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What we covered so far…
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Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Thermal Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

Energy Transport by Waves
(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)



Wave-particle Duality

Particle View Wave View
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Energy Frequency, Amplitude

Momentum Wavevector

The wave nature of material particles gives rise to quantum mechanical effects!

𝒑𝒑 = ћ𝒌𝒌 =
𝒉𝒉
𝝀𝝀

𝑬𝑬 = 𝒉𝒉𝝂𝝂 = ℏ𝝎𝝎

ℎ = 6.6 � 10−34𝐽𝐽𝐽𝐽
ℏ = ⁄ℎ 2𝜋𝜋



From Quantum States to Macroscopic Properties

1
2
𝑏⃑𝑏

Allowed quantum states
(steady-state Schrodinger eqn)

Specific heat of H2 gas

Specific heat of gold

Macroscopic properties and 
their dependence on 

temperature

Probability that matter will be 
in a given quantum state when 

it is at equilibrium.
(Statistical Thermodynamics)
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𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Connect quantum
states and energy
levels with the
temperature

Investigate the
properties of
matter at finite
temperatures

Localized potential

Periodic potential



Energy Transport
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Particle View Wave View

x

y
z

Hot Cold

Higher 
Kinetic Energy

Lower
Kinetic Energy

𝒒𝒒𝒙𝒙 ?

What are the peculiarities of energy transport by waves?



Energy Transport by Waves 
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𝑈𝑈 ∝ Φ
2

It can be always demonstrated that the energy 𝑈𝑈 transported by a wave is proportional to the square of its amplitude:

Contrary to classical particles, waves can be transmitted or reflected across an interface. Therefore, the energy transported on either side 
will depend on the amplitude of the transmitted and reflected component.

Furthermore precise phase relationship between different waves can lead to constructive or destructive interference phenomena that 
results in a maximization or minimization of the transported energy. 

The wave nature of material particles give also rise to unique effects such as tunneling. 



This Lecture
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Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Thermal Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

Energy Transport by Waves
(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)



In This Lecture …
• Plane Waves and Energy Transport*

 EM waves and Poynting vector

 Electron Flux

• Plane waves at an interface

 Fresnel coefficients

 Electron transport at an interface

• Plane waves propagating in a multilayer structure (multiple interfaces and periodicity)

• Evanescent waves and tunneling 
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*We will focus on photons and electrons. The detailed analysis for phonons can be found in the book (Ch. 5) and in a short version, in the supplementary 

slides. Indeed, as we will see, due to the very short wavelength of phonons it is very difficult to observe their wave nature. 



Plane Waves and Energy Transport
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𝛷𝛷𝑐𝑐 = 𝐶𝐶 𝑟𝑟 𝑒𝑒−𝑖𝑖 𝜔𝜔𝑡𝑡

Φ = 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑡𝑡 − 𝑘𝑘 � 𝑟𝑟 + 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑡𝑡 − 𝑘𝑘 � 𝑟𝑟

𝐶𝐶 𝑟𝑟 = 𝐴𝐴𝑐𝑐 + 𝑖𝑖𝐵𝐵𝑐𝑐

𝒌𝒌 Φ = 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑡𝑡 − 𝑘𝑘 � 𝑟𝑟

Φ = Re 𝐴𝐴𝑒𝑒−𝑖𝑖 𝜔𝜔𝑡𝑡−𝑘𝑘�𝑟𝑟Φ𝑐𝑐 = 𝐴𝐴𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟𝑒𝑒−𝑖𝑖 𝜔𝜔𝑡𝑡 = 𝐴𝐴𝑐𝑐𝑒𝑒
−𝑖𝑖 𝜔𝜔𝑡𝑡

𝑘𝑘 =
2𝜋𝜋
λ

How do we calculate the wave equation associated with different types of (material) waves?

What is the energy flux associated with different types of (material) waves?



Wave Energy Transport - Photons 
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The transport of photons is governed by Maxwell’s equations, i.e. the propagation equations of the electromagnetic waves. There are four fields to consider:

𝐸𝐸 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 [𝑉𝑉/𝑚𝑚]

𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 [𝐴𝐴/𝑚𝑚]

𝐷𝐷 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [𝐶𝐶/𝑚𝑚2]

𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑁𝑁/𝐴𝐴𝐴𝐴]

Fields generated by the motion of ions and electrons 
under the force of the electric and magnetic fields.



Wave Energy Transport - Photons 
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The transport of photons is governed by Maxwell’s equations, i.e. the propagation equations of the electromagnetic waves. There are four fields to consider:

𝐸𝐸 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 [𝑉𝑉/𝑚𝑚]

𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 [𝐴𝐴/𝑚𝑚]

𝐷𝐷 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [𝐶𝐶/𝑚𝑚2]

𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑁𝑁/𝐴𝐴𝐴𝐴]

Fields generated by the motion of ions and electrons 
under the force of the electric and magnetic fields.

∇ × 𝐸𝐸 = −
𝜕𝜕𝐵𝐵
𝜕𝜕𝜕𝜕

∇ × 𝐻𝐻 =
𝜕𝜕𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝐽𝐽𝑒𝑒

∇ � 𝐷𝐷 = 𝜌𝜌𝑒𝑒

∇ � 𝐵𝐵 = 0

𝜌𝜌𝑒𝑒 = 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [𝐶𝐶/𝑚𝑚3]

𝐷𝐷 = 𝜀𝜀0𝐸𝐸 + 𝑃𝑃

where

𝑃𝑃 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [𝐶𝐶/𝑚𝑚2]

χ = susceptibility

𝜀𝜀0= vacuum permittivity = 8.85 � 10−12[𝐹𝐹/𝑚𝑚]

𝑃𝑃 = 𝜀𝜀0χ𝐸𝐸

To connect the 𝐸𝐸 , 𝐻𝐻 to 𝐷𝐷 and 𝐵𝐵 we need to introduce the physical properties of the material through the constitutive equations. We have:  

𝐵𝐵 = 𝜇𝜇𝐻𝐻

𝜇𝜇 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Non-magnetic materials:

Diamagnetic materials:

Paramagnetic materials:

𝜇𝜇 = 𝜇𝜇0 = 4𝜋𝜋 � 10−7[𝐻𝐻/𝑚𝑚]

𝜇𝜇 < 𝜇𝜇0
𝜇𝜇 > 𝜇𝜇0

𝐽𝐽𝑒𝑒 = 𝜎𝜎𝑒𝑒𝐸𝐸

where

𝜎𝜎𝑒𝑒 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [1/Ω𝑚𝑚]

where
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To identify the form of the solution to Maxwell’s equation we calculate: ∇× ∇× 𝐸𝐸 = −
𝜕𝜕(∇ × 𝐵𝐵)

𝜕𝜕𝜕𝜕

∇ × ∇× 𝐸𝐸 = ∇ ∇ � 𝐸𝐸 − ∇2𝐸𝐸 =
1
𝜀𝜀
∇ ∇ � 𝐷𝐷 − ∇2𝐸𝐸 = −∇2𝐸𝐸For 𝜌𝜌𝑒𝑒 = 0 (no net charge) and 𝜀𝜀 independent of space 

−
𝜕𝜕 ∇× 𝐵𝐵

𝜕𝜕𝜕𝜕
= −𝜇𝜇

𝜕𝜕 ∇× 𝐻𝐻
𝜕𝜕𝜕𝜕

= −𝜇𝜇
𝜕𝜕2𝐷𝐷
𝜕𝜕𝑡𝑡2

− 𝜇𝜇
𝜕𝜕𝐽𝐽𝑒𝑒
𝜕𝜕𝜕𝜕

= −𝜇𝜇𝜇𝜇
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑡𝑡2

− 𝜇𝜇𝜎𝜎𝑒𝑒
𝜕𝜕𝐸𝐸
𝜕𝜕𝜕𝜕

∇2𝐸𝐸 = 𝜇𝜇𝜇𝜇
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑡𝑡2

+ 𝜇𝜇𝜎𝜎𝑒𝑒
𝜕𝜕𝐸𝐸
𝜕𝜕𝜕𝜕

Wave-equation 
Damping term determined by the absorption by free-electrons. 
If 𝜎𝜎𝑒𝑒 = 0 no damping 

𝐸𝐸𝑐𝑐(𝑟𝑟, 𝑡𝑡) = 𝐸𝐸0𝑒𝑒−𝑖𝑖 𝜔𝜔𝑡𝑡−𝑘𝑘�𝑟𝑟We guess: 𝑘𝑘 � 𝑘𝑘 = 𝜇𝜇𝜔𝜔2 𝜀𝜀0 1 + χ + 𝑖𝑖
𝜎𝜎𝑒𝑒
𝜔𝜔

𝒌𝒌 = 𝝁𝝁𝜺𝜺𝒄𝒄𝝎𝝎 =
𝑵𝑵
𝒄𝒄𝟎𝟎
𝝎𝝎

where

𝑁𝑁 =
𝜇𝜇𝜀𝜀𝑐𝑐
𝜇𝜇0𝜀𝜀0

= 𝑛𝑛 + 𝑖𝑖κ

𝜀𝜀𝑐𝑐 = 𝜀𝜀0 1 + χ + 𝑖𝑖
𝜎𝜎𝑒𝑒
𝜔𝜔

= 𝜀𝜀0 1 + χ + 𝑖𝑖
𝜎𝜎𝑒𝑒
𝜀𝜀0𝜔𝜔

= 𝜀𝜀0𝜀𝜀𝑟𝑟

𝑐𝑐0 =
1
𝜇𝜇0𝜀𝜀0

𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜀𝜀𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [𝐹𝐹/𝑚𝑚]

𝑛𝑛 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

κ = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
= 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜀𝜀𝑟𝑟 = 1 + χ + 𝑖𝑖
𝜎𝜎𝑒𝑒
𝜀𝜀0𝜔𝜔 𝜀𝜀𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑐𝑐 = 𝑐𝑐0/𝑁𝑁

It can be shown that an electromagnetic wave in vacuum must be a transverse wave, i.e. 𝐸𝐸 ⊥ 𝐻𝐻 ⊥ 𝑘𝑘



Wave Energy Transport - Photons 

13

We now consider an electromagnetic wave traveling along x (𝑘𝑘 = ±𝑘𝑘𝑥𝑥) with electric field polarized along y and magnetic field along z, we have:

𝐸𝐸𝑐𝑐(𝑦𝑦, 𝑡𝑡) = 𝐸𝐸𝑦𝑦𝑦𝑒𝑒
−𝑖𝑖𝜔𝜔 𝑡𝑡∓𝑁𝑁𝑐𝑐0

𝑥𝑥 �𝑦𝑦

𝐻𝐻𝑐𝑐(𝑦𝑦, 𝑡𝑡) = 𝐻𝐻𝑧𝑧𝑧𝑒𝑒
−𝑖𝑖𝜔𝜔 𝑡𝑡∓𝑁𝑁𝑐𝑐0

𝑥𝑥 𝑧̂𝑧

𝐻𝐻𝑧𝑧𝑧 = ±
𝑁𝑁
𝜇𝜇𝑐𝑐0

𝐸𝐸𝑦𝑦𝑦

We now want to find an expression for the energy flow associated with an electromagnetic wave. Again we need to manipulate the Maxwell equations:

𝐻𝐻 � ∇× 𝐸𝐸 = −
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐻𝐻 � 𝐵𝐵

𝐸𝐸 � ∇ × 𝐻𝐻 =
𝜕𝜕𝐷𝐷
𝜕𝜕𝜕𝜕

𝐸𝐸 � 𝐷𝐷 + 𝐸𝐸 � 𝐽𝐽𝑒𝑒

−∇ � 𝐸𝐸 × 𝐻𝐻 =
𝜕𝜕
𝜕𝜕𝜕𝜕

1
2
𝜇𝜇𝐻𝐻 � 𝐻𝐻 +

1
2
𝜀𝜀𝐸𝐸 � 𝐸𝐸 + 𝐸𝐸 � 𝐽𝐽𝑒𝑒 −�∇ � 𝐸𝐸 × 𝐻𝐻 𝑑𝑑𝑑𝑑 = �

𝜕𝜕
𝜕𝜕𝜕𝜕

1
2
𝜇𝜇𝐻𝐻 � 𝐻𝐻 +

1
2
𝜀𝜀𝐸𝐸 � 𝐸𝐸 + 𝐸𝐸 � 𝐽𝐽𝑒𝑒 𝑑𝑑𝑑𝑑

−� 𝐸𝐸 × 𝐻𝐻 � �𝑛𝑛𝑑𝑑𝑑𝑑 = �
𝜕𝜕
𝜕𝜕𝜕𝜕

1
2
𝜇𝜇𝐻𝐻 � 𝐻𝐻 +

1
2
𝜀𝜀𝐸𝐸 � 𝐸𝐸 + 𝐸𝐸 � 𝐽𝐽𝑒𝑒 𝑑𝑑𝑑𝑑

Magnetic energy 
density [𝐽𝐽/𝑚𝑚3]

Electric energy 
density [𝐽𝐽/𝑚𝑚3]

Instantaneous 
energy flux INTO 
the control volume 
[𝑊𝑊/𝑚𝑚2]

Dissipation (joule 
heating) [𝑊𝑊/𝑚𝑚3]

𝑺𝑺 = 𝑬𝑬 × 𝑯𝑯 Poynting vector 𝑺𝑺 =
1
𝑇𝑇
�
𝑡𝑡

𝑡𝑡+𝑇𝑇
𝑆𝑆𝑑𝑑𝑡𝑡′ =

𝟏𝟏
𝟐𝟐
𝑹𝑹𝑹𝑹 𝑬𝑬𝒄𝒄 × 𝑯𝑯𝒄𝒄

∗ Time averaged Poynting vector
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𝑆𝑆 =
1
2𝑅𝑅𝑅𝑅 𝐸𝐸𝑐𝑐 × 𝐻𝐻𝑐𝑐∗ =

1
2𝑅𝑅𝑅𝑅 𝐸𝐸𝑦𝑦𝑦

𝑁𝑁∗

𝜇𝜇𝑐𝑐0
𝐸𝐸𝑦𝑦𝑦∗ 𝑒𝑒

−𝑖𝑖𝜔𝜔 𝑡𝑡−𝑁𝑁𝑐𝑐0
𝑥𝑥 𝑒𝑒𝑖𝑖𝜔𝜔 𝑡𝑡−𝑁𝑁

∗

𝑐𝑐0
𝑥𝑥 �𝑦𝑦 × 𝑧̂𝑧 =

1
2𝑅𝑅𝑅𝑅

𝑛𝑛 − 𝑖𝑖κ
𝜇𝜇𝑐𝑐0

𝑒𝑒 −2𝜔𝜔κ𝑐𝑐0
𝑥𝑥 𝐸𝐸𝑦𝑦𝑦2 �𝑥𝑥

𝐸𝐸𝑐𝑐(𝑦𝑦, 𝑡𝑡) = 𝐸𝐸𝑦𝑦𝑦𝑒𝑒
−𝑖𝑖𝜔𝜔 𝑡𝑡−𝑁𝑁𝑐𝑐0

𝑥𝑥 �𝑦𝑦 𝐻𝐻𝑐𝑐 𝑦𝑦, 𝑡𝑡 = 𝐻𝐻𝑧𝑧𝑧𝑒𝑒
−𝑖𝑖𝜔𝜔 𝑡𝑡−𝑁𝑁𝑐𝑐0

𝑥𝑥 𝑧̂𝑧 =
𝑁𝑁
𝜇𝜇𝑐𝑐0

𝐸𝐸𝑦𝑦𝑦𝑒𝑒
−𝑖𝑖𝜔𝜔 𝑡𝑡−𝑁𝑁𝑐𝑐0

𝑥𝑥 𝑧̂𝑧 𝑁𝑁 = 𝜀𝜀𝑟𝑟 = 𝑛𝑛 + 𝑖𝑖κ

𝐻𝐻𝑐𝑐∗ 𝑦𝑦, 𝑡𝑡 = 𝐻𝐻𝑧𝑧𝑧𝑒𝑒
𝑖𝑖𝜔𝜔 𝑡𝑡−𝑁𝑁

∗

𝑐𝑐0
𝑥𝑥 𝑧̂𝑧 =

𝑁𝑁∗

𝜇𝜇𝑐𝑐0
𝐸𝐸𝑦𝑦𝑦∗ 𝑒𝑒

𝑖𝑖𝜔𝜔 𝑡𝑡−𝑁𝑁
∗

𝑐𝑐0
𝑥𝑥 𝑧̂𝑧 𝑁𝑁∗ = 𝑛𝑛 − 𝑖𝑖κ

𝑆𝑆 =
1
2
𝑛𝑛
𝜇𝜇𝑐𝑐0

𝑒𝑒 −2𝜔𝜔𝜔𝜔𝑐𝑐0
𝑥𝑥 𝐸𝐸𝑦𝑦𝑦2 �𝑥𝑥 =

1
2
𝑛𝑛
𝜇𝜇𝑐𝑐0

𝑒𝑒 −4𝜋𝜋𝜋𝜋𝜆𝜆0
𝑥𝑥 𝐸𝐸𝑦𝑦𝑦2 �𝑥𝑥 where 𝜔𝜔 = 𝑘𝑘𝑘𝑘 = 2𝜋𝜋

𝜆𝜆
𝑐𝑐

𝑺𝑺 =
𝟏𝟏
𝟐𝟐

𝒏𝒏
𝝁𝝁𝒄𝒄𝟎𝟎

𝒆𝒆 −𝜶𝜶𝒙𝒙 𝑬𝑬𝒚𝒚𝒚𝒚𝟐𝟐 �𝒙𝒙 where α = 4𝜋𝜋𝜋𝜋
𝜆𝜆0

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

We now want to calculate the time average Poynting vector for a plane electromagnetic wave travelling in a material with complex refractive index 𝑁𝑁.

The energy decreases 
exponentially 

The energy is proportional to 
the square of the amplitude
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For a free electron (𝑈𝑈 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) we can show that the wavefunction is a plane wave*:

Ψ𝑡𝑡 = 𝑌𝑌 𝑡𝑡 Ψ 𝑥𝑥 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔+𝑘𝑘𝑘𝑘) + 𝐵𝐵𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘) 𝑘𝑘 =
2𝑚𝑚(𝐸𝐸 − 𝑈𝑈)

ћ2

*see Lecture L3, slide 12 for the case U=0

Furthermore we have seen that from the Schrodinger equation we can derive a continuity equation from which the particle current (or flux) can be calculated as**:

𝐽𝐽 𝑟𝑟, 𝑡𝑡 =
𝑖𝑖ћ
2𝑚𝑚

Ψ𝑡𝑡∇Ψ𝑡𝑡∗ − Ψ𝑡𝑡∗∇Ψ𝑡𝑡 = 𝑅𝑅𝑅𝑅
𝑖𝑖ћ
𝑚𝑚
Ψ𝑡𝑡∇Ψ𝑡𝑡∗

**see Lecture L3, slide 10
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Wave type Wave Equation Energy Flux

Photons
𝐸𝐸𝑐𝑐(𝑟𝑟, 𝑡𝑡) = 𝐸𝐸0𝑒𝑒

−𝑖𝑖𝜔𝜔 𝑡𝑡−𝑁𝑁𝑐𝑐0
�𝑘𝑘�𝑟𝑟

𝑐𝑐0 = 1/ 𝜇𝜇0𝜀𝜀0
𝑁𝑁 = 𝑛𝑛 + 𝑖𝑖κ

𝑆𝑆 =
1
2
𝑅𝑅𝑅𝑅 𝐸𝐸𝑐𝑐 × 𝐻𝐻𝑐𝑐∗

Electrons
Ψ𝑡𝑡 = 𝐴𝐴𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔+𝑘𝑘𝑘𝑘) + 𝐵𝐵𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘)

𝑘𝑘 = (2𝑚𝑚(𝐸𝐸 − 𝑈𝑈))/ћ^2
𝐽𝐽 𝑟𝑟, 𝑡𝑡 = 𝑅𝑅𝑅𝑅

𝑖𝑖ћ
𝑚𝑚
Ψ𝑡𝑡∇Ψ𝑡𝑡∗

Phonons

𝑣𝑣𝑇𝑇𝑇 = �𝑎𝑎𝐴𝐴𝑇𝑇𝑇𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑇𝑇
�𝑘𝑘�𝑟𝑟)

𝑣𝑣𝑇𝑇𝑇 = �𝑎𝑎 × �𝑘𝑘𝐴𝐴𝑇𝑇𝑇𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑇𝑇
�𝑘𝑘�𝑟𝑟)

𝑣𝑣𝐿𝐿 = �𝑘𝑘𝐴𝐴𝐿𝐿𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝐿𝐿
�𝑘𝑘�𝑟𝑟)

𝐽𝐽𝑎𝑎𝑎𝑎 = −
1
2
𝑅𝑅𝑅𝑅 𝑣𝑣∗ � �𝜎𝜎

How do waves transfer energy across an interface?



In This Lecture …
• Plane Waves and Energy Transport*

 EM waves and Poynting vector

 Electron Flux

• Plane waves at an interface

 Fresnel coefficients

 Electron transport at an interface

• Plane waves propagating in a multilayer structure (multiple interfaces and periodicity)

• Evanescent waves and tunneling 
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*We will focus on photons and electrons. The detailed analysis for phonons can be found in the book (Ch. 5) and in a short version, in the supplementary 

slides. Indeed, as we will see, due to the very short wavelength of phonons it is very difficult to observe their wave nature. 
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When an electromagnetic waves reaches an interfaces it can be reflected or refracted. 
We need to take into account the polarization of the wave with respect to the interface. 

• Transverse Magnetic (TM) wave (also called p-wave or // wave)

 The electric field lies in the plane of incidence

 The component of the electric field perpendicular to the interface changes with the 

angle of incidence

• Transverse Electric (TE) wave (also called s-wave or ⊥ wave)

 The electric field is perpendicular to the plane of incidence 

 The electric field is only parallel to the interface and its magnitude does not change 

with the angle of incidence

TM
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The difference of the normal components of the displacement fields is related to the net 
surface charge density 𝜌𝜌𝑠𝑠
The tangential components of the electric field must be continuous

The normal components of the magnetic induction field must be continuous

The difference of the tangential components of the magnetic field is related to the net 
surface current density 𝐽𝐽𝑠𝑠

TM To solve the problem we need to define appropriate boundary conditions at the interface. 
It can be shown from Maxwell equations that the following conditions must be satisfied at the interface*:

*see Griffith, Ch. 7

We consider a plane TM wave (shown in the picture) propagating from the lossless medium 1 to lossless medium 2 with an incidence angle 𝜃𝜃𝑖𝑖. 
The incident, reflected and transmitted electric fields can be written as: 
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TM

For an interface free of charge we get:

Snell’s law

𝑛𝑛1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 = 𝑛𝑛1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑟𝑟 = 𝑛𝑛2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑡𝑡

𝒏𝒏𝟏𝟏𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽𝒊𝒊 = 𝒏𝒏𝟐𝟐𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽𝒕𝒕 𝜽𝜽𝒊𝒊 = 𝜽𝜽𝒓𝒓

Additionally we obtain the following expressions for the fields:
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TM

We define a reflection and a transmission coefficient as the ratio of the amplitudes of the electric fields. These are also called Fresnel coefficients.

TM wave: TE wave:

Note: For an absorbing medium, we need to use the complex 𝑁𝑁 instead of the real 𝑛𝑛. If 𝑁𝑁2 is complex we obtain a complex refraction angle 𝜃𝜃𝑡𝑡 which 

corresponds to an inhomogeneous wave, i.e. where constant amplitude and constant phase surfaces do not coincide. 
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TM Once the fields are known we can calculate the energy fluxes. For a TM wave we have:

Parallel to 
the interface

Across the 
interface

We thus define the reflectivity and the transmissivity by calculating the ratio of the power normal to the interface 𝑆𝑆𝑖𝑖,𝑧𝑧 :

TM wave: TE wave:

For a non-absorbing medium: 𝑅𝑅 + 𝜏𝜏 = 1

At normal incidence: 
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This is the condition of total internal reflection. We will see later what it means

𝑛𝑛1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐 = 𝑛𝑛2sin(𝜋𝜋/2) 𝜃𝜃𝑐𝑐 = arcsin(𝑛𝑛2/𝑛𝑛1)

We observe two interesting conditions:

When 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃𝐵𝐵 = 𝑛𝑛2/𝑛𝑛1 then the reflectivity of a TM wave, 𝑟𝑟‖ = 0
and therefore only the TE component is reflected. 
This angle is called Brewster angle.

When 𝑛𝑛1 > 𝑛𝑛2 there exist a critical angle 𝜃𝜃𝑐𝑐 above which no real solution for 𝜃𝜃𝑡𝑡 exists:
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Let’s now briefly consider the dissipation. For example, let’s consider a laser beam incident on a metallic film (normal incidence). Knowing the complex 
refractive index of the metal at the laser wavelength, we want to determine the energy dissipation profile.  

From the Poynting vector expression we know that the energy flux decreases exponentially inside the metal, thus the intensity will be equal to:

where

Thus the heat dissipation will be :

We observe that, is the medium is infinite the energy transmitted into the medium will be eventually absorbed, hence the transmittivity equals the absorptivity. We 
remind that based on Kirchoff’s laws, the emissivity is equal to the absorptivity at the same incident direction and wavelength. 
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When an electron reaches the interface between two materials we expect it will be subject to a different potential. 
We can thus understand what will happen by calculating the transmission and reflection of an electron wave at a potential step. 

Ψ𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘1𝑥𝑥)Incident wave:

Ψ𝑟𝑟 = 𝐴𝐴𝑟𝑟𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔+𝑘𝑘1𝑥𝑥)Reflected wave:

Ψ𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘2𝑥𝑥)Transmitted wave:

To find the amplitudes of these three waves we need to apply continuity of the function and its first-derivative at the interface. We obtain the reflection and 
transmission coefficients:

We then know that to each wave we have an associated flux of particles 𝐽𝐽. We can thus calculate the reflectivity and transmissivity of the electron flux:

• For 𝐸𝐸 > 𝑈𝑈0 , the wave will be partially transmitted and partially reflected. This is contrary to 
the common experience of classical mechanics and it is a quantum effect dictated by the 
wave nature of the particle. 

• For 𝐸𝐸 < 𝑈𝑈0 , 𝑘𝑘2 is imaginary. Therefore Ψ𝑡𝑡 is an evanescent wave (exponential decay). It can 
be shown that 𝑅𝑅 = 1 and 𝜏𝜏 = 0. 
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Reflection and Refraction
TM and TE waves

Brewster Angle & Total Internal reflection

Photons

Reflection and Transmission
Evanescent Wave for E<U
Reflection even for E>U

Electrons

Reflection and Refraction
Coupling between different polarizations

Phonons

How do we describe wave propagation across multiple interfaces?

What happens in periodic structures?

How does the thickness of a layer impact the propagation?
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*We will focus on photons and electrons. The detailed analysis for phonons can be found in the book (Ch. 5) and in a short version, in the supplementary 

slides. Indeed, as we will see, due to the very short wavelength of phonons it is very difficult to observe their wave nature. 
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When multiple interfaces are present, there will be a superposition between reflected and transmitted waves at
every interface:

 Depending on the thickness of the layer, the reflected and transmitted waves can interfere constructively or
destructively.

 The observed reflection and transmission will depend on the thickness of the layer.

For a thin film of thickness d it is possible to demonstrate that :  

where 𝑟𝑟𝑖𝑖𝑖𝑖 , 𝑡𝑡𝑖𝑖𝑖𝑖 are the Fresnel coefficient of the interface between material i and j and 𝜑𝜑2 =
𝜔𝜔𝑛𝑛2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃2

𝑐𝑐0
= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

For a non-absorbing thin film it is then straightforward to obtain:

For an absorbing thin film, instead, we should use the complex refractive indices:

Oscillates with the thickness

𝑅𝑅 = 𝑟𝑟𝑟𝑟∗ 𝜏𝜏‖ =
𝑅𝑅𝑅𝑅(𝑁𝑁3∗𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑡𝑡)
𝑅𝑅𝑅𝑅(𝑁𝑁1∗𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑡𝑡)

𝑡𝑡‖𝑡𝑡‖∗ 𝜏𝜏⊥ =
𝑅𝑅𝑅𝑅(𝑁𝑁3 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑡𝑡)
𝑅𝑅𝑅𝑅(𝑁𝑁1 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑡𝑡)

𝑡𝑡⊥𝑡𝑡⊥∗
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Oscillatory behavior of transmission and reflection as a function of the thickness of the thin film

 Interference phenomenon characteristic of wave behavior

The peaks appear for thicknesses  𝑑𝑑 such as: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑2 = 0 𝑑𝑑 =
𝑚𝑚𝜆𝜆0

4𝑛𝑛2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2

And the reflectivity is:

We observe that it is possible to minimize R by appropriate choice of 𝑛𝑛2,𝑛𝑛3 and this constitute the basis of anti-reflection coatings. 
Further manipulations of the reflectivity and transmissivity are possible using multiple layers. 
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A special case of multilayer films consist in a periodic arrangement of two thin layers with different refractive indices. 
Each layer has a thickness equal to a quarter of the light wavelength inside the film. 
This structure is called a Bragg reflector. Indeed the coherent superposition of all the reflected fields can generate a 
reflectivity of 100% . The spectral range for which this occurs is called stop band . 

The condition for 100% reflectivity is that in one period of the structure the total phase accumulation is a multiple of 2𝜋𝜋

This can be re-written as
𝑘𝑘𝑘𝑘 = 𝑙𝑙𝜋𝜋 where 𝑎𝑎 = 𝑛𝑛1𝑑𝑑1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1 + 𝑛𝑛2𝑑𝑑2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2

We observe that this is identical to the condition for the formation of an electronic bandgap in a crystal!!
We thus see that it is the wave nature of the electrons combined with the periodicity of the crystal to give rise to 
destructive interference effects that result in the absence of propagation of the wave in the material. Similarly to 
natural crystals, we can create photonic crystal and phononic crystals by engineering the periodicity. 



In This Lecture …
• Plane Waves and Energy Transport*

 EM waves and Poynting vector

 Electron Flux

• Plane waves at an interface

 Fresnel coefficients

 Electron transport at an interface

• Plane waves propagating in a multilayer structure (multiple interfaces and periodicity)

• Evanescent waves and tunneling 
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*We will focus on photons and electrons. The detailed analysis for phonons can be found in the book (Ch. 5) and in a short version, in the supplementary 

slides. Indeed, as we will see, due to the very short wavelength of phonons it is very difficult to observe their wave nature. 
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Reflection and Refraction
TM and TE waves

Brewster Angle & Total Internal reflection

Photons

Reflection and Transmission
Evanescent Wave for E<U
Reflection even for E>U

Electrons

Reflection and Refraction
Coupling between different polarizations

Phonons

Let’s focus briefly on the evanescent waves and their physical implications for transport across multiple interfaces
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Snell’s law tells us that: Thus if 𝑛𝑛1 > 𝑛𝑛2 we can have:

We now consider a TM wave such that:

Exponentially decaying 
wave

Instantaneously there is an energy flux across the interface but the time 
average is zero when we have an evanescent wave. 

This condition corresponds to total internal reflection. 
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If the material with 𝑛𝑛2 is sufficiently thin and is followed by a material where the wave can become again propagating, we will have 
tunneling of photons across the layer. For a thin layer of thickness d (see transfer matrix method in SI):

𝜏𝜏 =
𝑅𝑅𝑅𝑅 𝑛𝑛3 cos𝜃𝜃𝑡𝑡
𝑛𝑛1 cos𝜃𝜃1

𝑡𝑡 2

For 𝑛𝑛2 > 𝑛𝑛3 we can find the angles𝜃𝜃𝑖𝑖 for which a real 𝜃𝜃𝑡𝑡 can be obtained:

If the tunneling medium is non-absorbing, we will have: 𝑅𝑅 = 1 − 𝜏𝜏 < 1

An analogous behavior can be obtained also for phonons. 
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When two plates are brought in close proximity and the radiative heat transfer is dominant (vacuum), tunneling 
through the small gap modifies the heat transfer compared to the Plank’s law. In particular, the radiation flux 
increases as the vacuum gap decreases. This can become important for applications such as thermophotovoltaics. 

When two identical objects are separated by a small gap with refractive index 𝑛𝑛, it can be shown that the 
maximum radiative heat transfer can be increased by 𝑛𝑛2 times the blackbody radiation heat transfer thanks to the 
tunneling of an internally reflected wave. 

In Lecture 10, slide 24 we demonstrated how the Planck’s blackbody radiation law can be obtained once 
the statistical distribution of the photons is known. 
However, in obtaining such expression we have implicitly assumed that all photons are associated with a 
propagating wave. 

Surface waves, such as surface plasmon or surface phonon polariton, can also tunnel across the gap, further 
enhancing the near-field radiative heat transfer. 

Finally, we note that interference and tunneling effects will also alter the radiative properties of thin films grown 
on substrates. In particular the emissivity will change with the film thickness. 
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For 𝐸𝐸 < 𝑈𝑈0 , 𝑘𝑘2 is imaginary. Therefore Ψ𝑡𝑡 is an evanescent wave

If the barrier is sufficiently thin, the wave can become again oscillatory beyond the barrier 𝑘𝑘𝑡𝑡 ∈ 𝑅𝑅𝑅𝑅 and 
therefore overall we have a net transmission of the electron across the barrier even if initially 𝐸𝐸 < 𝑈𝑈0.

This process is called tunneling and it is a clear manifestation of the wave nature of electrons. The tunneling  
transmissivity through a potential barrier of height 𝑈𝑈0 and width d is: 

Important instruments such as the scanning tunneling microscope are based on this phenomenon!!



Next Week

37

Particle View Wave View

x

y
z

Hot Cold

Higher 
Kinetic Energy

Lower
Kinetic Energy

𝒒𝒒𝒙𝒙 ?

How can we describe transport in a particle view accounting for the wave nature?
When and how does the wave-behavior affects energy transport?
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Nanoscale Heat Transfer (and Energy Conversion)

Energy States Thermal Energy Storage Thermal Energy Transport Thermal Energy Conversion

Introduction to Quantum 
Mechanics (Ch. 2)

Introduction to Solid State 
Physics (Ch. 3)

Introduction to Statistical 
Thermodynamics (Ch. 4)

Energy Conversion 
Mechanisms (Ch. 8)

Energy Transport by Waves
(Ch. 5)

Energy Transport by 
Particles (Ch. 6 -7)

Classical Laws

Classical Size Effects

Energy Transport in Liquids
(Ch. 9)
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In order to analyze energy transport by phonons we consider the long wavelength limit (λ ≫ 𝑎𝑎, 𝑘𝑘 ≪ 𝑎𝑎) in which the atomic structure can be neglected (continuum). 
Under this assumption, we can use the acoustic wave equation. 

An acoustic wave propagation is defined as a function of the local medium displacement 𝑢𝑢 from the equilibrium position. The velocity of the displacement is: 𝑣⃑𝑣 =
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

Two third-rank tensor can be defined : ̿𝑆𝑆 = 𝑆𝑆𝑖𝑖𝑖𝑖 𝑟𝑟, 𝑡𝑡 =
1
2

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

�𝜎𝜎 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐹⃑𝐹 = �𝜎𝜎 � �𝑛𝑛

For an isotropic medium with no damping (no viscosity), it is possible to obtain a stiffness tensor as a function of only two constants (Lame constants, 𝜆𝜆𝐿𝐿 ,𝜇𝜇𝐿𝐿).
Considering a plane elastic wave of the form 𝑣⃑𝑣exp(−𝑖𝑖(𝜔𝜔𝜔𝜔 − 𝑘𝑘�𝑘𝑘 ⋅ 𝑟𝑟) it is possible to obtain an eigenvalue equation : 

• plane transverse acoustic wave: 

• plane longitudinal acoustic wave: 

From this one can obtain the dispersion relation for different acoustic waves: 
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Therefore, acoustic wave can be both transversal and longitudinal and for an arbitrary propagation direction �𝑘𝑘 we can write:

𝑱⃑𝑱𝒂𝒂𝒂𝒂 = −
𝟏𝟏
𝟐𝟐
𝑹𝑹𝑹𝑹 𝒗𝒗∗ � �𝝈𝝈

𝑣𝑣𝑇𝑇𝑇 = �𝑎𝑎𝐴𝐴𝑇𝑇𝑇𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑇𝑇
�𝑘𝑘�𝑟𝑟) �𝑎𝑎 � �𝑘𝑘 = 0

𝑣𝑣𝑇𝑇𝑇 = �𝑎𝑎 × �𝑘𝑘𝐴𝐴𝑇𝑇𝑇𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑇𝑇
�𝑘𝑘�𝑟𝑟)

𝑣𝑣𝐿𝐿 = �𝑘𝑘𝐴𝐴𝐿𝐿𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝐿𝐿
�𝑘𝑘�𝑟𝑟)

Once the displacement velocity is known, it is possible to obtain the stress tensor:

Finally the time-averaged power carried by the acoustic wave can be calculated from the acoustic Poynting vector as:
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For an acoustic wave we also have to apply boundary conditions. In particular, we need force to be continuous at the interface. Furthermore, in the long 
wavelength limit we require also continuity for the displacement velocity (atomic motion can be discontinuous): 

The derivations of the reflection/transmission coefficients is much more complicated than for an electromagnetic wave. For the simple case of an isotropic medium 
and considering a transverse wave polarized with the displacement perpendicular to the plane of incidence (horizontally polarized shear wave), we have:

where 𝑍𝑍 = 𝜌𝜌𝑐𝑐44 = 𝜌𝜌𝑣𝑣𝑇𝑇

We can also obtain an equivalent of Snell’s law: 

And from the Poynting vector the reflectivity: 
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Anisotropic Medium Isotropic Medium
For a transverse acoustic wave polarized in the plane of incidence (vertically polarized 
shear wave, SV) and for a longitudinally polarized acoustic wave, coupling between 
different polarizations can occur. In particular, one wave can excited three reflected and 
three transmitted waves and Snells’ law becomes:

In an isotropic medium the two transverse reflected and the two transverse 
transmitted waves are degenerate. 
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We consider a TM wave propagating in the z-direction with 𝐸𝐸𝑥𝑥,𝐻𝐻𝑦𝑦 components. We simplify the picture by considering for each layer just the forward and backward 
propagating waves, each resulting from the superposition of the multiple transmitted and reflected waves). For convenience we drop the time and space phases:

where 𝐸𝐸+,𝐸𝐸− = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

We observe that at 𝑧𝑧 = 0 we have:
𝐸𝐸𝑥𝑥 0 = cos𝜃𝜃2𝐸𝐸+ + cos𝜃𝜃2𝐸𝐸−

𝐻𝐻𝑦𝑦 0 =
𝑛𝑛2
𝜇𝜇𝑐𝑐0

𝐸𝐸+ − 𝐸𝐸−

𝐸𝐸𝑥𝑥 z = 𝐸𝐸𝑥𝑥 0 cos𝜑𝜑(𝑧𝑧) + 𝑖𝑖𝑝𝑝2𝐻𝐻𝑦𝑦 0 sin𝜑𝜑(𝑧𝑧)

𝐻𝐻𝑦𝑦 z =
𝑖𝑖
𝑝𝑝2
𝐸𝐸𝑥𝑥 0 sin𝜑𝜑(𝑧𝑧) + 𝐻𝐻𝑦𝑦 0 cos𝜑𝜑(𝑧𝑧)

We can express the field in the thin layer as a function of the field at the front interface. 

𝑝𝑝2 =
cos𝜃𝜃2
⁄𝑛𝑛2 𝜇𝜇𝑐𝑐0

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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We can re-write in matrix form:

Further, we can now invert this expression to calculate the field at 𝑧𝑧 = 0 as a function of the field at 𝑧𝑧 = 𝑑𝑑 :

where

We call 𝑀𝑀 the interference matrix and it can be shown that 𝑀𝑀 = 1

We can now easily describe the field in the thin film with a matrix. The next step is to describe the change of the field across an interface. 
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Considering an interface without surface charges nor currents, we have to apply the boundary conditions. In particular, the continuity of the fields gives: 

𝑝𝑝1 =
cos𝜃𝜃1
⁄𝑛𝑛1 𝜇𝜇𝑐𝑐0

At 𝑧𝑧 = 0 : 

At 𝑧𝑧 = 𝑑𝑑 : 

𝑝𝑝3 =
cos𝜃𝜃3
⁄𝑛𝑛3 𝜇𝜇𝑐𝑐0
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We can now combine the results of the previous two slides:

This approach is called transfer matrix method or TMM. 

𝑀𝑀
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From these we can then easily compute the reflection and transmission coefficients as the ratios of the intensities of the electric fields:

For a TE wave we would get analogous expressions only with 
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The TMM method is particularly convenient to deal with multi-layer structures. 
In fact, we can calculate the total interference matrix as:

A special case of multilayer films consist in a periodic arrangement of two thin layers with different refractive indices. 
Each layer has a thickness equal to a quarter of the light wavelength inside the film. 
This structure is called a Bragg reflector. Indeed the coherent superposition of all the reflected fields can generate a 
reflectivity of 100% . The spectral range for which this occurs is called stop band . 

The condition for 100% reflectivity is that in one period of the structure the total phase accumulation is a multiple of 2𝜋𝜋

This can be re-written as
𝑘𝑘𝑘𝑘 = 𝑙𝑙𝜋𝜋 where 𝑎𝑎 = 𝑛𝑛1𝑑𝑑1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1 + 𝑛𝑛2𝑑𝑑2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2

We observe that this is identical to the condition for the formation of an electronic bandgap in a crystal!!
We thus see that it is the wave nature of the electrons combined with the periodicity of the crystal to give rise to 
destructive intereference effects that result in the absence of propagation of the wave in the material. Similarly to 
natural crystals, we can create photonic crystal and phononic crystals by engineering the periodicity. 
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𝐾𝐾

For an SH wave propagating through a film with thickness d, the reflectivity and transmissivity are:
The transfer matrix method concept can be applied also for an elastic waves:

where the subscript T indicates the transverse wave.

For a longitudinal (L) and vertically polarized transverse wave (SV), i.e. displacement polarized in the plane of incidence, the velocities of the incident, reflected 
and transmitted waves are:

where

For a multilayer system it is then sufficient to calculate the compounded interference matrix: 𝑀𝑀 = 𝑀𝑀1𝑀𝑀2 …𝑀𝑀2𝑛𝑛−1
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A surface plasmon/phonon polariton is a wave that propagates along an interface but is exponentially decaying on BOTH sides of the interface

Energy is bound to the interface and cannot be transported away from it

A plasmon polariton can exist at the interface of a metallic-like material and a dielectric and it is mixture of an electron wave and a photon.
A phonon polariton can exist at the interface between a polar material (e.g. SiC) and a dielectric and it is a mixture of an optical phonon and a 
photon.  
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