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Exercise 5.1

Thermal boundary resistance. Estimate the thermal boundary resistance between two materials with
the following properties on the basis of the diffuse interface scattering model: material 1: v1 =
3900 ms−1, C1 = 1.67 × 106 Jm−3K−1; material 2: v2 = 6400 ms−1, C2 = 1.66 × 106 Jm−3K−1. For a
heat flux of 108 Wm−2, estimate the temperature drop occurring at the interface.
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Solution

In diffuse interface scattering model (also known as diffuse mismatch model), phonons lose the in-
formation of their orgin after scattered by interfaces or boundaries. The phonon transmissivity from
material 1 to material 2 can be obtained via [eq. (5.96) of the textbook]

τd12 =
v1C1T

v1C1T + v2C2T
=

v1C1

v1C1 + v2C2
=

3900× 1.67× 106

3900× 1.67× 106 + 6400× 1.66× 106
≈ 0.38.

From energy conservation, we can also get τd21 = 1 − τd12 = 0.62. Then, thermal boundary resistance
[eq. (5.92) of the textbook] can be computed approximately by

Re =
4

τd12v1C1
=

4

0.38× 3900× 1.67× 106
≈ 1.62× 10−9 m2KW−1.

So the temperature drop at the interface is

∆T = Req = 108 × 1.62× 10−9 = 0.162 K.
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Exercise 5.2

Thermal boundary resistance at low temperature. Thermal boundary resistance is a phenomenon
that is important at low temperatures even for bulk materials and becomes important even at room
temperature in nanostructures, determined by

1

Re
=

1

2

∫ 1

0
µ1dµ1

∫ ωD

0
v1C1(ω)τ12(ω, µ1)dω.

In the above equation, v1 is sound velocity in medium 1, C1(ω) is spectral heat capacity of medium
1, τ12 is phonon transmissivity from medium 1 to medium 2, µ1 is diectional cosine, and ωD is Debye
frequency. At low temperatures, it can be shown that thermal boundary resistance obeys the relation
R−1
e ∝ T 3. Treating the transmissivity τ12 as independent of angle and frequency, derive an expression

for its proportionality coefficient between R−1
e and T 3 at low temperatures.
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Solution

Considering transmissivity τ12 independent of angle and frequency and sound velocity v1 as a constant
(independent of temperature), we can simply the expression to compute thermal boundary resistance
as

1

Re
=
v1τ12

4

∫ ωD

0
C1(ω)dω =

v1τ12

4

∫ ωD

0
~ωD(ω)

∂fBE(ω, T )

∂T
dω =

v1τ12

4
C.

The C is total heat capacity of the system, and the spectral heat capacity C1(ω) contributed from all
the phonons with frequency ω is ~ωD(ω)∂fBE/∂T , where D(ω) is the phonon density of states and fBE
is the Bose-Einstein distribution for a phonon mode. In Debye’s calculation of phonon heat capacity,
lattice vibrations in solids are treated in the long-wavelength limit, having the dispersion relation
ω(k) = v|k| with v as sound velocity, and there are only three vibrational modes (one longitudinal
mode and two transverse modes). So the expression for the total energy of the system 〈E〉 is

〈E〉 = 3
∑
k

~ω(k)fBE(ω, T ) =
3V

(2π)3

∫
dk~ω(k)fBE(ω, T ),

where V is the volume of the system. To make the integral easy to compute, we convert the expression
above into spherical coordinate and use the dispersion relation k = ω/v to obtain

〈E〉 =
3V

(2π)3

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ ∞
0

k2dk~ω(k)fBE(ω, T )

=
12πV

(2π)3

∫ ωD

0
dω

~ω3

v3
fBE(ω, T ).

We can further express it in phonon density of states D(ω) and assume there are N atoms in the
system. It becomes

〈E〉 =

∫ ωD

0
dω~ωD(ω)[fBE(ω, T ) +

1

2
] =

∫ ωD

0
dω~ωD(ω)

1

e
~ω
kBT − 1

,

and

D(ω) =
3ω2V

2π2v3
=

9Nω2

ω3
D

,

with the Debye frequency ωD = (6π2Nv3/V )1/3. This Debye cutoff frequency sets the upper limit
in doing the integral because in real materials there are finite number of vibrational modes (i.e. the
freedom of system, 3N), and we can get

3N =

∫ ωD

0
dωD(ω).

By defining the variable x = ~ω/(kBT ), we can evaluate the integral at low temperatures*

〈E〉 =
9N~
ω3
D

∫ ωD

0
dω

ω3

e
~ω
kBT − 1

=
9N(kBT )4

(~ω3
D)3

∫ ∞
0

dx
x3

ex − 1

=
9N(kBT )4

(~ω3
D)3

π4

15
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Notice this derivation is similar to Planck’s calculation of the T 4 energy of photons (also note the
similarity to Exercise 4.3 which ended in the integral form). As a result, the heat capacity of the
system is

C =
∂〈E〉
∂T

=
12π4NkB

5

(kBT )3

(~ωD)3
=

12π4NkB
5

T 3

T 3
D

∝ T 3,

where TD is the so-called Debye temperature by the definition kBTD = ~ωD (at which lattice vibrations
are fully excited and heat capacity saturates to 3kBN). So the thermal boundary resistance is

1

Re
=
v1τ12

4
C =

3π4NkBv1τ12

5

(kBT )3

(~ωD)3
∝ T 3,

and the proportionality coefficient P is

P =
3π4Nk4

Bv1τ12

5~3ω3
D

.

*Note: in the integral with variable x = ~ω/(kBT ), we change the upper limit of integral to ∞
because we consider it at low temperatures and x → ∞. Therefore, this result for heat capacity is
only valid at low temperatures. At high temperatures, we should get the Dulong-Petit heat capacity
as C = ∂〈E〉/∂T = ∂(3kBTN)/∂T = 3kBN , which means each atom contributes 3kB to the heat
capacity.
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Exercise 5.3

Phonon thermal conductivity at intermediate temperature The phonon-phonon scattering relaxation
time in the intermediate range of temperature (when T < θD) can be approximated as

1

τ
= Aexp[− Θ

aT
]T 3ω2

On the basis of the Debye model(linear dispersion), derive an expression for the thermal conductivity
and discuss its dependence on temperature.
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Solution

We start with a equation calculating thermal conductivity that considers phonon relaxation time being
dependent on angular frequency, and the temperature :

k =
1

3

∫
τν2Cωdω

where τ , ν, Cω are phonon relaxation time, phonon velocity, and specific heat per unit frequency ω
and temperature T (Cω = ~ωD(ω) df0

ddT , f0 corresponds to Bose-Einstein distribution).

If we consider τ and ν are independent of frequency ω for above equation, we get the kinetic theory of
gas equation k = 1

3Cν
2τ . When τ is dependent with frequency as given in the exercise, the calculation

is difficult but can be approximated by introducing Debye model.

Specific heat of Debye model per given frequency ω is written as.

Cw = ~ω · 3ω2V

2π2ν3
· ~ω
kBT 2

exp
{

~ω
kBT

}
(exp

{
~ω
kBT

}
− 1)2

Replacing Cw with Debye model of specific heat in the above thermal conductivity equation and
considering constant phonon velocity, the lattice thermal conductivity can be written as,

k =
1

2π2ν

∫ ωD

0
τ · ~

2ω4

kBT 2
·

exp
{

~ω
kBT

}
(exp

{
~ω
kBT

}
− 1)2

dω

Inputting 1
τ = Aexp[− Θ

aT ]T 3ω2 (Θ=Debye temperature) and replacing ω with x (x = ~ω
kBT

), thermal
conductivity becomes,

k =
k2
B

2Aπ2~ν
· e

Θ
aT · T−2 ·

∫ Θ
T

0

x2ex

(ex − 1)2
dx

By numerically plotting above equation wrt. temperature, it is possible to see that :

if a > 0, thermal conductivity is approximately inversely proportional to the temperature.

if a < 0, thermal conductivity shows a dome shape with a peak at certain temperature value.
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Exercise 5.4

Heat generation distribution due to absorption. A plane wave with an intensity of 104 Wm−2 at
λ0 = 0.517 µm meets a gold surface at 30o of incidence. Determine the heat generation distribution
inside the gold specimen. The refractive index at 0.517 µm is N = n+ iκ = 0.608 + 2.12i.
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Solution

Figure 1: Incident, reflected and transmitted waves with incidence and refracted angle Θi amd ΘR

respectively.

The time averaged Poynting < S >= 1
2Re(E × H∗)vector gives the average energy flow into the

volume. For a plane wave, it can be simplified to the following expression:

< S >=
1

2

n

µc0
e−αrE2

where,

r =
x

cosΘR
and α =

4πκ

λ0

As intensity is proportional to Poynting vector, we can express intensity of the transmitted wave in
terms of Poynting vector of the incident wave and Reflectivity.

I = Ii(1−R)e
− αx
cosΘR

The decrease in intensity with the penetration depth is converted to volumetric heat generation. So
the heat generation rate is given by:

q̇ = −dI
dx

= Ii(1−R)
α

cosΘR
e
− αx
cosΘR

where,

R =

∣∣∣∣−N2cosΘi +N1cosΘR

N2cosΘi +N1cosΘR

∣∣∣∣2
and from Snell’s law,

N1sinΘi = N2sinΘR

We can simplify the expression for q̇, or use a simple matlab code to determine heat generation for
different values of incidence angles.

q̇ = 1.9505 × 1011Re
[
e
− αx
cosΘR

]
[Wm−3]
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Figure 2: Volumetric heat generation rate as a function of distance normal to the surface, for various
values of incidence angles.

Note: The value of ΘR obtained from the Snell’s law is a complex angle. What does a complex angle
mean? In order to understand the significance of complex angle, one can substitute the value of ΘR

in the expression for transmitted wave and notice that the constant amplitude and constant phase
surface doesn’t coincides. Such a wave with different constant amplitude and phase surfaces is called
an inhomogeneous wave.
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