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Wave-particle Duality EPFL

The wave nature of material particles gives rise to quantum mechanical effects!
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From Quantum States to Macroscopic Properties
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Energy Transport EPFL
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What are the peculiarities of energy transport by waves?



Energy Transport by Waves EPFL

It can be always demonstrated that the energy U transported by a wave is proportional to the square of its amplitude:
— 2
U o |D|

Contrary to classical particles, waves can be transmitted or reflected across an interface. Therefore, the energy transported on either side
will depend on the amplitude of the transmitted and reflected component.

Incident wave

Before
reflection

(@  After -V
reflection _/\
W Transmitted wave

Reflected wave

Furthermore precise phase relationship between different waves can lead to constructive or destructive interference phenomena that
results in a maximization or minimization of the transported energy.

The wave nature of material particles give also rise to unique effects such as tunneling.



This Lecture EPFL

L L Energy Transport by Waves
(Ch. 5)
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In This Lecture ... EPFL

Plane Waves and Energy Transport*
» EM waves and Poynting vector
» Electron Flux
Plane waves at an interface
» Fresnel coefficients
» Electron transport at an interface
Plane waves propagating in a multilayer structure (multiple interfaces and periodicity)

Evanescent waves and tunneling

*We will focus on photons and electrons. The detailed analysis for phonons can be found in the book (Ch. 5) and in a short version, in the supplementary

slides. Indeed, as we will see, due to the very short wavelength of phonons it is very difficult to observe their wave nature.



Plane Waves and Energy Transport EPFL

_

D, = AetkTemi(wt) = 7 p=ilet) » ® = Re {Ee'i(wt'E'F)}

_

d = /Tcos(wt — k- )+ Esin(wt — k- r)

B & =C(Pe@d C(7F) = 4, + iB,

How do we calculate the wave equation associated with different types of (material) waves?

What is the energy flux associated with different types of (material) waves?



Wave Energy Transport - Photons

The transport of photons is governed by Maxwell’s equations, i.e. the propagation equations of the electromagnetic waves. There are four fields to consider:

E = electric field vector [V /m]

—_

H = magnetic field vector [A/m]

D = electric displacement [C/m?]

—_

B = magnetic induction [N/Am]|

'

Fields generated by the motion of ions and electrons
under the force of the electric and magnetic fields.

=PrL
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Wave Energy Transport - Photons

The transport of photons is governed by Maxwell’s equations, i.e. the propagation equations of the electromagnetic waves. There are four fields to consider:

E = electric field vector [V /m] - VXE = — aa_B

~ t

H = magnetic field vector [A/m] )
VxH=—+],

- J at ]e

D = electric displacement [C /m?]
B V-D =p, p. = net charge density [C /m3]

B = magnetic induction [N/Am]|
l V-B=0

Fields generated by the motion of ions and electrons
under the force of the electric and magnetic fields.

To connect the E , H to D and B we need to introduce the physical properties of the material through the constitutive equations. We have:

D=€OE+ﬁ ﬁ=eoxf? §=uﬁ ]e=ael?7

where where where

U = magnetic permeability

£o= vacuum permittivity = 8.85 - 107 12[F /m]
1= g =4m-1077[H/m]

P = polarizability [C/m?] Non-magnetic materials:
Diamagnetic materials: u < U

X = susceptibility
Paramagnetic materials: U4 > Uo

=PrL

o, = electrical conductivity [1/Qm]

11



Wave Energy Transport - Photons EPFL

. 9(VXB)

To identify the form of the solution to Maxwell’s equation we calculate: VXVXE=— 5t

N N -~ 1 _ N N
For p, = 0 (no net charge) and ¢ independent of space VXVXE = V(V . E) — V2F = _v(v . D) —V2F = —V2F
€

o(vxB)  a(VxH)  9*D 9], 0% O
o Mo T THgir TR T THE Gz T HOe Ty

92 E P E Wave-equation
» VZ E = UE + uo Damping term determined by the absorption by free-electrons.
2 e _ .
ot ot If 6, = 0 no damping

N

_ —_— . - - - .O- 71, — J—
We guess: E.(r,t) = Eoe—l(wt‘k'r) » k-k=puw? [80(1 +x) + lf] B |k| = JUE W = C—Ow

O, _ Op O, &, = complex permittivity [F/m]
where g =g+ + i— =& 1+ + l_eow = £y&, & =0+ + e e = complex relative permittivity
1
Co = Cc = Co/N
VHo<€o
£ n = (real part)refractive index
N = Hee =n+IK N = complex refractive index ( partjref

Hoéo k = (imaginary part) refreactive index
= extinction coef ficient

It can be shown that an electromagnetic wave in vacuum must be a transverse wave,i.e. E L H 1 k 1



Wave Energy Transport - Photons EPFL

We now consider an electromagnetic wave traveling along x (E = +k,) with electric field polarized along y and magnetic field along z, we have:

, —N
— —iw(tF=—x) .
E.(y,t) = Eyoe ( Co )y
- =+
— —iw(t?ﬂx) HZO ~HUCo EyO
H.(y,t) = Hye © 2z

We now want to find an expression for the energy flow associated with an electromagnetic wave. Again we need to manipulate the Maxwell equations:

_ _ 9 . _
H-(VxE)=—-(H-B) IR IS EE R S o o1 - — 1 - -1 - _
- —V-(ExH)=E[E,uH-H+EsE-E]+E-]e B —fﬂv-(ExH)dv=ﬁf E[EMH-H+55E-E]+E-]Q av

N

R . 0D, . . _
E-(VxH)za(E-D)Hz-]e

» —#(Efﬁ)-ﬁdA=jﬂ{%Euﬁ-ﬁ+%el§-l§]+fiﬁ}dv
|

Instantaneous Magnetic energy Dissipation (joule
energy flux INTO density [J/m3] heating) [W /m3]
the control volume Electric energy

2
[W/m*] density [J/m3]

. . . . t+T . 1 N L
B S = E X H Poynting vector > (S) = —f Sdt' = ERe{EC X H:} Time averaged Poynting vector
t

13



Wave Energy Transport - Photons

We now want to calculate the time average Poynting vector for a plane electromagnetic wave travelling in a material with complex refractive index N.

. N . N
F.8) = Byoe (55 T0,0) = Hype a0z = % e e, N=yE =ntix
0
N . (., N* N* . (. N* '
c\J"> = Iy, Co™ Z = Oel Co /7 =1n —
» H:(y,t)=H Oelw(t 0 )“ e E; w(t x)“ N*=n-—ik
0

| — 1 N* . —io(t-Xx) iw i ) B 1 n—ik (22K, -
» (S) = ERe{EC XHC} =§R6{EyOM_COEyOe ( Co )e ( €o )} (¥ x2) =5Re{ 1Cy e( co )}Eﬁox
4
2 (§) =%'uice(_zs)—okx)E§03?=%£e(_%x>E§03? Wherewzkcz%"c
0 0
— 1 n 4
B ( ) = E—e( “x)Ef,Ox where o = —— = absorption coef ficient
Huco l 0

The energy decreases

The energy is proportional to
exponentially 8Y s Prop

the square of the amplitude

=PrL
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Wave Energy Transport - Electrons EPFL

For a free electron (U = const) we can show that the wavefunction is a plane wave*:

2m(E — U)

qjt — Y(t)‘P(x) — Ae—i(wt+kx) + Be—i(wt—kx) k = —

Furthermore we have seen that from the Schrodinger equation we can derive a continuity equation from which the particle current (or flux) can be calculated as**:

L ih ih

*see Lecture L3, slide 12 for the case U=0 **see Lecture L3, slide 10 15



Plane Waves and Energy Transport - Summary EPFL

o/ No -
E(F, t) _ E—O*e—w)(t—ak-r)
Photons (S) = IR {F X F}
co = 1/vIo€o — 2B T e
N =n+ ik

q”t — Ae—i(a)t+kx) + Be—i(a)t—kx) . ih
Electrons J(r,t) = Re [—lPtV‘Pt*]
k =/@m(E — U))/h"2 m

T’Tl — aATle—i(wt—kTIAc-F)

~ : - - 1 .
Phonons U = 4 X kA e {(@t—krkT) Jac = _ERe[v* ¥

v = ,;ALe—i(wt—kLk-f)

How do waves transfer energy across an interface?

16



In This Lecture ... EPFL

Plane Waves and Energy Transport*
» EM waves and Poynting vector
» Electron Flux
Plane waves at an interface
» Fresnel coefficients
» Electron transport at an interface
Plane waves propagating in a multilayer structure (multiple interfaces and periodicity)

Evanescent waves and tunneling

*We will focus on photons and electrons. The detailed analysis for phonons can be found in the book (Ch. 5) and in a short version, in the supplementary

slides. Indeed, as we will see, due to the very short wavelength of phonons it is very difficult to observe their wave nature.

17



Plane Waves at an Interface - Photons EPFL

™ When an electromagnetic waves reaches an interfaces it can be reflected or refracted.
We need to take into account the polarization of the wave with respect to the interface.

* Transverse Magnetic (TM) wave (also called p-wave or // wave)

_3 N

» The component of the electric field perpendicular to the interface changes with the

The electric field lies in the plane of incidence

angle of incidence

Transverse Electric (TE) wave (also called s-wave or 1 wave)

» The electric field is perpendicular to the plane of incidence

Symbol Convention:

» The electric field is only parallel to the interface and its magnitude does not change

@ Field Going Out of Paper with the angle of incidence
& Field Going Into Paper

18



Plane Waves at an Interface - Photons EPFL

To solve the problem we need to define appropriate boundary conditions at the interface.

™
It can be shown from Maxwell equations that the following conditions must be satisfied at the interface*:
x »; The difference of the normal components of the displacement fields is related to the net
S ne(D; —Dy) = ps surface charge density ps
B nx(E—-E)=0 The tangential components of the electric field must be continuous
Ne (B, —B)) = 0 The normal components of the magnetic induction field must be continuous
o U nx (H, —Hy) = p A The difference of the tangential components of the magnetic field is related to the net
Sl surface current density J

We consider a plane TM wave (shown in the picture) propagating from the lossless medium 1 to lossless medium 2 with an incidence angle 6;.
The incident, reflected and transmitted electric fields can be written as:

! nixsind; + nizcosd;
Eyiexp [—m (r -
4]
nix sinf, — niz cos!ﬁi,,.)'I n n \
E/jrexp|—i@|t= Hy = —Ey(forward), H, = ——— E(backward
p exp[ m( 7 | Y= 2y (f ) e // (backward)

E o [ ¢ " napx sin@; — nazcos b, )"
exp| —iw |t —
2B _ €o i

*see Griffith, Ch. 7 19



Plane Waves at an Interface - Photons EPFL

™ [, nyx sin 6; + nizcos6;
Eyiexp|—iw|1— %
R nix sinf, —nyzcosé; n n ;
e _ = E/rexp|—iw|t— H, = — Ey(forward), H, = ——— Ey(backward)
g S A ' o pcg - uep
% 200 = " npx sinf; — nazcosb,
E Ejrexp| —iw |t — o
, ' {. mxsing; | . mxsiné, . naxsmb,
For an interface free of charge we get: cos6; Ey; exp zwc* + cos & Ejr exp | io———— | = €08 O E) exp |io—————
0 co co
» n,sinf; = n,sinb, = n,sinb;
» n,sinf; = n,sinb, 0; =0, Snell’s law
Additionally we obtain the following expressions for the fields:
cos6; Eyy; +cos6;Ey, = cos 6, Ey, mEyi —nEyr =nEy,

20



Plane Waves at an Interface - Photons EPFL

™ i in 8: 0;
B i | 54 (‘ _ mxsing; :;nlzcos .)] cos & Ey; + cos6; Eyr =cos 0:E
i inf, —n1zcosb Iu -

= - E/; exp L—iw(r = ALl ’CO L ’)] mEyi—niEyr =nEy,
s Sl 3
z;é‘;."l;‘f;\ “ i i
e = nox siné; — nazcos b,
E ' Ejrexp| —iw |t — 2

=
i

We define a reflection and a transmission coefficient as the ratio of the amplitudes of the electric fields. These are also called Fresnel coefficients.

y Ey,  —nycos 8; + ny cos &, S S
i S . 2 FL =
TM wave: E”' ng coby 37 OB K TE wave: = ni cos 6; + ny cos 6,
X Ey 2n1 cos 6; 211 cos;
// E//,' np cos 6; + ny cos & 1, = n10080; I 12 c03 6,

Note: For an absorbing medium, we need to use the complex N instead of the real n. If N, is complex we obtain a complex refraction angle 8; which

corresponds to an inhomogeneous wave, i.e. where constant amplitude and constant phase surfaces do not coincide.
21



Plane Waves at an Interface - Photons EPFL

™ Once the fields are known we can calculate the energy fluxes. For a TM wave we have:

1 S 4 R
(S). = -;—Re(E x HY) = —ERe(EzH_,,)x + ERe(E, Hy)z

&3 AN n = Ne. n A
& e W = E%/ sinf X + ——-—E}Z/ cosf z

% 2uco 2pc0 _

~€ L i - oo " : A a)

1 ; K ‘z e o Parallel to Across the

the interface interface

We thus define the reflectivity and the transmissivity by calculating the ratio of the power normal to the interface S; , :

_ Syrz — S 12 e |2
Ry = s,/,-,:ﬂ— 5,0 = I/ Ry =|r1|
TM wave: TE wave: Re(N-
£y = Sy/t.z _ S/t _ Re(N; cos ;) lt |2 = RCENZEZ:?; 212
Syiz  Syi Re(Njcos6;) ' 1 cos ;

For a non-absorbing medium: R+4+7=1

F

ky =k
ky + ky

Ny —ny
Ny +nyq

P (2 —n)? + (e — k)’
(n2 +n1)? + (k2 + Kk1)?

At normal incidence: R = Ry=R, =

22



Plane Waves at an Interface - Photons EPFL

We observe two interesting conditions:

—r—T 77—
1 F Gold (wavelength=10 |.|:I. TE). =

0.8 -

REFLECTIVITY
(=]
o
-

04 -

0.2

o..r.;.l..-l..\.‘(.

0 20 40 60 80
INCIDENT ANGLE

When tanfg = n,/n, then the reflectivity of a TM wave, rj; = 0 When n; > n, there exist a critical angle 8. above which no real solution for 8, exists:

and therefore only the TE component is reflected.

This angle is called Brewster angle. nysinf, = nysin(/2) = §. = arcsin(n,/n;)

This is the condition of total internal reflection. We will see later what it means

23



Plane Waves at an Interface - Photons EPFL

Let’s now briefly consider the dissipation. For example, let’s consider a laser beam incident on a metallic film (normal incidence). Knowing the complex
refractive index of the metal at the laser wavelength, we want to determine the energy dissipation profile.

From the Poynting vector expression we know that the energy flux decreases exponentially inside the metal, thus the intensity will be equal to:

1= N|? 4k
% ")
o . : dl R |
Thus the heat dissipation will be : g = i = (1 = R)alie® [Wm™"]
X

We observe that, is the medium is infinite the energy transmitted into the medium will be eventually absorbed, hence the transmittivity equals the absorptivity. We
remind that based on Kirchoff’s laws, the emissivity is equal to the absorptivity at the same incident direction and wavelength.

24



Plane Waves at an Interface - Electrons EPFL

P(ITEP:TIAL When an electron reaches the interface between two materials we expect it will be subject to a different potential.
¥ We can thus understand what will happen by calculating the transmission and reflection of an electron wave at a potential step.
'V‘ UO .
» Incident wave: P, = A;e"i(@t=kix)
-— . : .y P
W Reflected wave: W, = A, e~ {(@t+ki®) w="L k= Vz’ mE = |mE ——_
; h ne e \/ h
> Transmitted wave: WY, = A te-i(wt—kzx)

To find the amplitudes of these three waves we need to apply continuity of the function and its first-derivative at the interface. We obtain the reflection and
transmission coefficients:

r=—=——andt=—=———
Aj ki + k2 A; ki + k2

We then know that to each wave we have an associated flux of particles f We can thus calculate the reflectivity and transmissivity of the electron flux:

2
R = _J_’_ = 511_:_k_2‘ e ForE > U,, the wave will be partially transmitted and partially reflected. This is contrary to
Ji ki + k i the common experience of classical mechanics and it is a quantum effect dictated by the
wave nature of the particle.

J;  Re[k3AAf] 4 Re(kik})
T=-—= = =1- e ForE <U,, k, isimaginary. Therefore ¥, is an evanescent wave (exponential decay). It can

Ji  RelktA;A? 2

i e[ 1 A i] k1 + k2| be shownthat R = 1and 7 = 0.

25



Plane Waves at an Interface EPFL

Photons Electrons Phonons
E |
ne C K POT H?:T'AL MEDIUM 1 : RANSVERSE
i A 'y
A9, . B SIS I N ! RANSVERSE
n, X ‘l" U, WAVE I
= P 1 > I LONGITUDINAL
E z ® t ————
ek — L
b v > LONGITUDINAL
{0 . TRANSVERSE
R S RS 0 :DIUM 2 LN TRANS VERSE
Reflection and Refraction Reflection and Transmission Reflection and Refraction
TM and TE waves Evanescent Wave for E<U Coupling between different polarizations
Brewster Angle & Total Internal reflection Reflection even for E>U

How do we describe wave propagation across multiple interfaces?
What happens in periodic structures?

How does the thickness of a layer impact the propagation?

26



In This Lecture ... EPFL

Plane Waves and Energy Transport*
» EM waves and Poynting vector
» Electron Flux
Plane waves at an interface
» Fresnel coefficients
» Electron transport at an interface
Plane waves propagating in a multilayer structure (multiple interfaces and periodicity)

Evanescent waves and tunneling

*We will focus on photons and electrons. The detailed analysis for phonons can be found in the book (Ch. 5) and in a short version, in the supplementary

slides. Indeed, as we will see, due to the very short wavelength of phonons it is very difficult to observe their wave nature.

27



Wave Propagation in Thin Films EPFL

When multiple interfaces are present, there will be a superposition between reflected and transmitted waves at
every interface:
» Depending on the thickness of the layer, the reflected and transmitted waves can interfere constructively or

destructively.
» The observed reflection and transmission will depend on the thickness of the layer.

hin film of thick d bl d h r AT r2332i¢2 = 3121238""’2
For a thin film of thickness d it is possible to demonstrate that : s : N :
b 1 + riprozeie 1+ riarpelin
- . - . wn,dcosb, .
where 1;;, t;; are the Fresnel coefficient of the interface between material iandjand ¢, = — = spatial phase
0

R=r= rlzg + r223 + 2r12r23|cos 2, f— Oscillates with the thickness

1 + 2ryar23 cos 2 rZr2
For a non-absorbing thin film it is then straightforward to obtain: AT 92+ I’

nycosf; - 1 +2rjaraqcos 29 -|-r122r§3
. Re(Nicos6) . _ Re(scost) .,
For an absorbing thin film, instead, we should use the complex refractive indices: R = rr = Wt”t” o m ltl
28



Wave Propagation in Thin Films — Photons EPFL

=i
o

E 4 b ' i . Oscillatory behavior of transmission and reflection as a function of the thickness of the thin film
. I L Transmisslvity ]

;S b 3 b 5] B ] > Interference phenomenon characteristic of wave behavior

- R T s IR L

= e ol Wik s - 3 PN

3 OO R R ' N 1§ T , mlg

g 0.6 ~, \: 'I ST AT "i.‘-: AL s The peaks appear for thicknesses d such as: Sln2g02 =0 » d=

L7 l : “ i Vo L i ‘ ¥ i ] 4n,cos0,

|2} o L1 b " v ] h

t P ! o ’ 1 1 I 1 ! = |

2] 0.4 e 8 I« ! ’l N LI i.u N " " .. .

g' f ’ . ‘ 150 Fes "‘ ’ o .-.\ , A7 And the reflectivity is: :

| i Vi il I i ‘ ri2 — 3 \2 niny — n3

JE L . ! ! o! { ’\ 1 R = _1.2___..32.. — __1_3_____% (foroddm_—_21+1)

Eoz ‘ [ || Rene ‘ | | 1 —ripry nin3 + nj

g ” ’ ria+ra ny —n3\?

w oo : R=]——— | = (foreven m = 21)

3 1+ ryara3 ni+ ns

FILM THICKNESS (um)

)

We observe that it is possible to minimize R by appropriate choice of n,, n; and this constitute the basis of anti-reflection coatings.
Further manipulations of the reflectivity and transmissivity are possible using multiple layers.

29



REFLECTIVITY

Wave Propagation in Thin Films — Photons EPFL

PR ¥ | A P | Y-

1

1.5 2 2.5
WAVENUMBER=1/WAVELENGTH (pm™

A special case of multilayer films consist in a periodic arrangement of two thin layers with different refractive indices.
Each layer has a thickness equal to a quarter of the light wavelength inside the film.

This structure is called a Bragg reflector. Indeed the coherent superposition of all the reflected fields can generate a
reflectivity of 100% . The spectral range for which this occurs is called stop band .

The condition for 100% reflectivity is that in one period of the structure the total phase accumulation is a multiple of 2w

4:m|d| C0891 41'[”2(12 00892 P
-+ —
A0 A0

28

This can be re-written as
ka =lIr where a =nqyd,cos8; +nyd,cos0,
We observe that this is identical to the condition for the formation of an electronic bandgap in a crystal!!
We thus see that it is the wave nature of the electrons combined with the periodicity of the crystal to give rise to

destructive interference effects that result in the absence of propagation of the wave in the material. Similarly to
natural crystals, we can create photonic crystal and phononic crystals by engineering the periodicity.
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In This Lecture ... EPFL

Plane Waves and Energy Transport*
» EM waves and Poynting vector
» Electron Flux
Plane waves at an interface
» Fresnel coefficients
» Electron transport at an interface
Plane waves propagating in a multilayer structure (multiple interfaces and periodicity)

Evanescent waves and tunneling

*We will focus on photons and electrons. The detailed analysis for phonons can be found in the book (Ch. 5) and in a short version, in the supplementary

slides. Indeed, as we will see, due to the very short wavelength of phonons it is very difficult to observe their wave nature.
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Plane Waves at an Interface EPFL

Photons Electrons Phonons
B
N K, POTENTIAL MEDIUM 1 RANSVERSE
i A 'y
M o |0/ AE, o SR I N ! RANSVERSE
o, _é ‘." Uo WAVE I
B o 1 2 : LONGITUDINAL
E ) t - ——
0y W, » LONGITUDINAL
4 . TRANSVERSE
R S RS 0 :DIUM 2 LN TRANS VERSE
Reflection and Refraction Reflection and Transmission Reflection and Refraction
TM and TE waves Evanescent Wave for E<U Coupling between different polarizations
Brewster Angle & Total Internal reflection Reflection even for E>U

Let’s focus briefly on the evanescent waves and their physical implications for transport across multiple interfaces
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Evanescent Waves and Tunneling - Photons EPFL

ny sin 6 - : g

Snell’s law tells us that: sinf, = o Thus if n, > n, we can have: et i G
» 2 )
: . [{m1sinb; .
» cos(91=\/l—sm20,=;\/<__'___'_) — 1 =i|cos |
ny
i f nzxéineg —njzlcose, \1 1y = Eje I 2nj cos 6;

We now consider a TM wave such that: = Ey; £xp -tw f"' e Eji - macos +nicost,

s ;
ST G ST R W R S
S R S bl alen s e R S

ny cos B (X cos 6, — zsin ;) , nax sin naw Exponentially decayin
» e : ——|Eiy|exp | —iw (1 — ——— [ exp [ —z——| cos g, || Porenialy cecaving
nacosf; + ny|cosbli o co wave

» -
"~ 2mny |cos 6|

1 2 Instantaneously there is an energy flux across the interface but the time
(S2) = ERC(E x HY); = ERC(ExHy)z =0 average is zero when we have an evanescent wave.

This condition corresponds to total internal reflection.
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Evanescent Waves and Tunneling - Photons EPFL

If the material with n, is sufficiently thin and is followed by a material where the wave can become again propagating, we will have
tunneling of photons across the layer. For a thin layer of thickness d (see transfer matrix method in Sl):

; -tut_zgexp[f--—’ - 115 ] B Re(ns cos ;)

= e T = |t]?
~ l4rpraexp [-,-‘—’{];—-w""_ — ] "y €0s 0y
For n, > n; we can find the angles; for which a real 8; can be obtained: sin~! (n_z) < <sin”} (2)
n n

If the tunneling medium is non-absorbing, we willhave: R=1-17<1

An analogous behavior can be obtained also for phonons.
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Near-field Radiative Heat Transfer EPFL

25y 4 16 August
§ ® » 19 August
& Q (mbl) + 19 August
* ' * 20 August
w :g;ﬁuﬂgﬂ;‘ In Lecture 10, slide 24 we demonstrated how the Planck’s blackbody radiation law can be obtained once
% o 23 August the statistical distribution of the photons is known.
201~ ﬁ 20 AR However, in obtaining such expression we have implicitly assumed that all photons are associated with a
3 1 propagating wave.
"%’% :
. i
15% ?\gw,g:&;zﬁ,v:f f;" "; 4 When two plates are brought in close proximity and the radiative heat transfer is dominant (vacuum), tunneling
by : " s Mg, 8 through the small gap modifies the heat transfer compared to the Plank’s law. In particular, the radiation flux
) 2 3 4 5 5.8 increases as the vacuum gap decreases. This can become important for applications such as thermophotovoltaics.
Distance between plates (um)
107 1 l o . . o .
S : When two identical objects are separated by a small gap with refractive index n, it can be shown that the
St F 5 ' maximum radiative heat transfer can be increased by n? times the blackbody radiation heat transfer thanks to the
: v, tunneling of an internally reflected wave.
— \
= oM
o 10
o
o .
o Surface waves, such as surface plasmon or surface phonon polariton, can also tunnel across the gap, further
' E = enhancing the near-field radiative heat transfer.
X 1072}
E »
: Finally, we note that interference and tunneling effects will also alter the radiative properties of thin films grown
on substrates. In particular the emissivity will change with the film thickness.
'0'13 Sl i :
1, 010° 110" 210" 310"
; w(rad 871) .
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Evanescent Waves and Tunneling - Electrons EPFL

POTENTIAL For E < Uy, k, isimaginary. Therefore ¥, is an evanescent wave
2ilkale2k | = |2l )
t — . i —
ki +ilkal : "
I _
5= — Uy—E=1eV, §~2A

If the barrier is sufficiently thin, the wave can become again oscillatory beyond the barrier k; € Re and
U P therefore overall we have a net transmission of the electron across the barrier even if initially E < U,.

This process is called tunneling and it is a clear manifestation of the wave nature of electrons. The tunneling
transmissivity through a potential barrier of height U, and width d is:

F\PZ \}; t(E) 5 4E(Uy — E)
| d | 4E(Up — E) + U} sinh®[/2Zm(Up — E)d /h]
MU
—_ = —E
5 T A IGE(ZOZ E) exp[—2y/2m (Ug — E)d/h] = i (gg )8—2"‘2'd
0 0

Important instruments such as the scanning tunneling microscope are based on this phenomenon!!
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Next Week EPFL

Higher
Kinetic Energy Lower

’\Kinetic Energy

Hot
, ) q, ?
'Ty
X

Particle View Wave View

How can we describe transport in a particle view accounting for the wave nature?
When and how does the wave-behavior affects energy transport?
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Next Week EPFL

N\
Energy Transport by Waves
(Ch. 5)
J

Energy Transport by
Particles (Ch. 6 -7)

I—’[ Classical Laws




=PrL
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Wave Energy Transport — Phonons EPFL

In order to analyze energy transport by phonons we consider the long wavelength limit (A > a, k < a) in which the atomic structure can be neglected (continuum).
Under this assumption, we can use the acoustic wave equation.

—

~ . du
An acoustic wave propagation is defined as a function of the local medium displacement u from the equilibrium position. The velocity of the displacement is: v = —

dt
= R 1 au' au'
Two third-rank tensor can be defined : §=58;rt) =+ — +—L) = strain tensor
2 axj axi
_ N _ Fx GII ny o'xz ﬂx
g = stress tensor = F=g-fi Fyl=|oyx oy oy||n
F, Ozx Ozy Oz n;

For an isotropic medium with no damping (no viscosity), it is possible to obtain a stiffness tensor as a function of only two constants (Lame constants, A;, ;).
Considering a plane elastic wave of the form vexp(—i(wt — kk - 1) it is possible to obtain an eigenvalue equation :

k - ; ke k | l‘ + H-L)Exiez Uy Ux
enk+pL(l—k)  Or+pudkeky (e kzk )
2| Gp+uokks  cukltp-8)  Gr+t pkke || vy | =po" | vy e e
(A + ur ks Or+upkky  enkl+p—k)} | ve v

From this one can obtain the dispersion relation for different acoustic waves:
+ plane transverse acoustic wave: vy = ATe—i(w'—sz)i o /LLk% — pa)2 or w = vrkr T = (p,L/p)l/2

e plane longitudinal acoustic wave: v, = ALe_i(“”—kLz)i » kicll = pr or @ = UL]*;L P ((:U/p)l/2 =3 [(XL - 2/,LL)/p]1/2
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Plane Waves and Energy Transport - Phonons EPFL

Therefore, acoustic wave can be both transversal and longitudinal and for an arbitrary propagation direction k we can write:

Ury = GAp e @R T) g ke = 0

Urs = @ X kApyei(@t-krk)

W — I;ALe—i(wt—kLk"F)

e [c1n ez 2 O 0 01 dvy/0x
Tyy ci2 c1i1 ci2 O 0 0 duy/dy o =
Once the displacement velocity is known, it is possible to obtain the stress tensor: 8|0z |_|c2 ¢z en 0 0 0 dvz [0z 2 t
at | Oyz 0 0 0 c4 O 0 dvy/dz + dv,/dy C44 = UL
Oxz 0 0 0 0 caa O 0vy/dz + dv, /ox
| Oxy | | 0 0 0 0 0 cqa | 0vx/0y+ 0vy/ox |

Finally the time-averaged power carried by the acoustic wave can be calculated from the acoustic Poynting vector as:

- 1 . _
Jac = —ERB[‘U* ) O']

41



Plane Waves at an Interface - Phonons EPFL

For an acoustic wave we also have to apply boundary conditions. In particular, we need force to be continuous at the interface. Furthermore, in the long
wavelength limit we require also continuity for the displacement velocity (atomic motion can be discontinuous):

ZVl =ZV2 and ZEI oﬁ'—:ZO'zoﬁ

The derivations of the reflection/transmission coefficients is much more complicated than for an electromagnetic wave. For the simple case of an isotropic medium
and considering a transverse wave polarized with the displacement perpendicular to the plane of incidence (horizontally polarized shear wave), we have:

Uy P Z]COSO[ - 220089[ |

-
I

v  Zjcosb; + Zycosb,

where Z = \/pCaz = pr

sin 6; sin 6,
We can also obtain an equivalent of Snell’s law: =
UT1 vT?2
- 2
. . Zy— 2
And from the Poynting vector the reflectivity: Ry = |—/——
Z1+ 72,
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Plane Waves at an Interface - Phonons EPFL

I
MEDIUM 1 | RANSVERSE MEDIUM 1 : RANSVERSE
INCIDENT INCIDENT
INONON ! RANSVERSE INCIDENT 1

1 ]

: LONGITUDINAL :

(h\

For a transverse acoustic wave polarized in the plane of incidence (vertically polarized

Anisotropic Medium Isotropic Medium shear wave, SV) and for a longitudinally polarized acoustic wave, coupling between
different polarizations can occur. In particular, one wave can excited three reflected and
three transmitted waves and Snells’ law becomes:

1.2 R ) | L} l L] L] I L ¥ 0-20 :
0 ARANSMISSIVITY, ___ REFLECTIVITY ] sin O, sinf,;  sinf,7  sinb __sin O:r
1. - e e e — = = X e i 5>
L “n e ) ] =
w b =TT {0.15 @ v; VL1 UT1 VL2 UT2
08 [ I oo
s i "’@ , j - In an isotropic medium the two transverse reflected and the two transverse
% 0.6 - ! REFLECTIVITY -] 0.10 é transmitted waves are degenerate.
> : ‘/‘/ = m
s
> = e -
Bosf i | | 5
e i —0.05
0.2 & « e ' :
K s
2 » i SMISSIVITY +
= Au- B 0.00
) 30 580 90
INCIDW‘ ‘ —
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Wave Propagation in Thin Films — Photons EPFL

We consider a TM wave propagating in the z-direction with E, H,, components. We simplify the picture by considering for each layer just the forward and backward
propagating waves, each resulting from the superposition of the multiple transmitted and reflected waves). For convenience we drop the time and space phases:

o + ip(2) ~ ,~ip(2)
Ex(z) =cosbE"e +cosLE e wnyZ cos B,

ny 2 where E*,E~ = amplitudes ¢(;) = ————— = spatial phase
Hy(Z) - [E+ei¢p(z) g ellp(Z)] o
- HCO ,
E,(0) = cos0,ET + cosO,E~ E\(z) = Ex(0)cos ¢(z) + ip,H,, (0) sin ¢(z) )
We observe that at z = 0 we have: n _ 9% _ o face impedance
Hy(0) = MTZ [E* —E7] » P2 = uco / P
0

Hy,(z) = piEx(O) sin@(z) + H, (0) cos ¢(z)
2

» We can express the field in the thin layer as a function of the field at the front interface.
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Wave Propagation in Thin Films — Photons & EPFL

We can re-write in matrix form: > ;
( Ex (z)) - ( cos¢(z) ipasing(2)\ (Ex (0)
Hy(2) 7 Sinp(z)  cose(z) )\ H, (0)
Further, we can now invert this expression to calculate the field at z = 0 as a function of the fieldatz = d :
Ex (0)) cosgy  —ipasing\ (E.(d) E.(d)
= k1" = h —
(H, ©) = \~Lsing, cosg ( Hy(d) (Hy (d)) e Bnd)

We call M the interference matrix and it can be shown that |[M| =1

We can now easily describe the field in the thin film with a matrix. The next step is to describe the change of the field across an interface.
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Wave Propagation in Thin Films — Photons &

iy S
y e :
s sl
. -&'. z

=PrL

Considering an interface without surface charges nor currents, we have to apply the boundary conditions. In particular, the continuity of the fields gives:

Ex(0) = E;cos6; + E,cosf, = E;; + E,

Atz=0: ni 1
Hy(0) = — (E; — = — (Eix —
y(0) 7 (Ei — E;) % (Eix — Erx)
Atz =d: Ey(d) = E; cosb; = E,,
cos 65
P3=—7—"—
ey R ® na/uco
Hcq P3

cos 6,

L= ny/1co
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Wave Propagation in Thin Films — Photons & EPFL

We can now combine the results of the previous two slides: M

(Ex(O))=< cosgy  —ipysing, (Ex(d) _ oy [Bx@ } ll Eiy | (moma2
H,(0) —2;Sing  cosgp Hy@d)) Hy(a’)) B N S & Eps my m

(Ex(())) B ( } ll )(P)
Hy(0) o "o/ \Erx Ei_‘_) 1 [(my) +'[,%"112)+(m21 +;1;m22)P1

(Fd(!)) _ ( : )bl » (Erx =5 tx

2 \(m + ;%mz) - (m21 + ﬁmzz)m
H,(d)

This approach is called transfer matrix method or TMM.
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Wave Propagation in Thin Films — Photons &

From these we can then easily compute the reflection and transmission coefficients as the ratios of the intensities of the electric fields:

B En (m11+im12) (m21+ 55 M22) P1

r —_— —_—
BB (mat ——m12) + (m21 + mzz)m
¢ Et ij/COSB; = : ' 2Ctm
Ei: Ei/fcos6  (myp+ —m12) Filma mzz)m
n cos 6
For a TE wave we would get analogous expressions only with p=- and ¢ =1

jco

Cim = cos6;/cosb;

=PrL
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Wave Propagation in Thin Films — Photons EPFL

n n o

The TMM method is particularly convenient to deal with multi-layer structures.
In fact, we can calculate the total interference matrix as:

M= MMM;... M, » (E;x) _ 1l Ssm12) + (ma1 + 5 S=m2)pi y
Erx 2 \(my + —mlz) = (m21 + 5 m22)p1

A special case of multilayer films consist in a periodic arrangement of two thin layers with different refractive indices.
Each layer has a thickness equal to a quarter of the light wavelength inside the film.

7o This structure is called a Bragg reflector. Indeed the coherent superposition of all the reflected fields can generate a
reflectivity of 100% . The spectral range for which this occurs is called stop band .

The condition for 100% reflectivity is that in one period of the structure the total phase accumulation is a multiple of 27

4xnydycosfy  4mnady cos by
+
A0 A0

= 2{n

This can be re-written as

ka = I where a =nyd,cos8; +nyd,cos0,

We observe that this is identical to the condition for the formation of an electronic bandgap in a crystal!!

We thus see that it is the wave nature of the electrons combined with the periodicity of the crystal to give rise to
destructive intereference effects that result in the absence of propagation of the wave in the material. Similarly to
natural crystals, we can create photonic crystal and phononic crystals by engineering the periodicity.
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Wave Propagation in Thin Films — Phonons ewe EPFL

For an SH wave propagating through a film with thickness d, the reflectivity and transmissivity are:  r = v,(0)/v;(0) ¢ = v (d)/v; (0)
The transfer matrix method concept can be applied also for an elastic waves:

g i { B - COS QT2 isingr2/ Y2 .

where the subscript T indicates the transverse wave.

| I @12 = wd cos 6;/vr2,
( ) Y2, = —=Zpycos B

—ZricosOr; Zricosfri

For a longitudinal (L) and vertically polarized transverse wave (SV), i.e. displacement polarized in the plane of incidence, the velocities of the incident, reflected
and transmitted waves are:

vri(0) vre(d) = 0 in @ P

vr: (0 S v d T Ti COS Ui sin Oy —COos

vL‘ (( 0; | = B, MB, Lb( ) B = cos fr; sin cos i, sin 6.

Tr ~pikrisin20p; (A 42y co8? O ) ke —pykysin20r;  (Ay + 2p cos? 8y) k.

v (0) 0 pikr cos 20y, ke sin 26 -1 ki cos 207 — ki sin 26y

where ki(=w/v)l M = By'NaBy, i R T,
e
M=l 0 0 etn o
O i Py g ipia

For a multilayer system it is then sufficient to calculate the compounded interference matrix: M = MM, ...M,,,_4
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Evanescent Waves — Surface Plasmon/Phonon Polaritons =PFL

A surface plasmon/phonon polariton is a wave that propagates along an interface but is exponentially decaying on BOTH sides of the interface

Energy is bound to the interface and cannot be transported away from it

A plasmon polariton can exist at the interface of a metallic-like material and a dielectric and it is mixture of an electron wave and a photon.

A phonon polariton can exist at the interface between a polar material (e.g. SiC) and a dielectric and it is a mixture of an optical phonon and a
photon.
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