

Exercise 5.1

Thermal boundary resistance. Estimate the thermal boundary resistance between two materials with the following properties on the basis of the diffuse interface scattering model: material 1: $v_1 = 3900 \text{ ms}^{-1}$, $C_1 = 1.67 \times 10^6 \text{ Jm}^{-3}\text{K}^{-1}$; material 2: $v_2 = 6400 \text{ ms}^{-1}$, $C_2 = 1.66 \times 10^6 \text{ Jm}^{-3}\text{K}^{-1}$. For a heat flux of 10^8 Wm^{-2} , estimate the temperature drop occurring at the interface.

Solution

In diffuse interface scattering model (also known as diffuse mismatch model), phonons lose the information of their origin after scattered by interfaces or boundaries. The phonon transmissivity from material 1 to material 2 can be obtained via [eq. (5.96) of the textbook]

$$\tau_{12}^d = \frac{v_1 C_1 T}{v_1 C_1 T + v_2 C_2 T} = \frac{v_1 C_1}{v_1 C_1 + v_2 C_2} = \frac{3900 \times 1.67 \times 10^6}{3900 \times 1.67 \times 10^6 + 6400 \times 1.66 \times 10^6} \approx 0.38.$$

From energy conservation, we can also get $\tau_{21}^d = 1 - \tau_{12}^d = 0.62$. Then, thermal boundary resistance [eq. (5.92) of the textbook] can be computed approximately by

$$R_e = \frac{4}{\tau_{12}^d v_1 C_1} = \frac{4}{0.38 \times 3900 \times 1.67 \times 10^6} \approx 1.62 \times 10^{-9} \text{ m}^2 \text{KW}^{-1}.$$

So the temperature drop at the interface is

$$\Delta T = R_e q = 10^8 \times 1.62 \times 10^{-9} = 0.162 \text{ K}.$$

Exercise 5.2

Thermal boundary resistance at low temperature. Thermal boundary resistance is a phenomenon that is important at low temperatures even for bulk materials and becomes important even at room temperature in nanostructures, determined by

$$\frac{1}{R_e} = \frac{1}{2} \int_0^1 \mu_1 d\mu_1 \int_0^{\omega_D} v_1 C_1(\omega) \tau_{12}(\omega, \mu_1) d\omega.$$

In the above equation, v_1 is sound velocity in medium 1, $C_1(\omega)$ is spectral heat capacity of medium 1, τ_{12} is phonon transmissivity from medium 1 to medium 2, μ_1 is diectional cosine, and ω_D is Debye frequency. At low temperatures, it can be shown that thermal boundary resistance obeys the relation $R_e^{-1} \propto T^3$. Treating the transmissivity τ_{12} as independent of angle and frequency, derive an expression for its proportionality coefficient between R_e^{-1} and T^3 at low temperatures.

Solution

Considering transmissivity τ_{12} independent of angle and frequency and sound velocity v_1 as a constant (independent of temperature), we can simply the expression to compute thermal boundary resistance as

$$\frac{1}{R_e} = \frac{v_1 \tau_{12}}{4} \int_0^{\omega_D} C_1(\omega) d\omega = \frac{v_1 \tau_{12}}{4} \int_0^{\omega_D} \hbar \omega D(\omega) \frac{\partial f_{BE}(\omega, T)}{\partial T} d\omega = \frac{v_1 \tau_{12}}{4} C.$$

The C is total heat capacity of the system, and the spectral heat capacity $C_1(\omega)$ contributed from all the phonons with frequency ω is $\hbar \omega D(\omega) \partial f_{BE}/\partial T$, where $D(\omega)$ is the phonon density of states and f_{BE} is the Bose-Einstein distribution for a phonon mode. In Debye's calculation of phonon heat capacity, lattice vibrations in solids are treated in the long-wavelength limit, having the dispersion relation $\omega(\mathbf{k}) = v|\mathbf{k}|$ with v as sound velocity, and there are only three vibrational modes (one longitudinal mode and two transverse modes). So the expression for the total energy of the system $\langle E \rangle$ is

$$\langle E \rangle = 3 \sum_{\mathbf{k}} \hbar \omega(\mathbf{k}) f_{BE}(\omega, T) = \frac{3V}{(2\pi)^3} \int d\mathbf{k} \hbar \omega(\mathbf{k}) f_{BE}(\omega, T),$$

where V is the volume of the system. To make the integral easy to compute, we convert the expression above into spherical coordinate and use the dispersion relation $k = \omega/v$ to obtain

$$\begin{aligned} \langle E \rangle &= \frac{3V}{(2\pi)^3} \int_0^{2\pi} d\phi \int_0^{\pi} \sin \theta d\theta \int_0^{\infty} k^2 dk \hbar \omega(k) f_{BE}(\omega, T) \\ &= \frac{12\pi V}{(2\pi)^3} \int_0^{\omega_D} d\omega \frac{\hbar \omega^3}{v^3} f_{BE}(\omega, T). \end{aligned}$$

We can further express it in phonon density of states $D(\omega)$ and assume there are N atoms in the system. It becomes

$$\langle E \rangle = \int_0^{\omega_D} d\omega \hbar \omega D(\omega) [f_{BE}(\omega, T) + \frac{1}{2}] = \int_0^{\omega_D} d\omega \hbar \omega D(\omega) \frac{1}{e^{\frac{\hbar \omega}{k_B T}} - 1},$$

and

$$D(\omega) = \frac{3\omega^2 V}{2\pi^2 v^3} = \frac{9N\omega^2}{\omega_D^3},$$

with the Debye frequency $\omega_D = (6\pi^2 N v^3 / V)^{1/3}$. This Debye cutoff frequency sets the upper limit in doing the integral because in real materials there are finite number of vibrational modes (i.e. the freedom of system, $3N$), and we can get

$$3N = \int_0^{\omega_D} d\omega D(\omega).$$

By defining the variable $x = \hbar \omega / (k_B T)$, we can evaluate the integral at low temperatures*

$$\begin{aligned} \langle E \rangle &= \frac{9N\hbar}{\omega_D^3} \int_0^{\omega_D} d\omega \frac{\omega^3}{e^{\frac{\hbar \omega}{k_B T}} - 1} \\ &= \frac{9N(k_B T)^4}{(\hbar \omega_D^3)^3} \int_0^{\infty} dx \frac{x^3}{e^x - 1} \\ &= \frac{9N(k_B T)^4 \pi^4}{(\hbar \omega_D^3)^3} \frac{15}{15} \end{aligned}$$

Notice this derivation is similar to Planck's calculation of the T^4 energy of photons (also note the similarity to Exercise 4.3 which ended in the integral form). As a result, the heat capacity of the system is

$$C = \frac{\partial \langle E \rangle}{\partial T} = \frac{12\pi^4 N k_B}{5} \frac{(k_B T)^3}{(\hbar \omega_D)^3} = \frac{12\pi^4 N k_B}{5} \frac{T^3}{T_D^3} \propto T^3,$$

where T_D is the so-called Debye temperature by the definition $k_B T_D = \hbar \omega_D$ (at which lattice vibrations are fully excited and heat capacity saturates to $3k_B N$). So the thermal boundary resistance is

$$\frac{1}{R_e} = \frac{v_1 \tau_{12}}{4} C = \frac{3\pi^4 N k_B v_1 \tau_{12}}{5} \frac{(k_B T)^3}{(\hbar \omega_D)^3} \propto T^3,$$

and the proportionality coefficient P is

$$P = \frac{3\pi^4 N k_B^4 v_1 \tau_{12}}{5 \hbar^3 \omega_D^3}.$$

*Note: in the integral with variable $x = \hbar \omega / (k_B T)$, we change the upper limit of integral to ∞ because we consider it at low temperatures and $x \rightarrow \infty$. Therefore, this result for heat capacity is only valid at low temperatures. At high temperatures, we should get the Dulong-Petit heat capacity as $C = \partial \langle E \rangle / \partial T = \partial (3k_B T N) / \partial T = 3k_B N$, which means each atom contributes $3k_B$ to the heat capacity.

Exercise 5.3

Phonon thermal conductivity at intermediate temperature The phonon-phonon scattering relaxation time in the intermediate range of temperature (when $T < \theta_D$) can be approximated as

$$\frac{1}{\tau} = A \exp\left[-\frac{\Theta}{aT}\right] T^3 \omega^2$$

On the basis of the Debye model(linear dispersion), derive an expression for the thermal conductivity and discuss its dependence on temperature.

Solution

We start with a equation calculating thermal conductivity that considers phonon relaxation time being dependent on angular frequency, and the temperature :

$$k = \frac{1}{3} \int \tau \nu^2 C_\omega d\omega$$

where τ , ν , C_ω are phonon relaxation time, phonon velocity, and specific heat per unit frequency ω and temperature T ($C_\omega = \hbar\omega D(\omega) \frac{df_0}{dT}$, f_0 corresponds to Bose-Einstein distribution).

If we consider τ and ν are independent of frequency ω for above equation, we get the kinetic theory of gas equation $k = \frac{1}{3} C \nu^2 \tau$. When τ is dependent with frequency as given in the exercise, the calculation is difficult but can be approximated by introducing Debye model.

Specific heat of Debye model per given frequency ω is written as.

$$C_\omega = \hbar\omega \cdot \frac{3\omega^2 V}{2\pi^2 \nu^3} \cdot \frac{\hbar\omega}{k_B T^2} \frac{\exp\left\{\frac{\hbar\omega}{k_B T}\right\}}{\left(\exp\left\{\frac{\hbar\omega}{k_B T}\right\} - 1\right)^2}$$

Replacing C_ω with Debye model of specific heat in the above thermal conductivity equation and considering constant phonon velocity, the lattice thermal conductivity can be written as,

$$k = \frac{1}{2\pi^2 \nu} \int_0^{\omega_D} \tau \cdot \frac{\hbar^2 \omega^4}{k_B T^2} \cdot \frac{\exp\left\{\frac{\hbar\omega}{k_B T}\right\}}{\left(\exp\left\{\frac{\hbar\omega}{k_B T}\right\} - 1\right)^2} d\omega$$

Inputting $\frac{1}{\tau} = A \exp[-\frac{\Theta}{aT}] T^3 \omega^2$ (Θ =Debye temperature) and replacing ω with x ($x = \frac{\hbar\omega}{k_B T}$), thermal conductivity becomes,

$$k = \frac{k_B^2}{2A\pi^2\hbar\nu} \cdot e^{\frac{\Theta}{aT}} \cdot T^{-2} \cdot \int_0^{\frac{\Theta}{T}} \frac{x^2 e^x}{(e^x - 1)^2} dx$$

By numerically plotting above equation wrt. temperature, it is possible to see that :

if $a > 0$, thermal conductivity is approximately inversely proportional to the temperature.

if $a < 0$, thermal conductivity shows a dome shape with a peak at certain temperature value.

Exercise 5.4

Heat generation distribution due to absorption. A plane wave with an intensity of 10^4 Wm^{-2} at $\lambda_0 = 0.517 \mu\text{m}$ meets a gold surface at 30° of incidence. Determine the heat generation distribution inside the gold specimen. The refractive index at $0.517 \mu\text{m}$ is $N = n + i\kappa = 0.608 + 2.12i$.

Solution

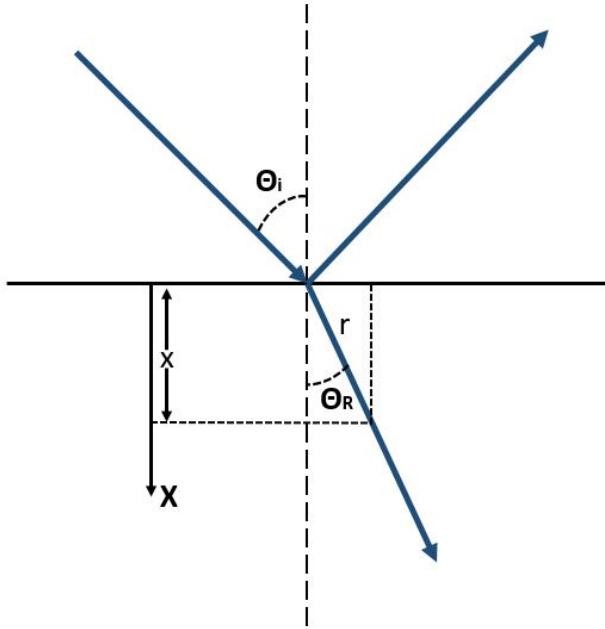


Figure 1: Incident, reflected and transmitted waves with incidence and refracted angle Θ_i and Θ_R respectively.

The time averaged Poynting $\langle S \rangle = \frac{1}{2}Re(\mathbf{E} \times \mathbf{H}^*)$ vector gives the average energy flow into the volume. For a plane wave, it can be simplified to the following expression:

$$\langle S \rangle = \frac{1}{2} \frac{n}{\mu c_0} e^{-\alpha r} E^2$$

where,

$$r = \frac{x}{\cos \Theta_R} \text{ and } \alpha = \frac{4\pi\kappa}{\lambda_0}$$

As intensity is proportional to Poynting vector, we can express intensity of the transmitted wave in terms of Poynting vector of the incident wave and Reflectivity.

$$I = I_i (1 - R) e^{-\frac{\alpha x}{\cos \Theta_R}}$$

The decrease in intensity with the penetration depth is converted to volumetric heat generation. So the heat generation rate is given by:

$$\dot{q} = -\frac{dI}{dx} = I_i (1 - R) \frac{\alpha}{\cos \Theta_R} e^{-\frac{\alpha x}{\cos \Theta_R}}$$

where,

$$R = \left| \frac{-N_2 \cos \Theta_i + N_1 \cos \Theta_R}{N_2 \cos \Theta_i + N_1 \cos \Theta_R} \right|^2$$

and from Snell's law,

$$N_1 \sin \Theta_i = N_2 \sin \Theta_R$$

We can simplify the expression for \dot{q} , or use a simple matlab code to determine heat generation for different values of incidence angles.

$$\dot{q} = 1.9505 \times 10^{11} Re \left[e^{-\frac{\alpha x}{\cos \Theta_R}} \right] [Wm^{-3}]$$

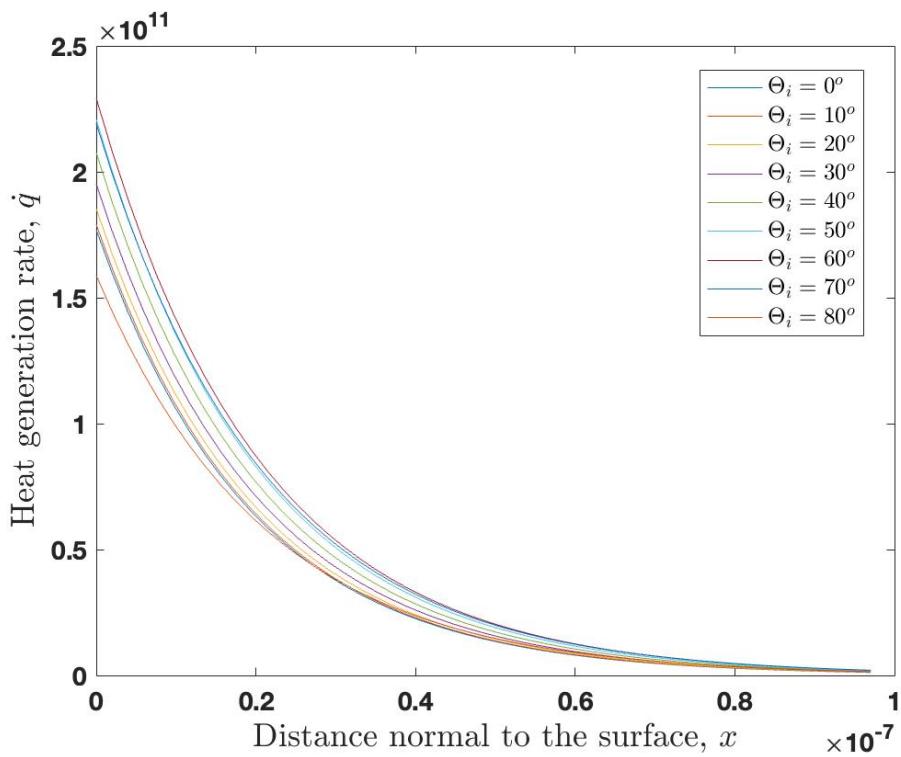


Figure 2: Volumetric heat generation rate as a function of distance normal to the surface, for various values of incidence angles.

Note: The value of Θ_R obtained from the Snell's law is a complex angle. What does a complex angle mean? In order to understand the significance of complex angle, one can substitute the value of Θ_R in the expression for transmitted wave and notice that the constant amplitude and constant phase surface doesn't coincides. Such a wave with different constant amplitude and phase surfaces is called an **inhomogeneous wave**.