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Exercise 6.1

High-temperature thermal conductivity. At high temperature, the phonon relaxation time in a crystal
is

1

τ
=
kBT

mva

where a is of the order of distance between atoms and m is the atomic weight.

a) Prove that the high-temperature thermal conductivity is proportional to 1/T .

b) The thermal conductivity of silicon at 300 K is 145 Wm−1K−1. Estimate its thermal conductivity
at 400 K.
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Solution

(a) From the kinetic theory of phonon gas, we know that the thermal conductivity κ can be expressed
as

κ =
1

3
Cv2τ,

where C and v are heat capacity and phonon group velocity, respectively. Since the inverse of relaxation
time 1/τ (called scattering rate) is proportional to temperature T and other properties (i.e. heat
capacity and group velocity) are almost temperature-independent at high temperatures, the thermal
conductivity is thus

κ =
1

3
Cv2τ =

Cv3ma

3kBT
=
A

T
,

proportional to 1/T (A is a constant). This is actually the result of Umklapp scattering of phonons
which dissipate heat and the 1/T dependence of thermal conductivity can be the signature of the
dominant Umklapp scattering in crystal.

(b) Due to the fact that the thermal conductivity at high temperatures is proportional to 1/T , we can
obtain the following relation

κ300 · 300 = κ400 · 400.

So the thermal conductivity of silicon at 400 K is

κ400 =
3

4
× 145 = 108.75 Wm−1K−1.
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Exercise 6.2

Landauer formulation for electron thermal conduction. A metallic square nanowire is placed between
two thermal reservoirs at temperature T1 and T2. Assume that electron transmissivity is equal to one.
Derive an expression for the thermal conductance of the nanowire contributed by the electron.
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Solution

As electron transmissivity being 1, we can use Landauer formalism to treat the heat transfer easily.
As the structure confines, we will consider strictly the 1D energy transfer by electron through the
nanowire along x.

The energy transfer from reservoir 1 to 2 can be written as:

q12 = 2 · 1

V
·
∞∑

kx=0

vxτ12(E − µ)fFD(E, T1) =

∫ ∞
0

vx(E − µ)τ12D1DfFD(E, T1)dE

This formula is similar to that of phonon, but the difference in electron case is that we consider
energy E−µ and Fermi-Dirac statistic distribution of electron. Spin degeneracy, number 2 on the left
equation, is implemented in the 1D density of state D1D in the right equation.

Considering the detailed balance between opposite energy flows from the two reservoir, we express the
flow based on the properties of one reservoir.

q = q12 − q21 =

∫ ∞
0

vx(E − µ)τ12D1D(fFD(E, T1)− fFD(E, T2))dE

If T1 and T2 are not so different,

q = (T1 − T2) ·
∫ ∞
0

vx(E − µ)τ12D1D
dfFD(E, T )

dT
dE = ∆T ·K

K =

∫ ∞
0

vx(E − µ)τ12D1D
dfFD(E, T )

dT
dE

Replacing vx =

√
2(E−Ec)

m∗ ,D1D = 1
π~

√
m∗

2(E−Ec) , τ12 = 1, dfFD(E,T )
dT = e

E−µ
kBT

(e
E−µ
kBT −1)2

· E−µ
kBT 2 ,

K =

∫ ∞
0

k2BT

π~
(E − µ)

kBT

e
E−µ
kBT

(e
E−µ
kBT − 1)2

· E − µ
kBT 2

dE

Here T can be considered as the average temperature. Setting χ = E−µ
kBT

, we get the final form of the
1D thermal conductance from electron,

K =
k2BT

π~

∫ ∞
− µ
kBT

eχ

(eχ − 1)2
χ2dχ

If the temperature is low, we can approximate the lower limit of integral to -∞.

K =
k2BT

π~

∫ ∞
−∞

eχ

(eχ − 1)2
χ2dχ =

k2BT

π~
· π

2

3
=
πk2BT

3~
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