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Exercise 5.1

Thermal boundary resistance. Estimate the thermal boundary resistance between two materials with
the following properties on the basis of the diffuse interface scattering model: material 1: vy =
3900ms~ !, C; = 1.67 x 10 Jm™3K~!; material 2: vy = 6400ms~ !, Cy = 1.66 x 105 Jm3K~!. For a
heat flux of 102 Wm ™2, estimate the temperature drop occurring at the interface.
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Solution

In diffuse interface scattering model (also known as diffuse mismatch model), phonons lose the in-
formation of their orgin after scattered by interfaces or boundaries. The phonon transmissivity from
material 1 to material 2 can be obtained via [eq. (5.96) of the textbook]

J v O1T 11Cy 3900 x 1.67 x 10°

— — — ~ 0.38.
27 00T + 0205 0101 + 1205 3900 x 1.67 x 106 + 6400 x 1.66 x 106

From energy conservation, we can also get 75 = 1 — 7{, = 0.62. Then, thermal boundary resistance
leq. (5.92) of the textbook] can be computed approximately by

4 4

= ~1.62 x 1077 m*KW 1.
ThuiCy  0.38 x 3900 x 1.67 x 106 o

R =

So the temperature drop at the interface is

AT = R.q=10% x 1.62 x 107Y = 0.162 K.
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Exercise 5.2

Thermal boundary resistance at low temperature. Thermal boundary resistance is a phenomenon
that is important at low temperatures even for bulk materials and becomes important even at room
temperature in nanostructures, determined by

1 1 1 wp
== 2/ mdm/ 0101 (W) T12(w, 1) dw.
e 0 0

In the above equation, vy is sound velocity in medium 1, C;(w) is spectral heat capacity of medium
1, 712 is phonon transmissivity from medium 1 to medium 2, u; is diectional cosine, and wp is Debye
frequency. At low temperatures, it can be shown that thermal boundary resistance obeys the relation
R;! o< T3. Treating the transmissivity 71 as independent of angle and frequency, derive an expression
for its proportionality coefficient between R;! and T2 at low temperatures.



- - Nanoscale Heat Transfer ME-469
[ P r L EXERCISE SET 5 Prof. Giulia Tagliabue

EPFL-STI-GM-LNET

Solution

Considering transmissivity 712 independent of angle and frequency and sound velocity v as a constant
(independent of temperature), we can simply the expression to compute thermal boundary resistance
as

1 viTie [“P viTi2 [“P 0fpe(w,T) V1T12
— = dw = fwD(w)——————dw = .
R 1 /0 C(w)dw 1 /0 (w) o7 w 1 C

The C is total heat capacity of the system, and the spectral heat capacity C}(w) contributed from all
the phonons with frequency w is iwD(w)0 fpg /0T, where D(w) is the phonon density of states and fpg
is the Bose-Einstein distribution for a phonon mode. In Debye’s calculation of phonon heat capacity,
lattice vibrations in solids are treated in the long-wavelength limit, having the dispersion relation
w(k) = vlk| with v as sound velocity, and there are only three vibrational modes (one longitudinal
mode and two transverse modes). So the expression for the total energy of the system (E) is

3V

<E> = 3¥hw<k)fBE(va) = (271,)3

/dkhw(k)fBE(w, T),

where V is the volume of the system. To make the integral easy to compute, we convert the expression
above into spherical coordinate and use the dispersion relation £ = w/v to obtain

_i 27 T 00 )
(E) = (277)3/0 dqﬁ/ﬂ sm@d&/() k*dkhw(k) fpr(w,T)

127V /WD hw3
= w
0

e d FfBE(w,T).

We can further express it in phonon density of states D(w) and assume there are N atoms in the
system. It becomes

wp 1 WD 1
(E) = dwhwD(w)[fpe(w,T) + =] = dwhwD(w)——,
0 2 0 efsT — 1
and 9 9
3w*V  9Nw
Dw)= 2 ¥ =77
() 2m2y3 wd

with the Debye frequency wp = (672Nwv3/V)/3. This Debye cutoff frequency sets the upper limit
in doing the integral because in real materials there are finite number of vibrational modes (i.e. the
freedom of system, 3N), and we can get

wp
3N = / dwD(w).
0

By defining the variable x = hw/(kpT), we can evaluate the integral at low temperatures™

wp 3
<E>:9Nh/ do w
0 e

3 hw

wp FpT _ ]
4 00 3
_ IN (kpT) / dx x
(%%)3 0 e’ — 1
_ IN(kgT)*7*
T (P 1

4
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Notice this derivation is similar to Planck’s calculation of the T* energy of photons (also note the
similarity to Exercise 4.3 which ended in the integral form). As a result, the heat capacity of the
system is

(E) 12x'Nkp (kpT)* _ 12n'Nkp T°

C= _ _
aT 5 (hwp)® 5 T3

ocT3,

where T'p is the so-called Debye temperature by the definition kgTp = fuwp (at which lattice vibrations
are fully excited and heat capacity saturates to 3kpN). So the thermal boundary resistance is
i . 1)1T120 N 37T4Nk31)17'12 (]ﬁBT)3
R. 4 5 (hwp)3

x T3,
and the proportionality coefficient P is

p— 37T4Nk4BU1T12
53w,

*Note: in the integral with variable = hw/(kgT), we change the upper limit of integral to oo
because we consider it at low temperatures and x — oo. Therefore, this result for heat capacity is
only valid at low temperatures. At high temperatures, we should get the Dulong-Petit heat capacity

as C = 0(E)/0T = 0(3kpTN)/0T = 3kpN, which means each atom contributes 3kp to the heat
capacity.
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Exercise 5.3

Phonon thermal conductivity at intermediate temperature The phonon-phonon scattering relaxation
time in the intermediate range of temperature (when 7' < fp) can be approximated as

1 (C]

Z—A 7 T3 2

- exp| aT] w

On the basis of the Debye model(linear dispersion), derive an expression for the thermal conductivity

and discuss its dependence on temperature.
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Solution

We start with a equation calculating thermal conductivity that considers phonon relaxation time being
dependent on angular frequency, and the temperature :

1
k= 3 /7U2dew

where 7, v, C,, are phonon relaxation time, phonon velocity, and specific heat per unit frequency w
and temperature T' (C,, = th(w)%, fo corresponds to Bose-Einstein distribution).

If we consider 7 and v are independent of frequency w for above equation, we get the kinetic theory of
gas equation k = %CZ/QT. When 7 is dependent with frequency as given in the exercise, the calculation
is difficult but can be approximated by introducing Debye model.

Specific heat of Debye model per given frequency w is written as.

3wV hw eXp{chMT}
o283 kT2 (exp{ hw } —1)2

Cyp = hw
kT

Replacing C,, with Debye model of specific heat in the above thermal conductivity equation and
considering constant phonon velocity, the lattice thermal conductivity can be written as,

hw
" 1 /UJD h2w4 exp{ EsT } o
0

— 5 T - 5 .
21y kT (exp{kf%} —1)2
Inputting % = Aeaz:p[—%]T?’w2 (©=Debye temperature) and replacing w with x (z = kBﬂT), thermal

conductivity becomes,
2 x

PO TR R /?“dx
- 2Am2hv o (er—1)2

By numerically plotting above equation wrt. temperature, it is possible to see that :
if @ > 0, thermal conductivity is approximately inversely proportional to the temperature.

if @ < 0, thermal conductivity shows a dome shape with a peak at certain temperature value.
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Exercise 5.4

Heat generation distribution due to absorption. A plane wave with an intensity of 10* Wm™2 at
Ao = 0.517 pm meets a gold surface at 30° of incidence. Determine the heat generation distribution
inside the gold specimen. The refractive index at 0.517 um is N = n + ik = 0.608 + 2.124.
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Figure 1: Incident, reflected and transmitted waves with incidence and refracted angle ©; amd ©g
respectively.

The time averaged Poynting < S >= %Re(E X H*)vector gives the average energy flow into the
volume. For a plane wave, it can be simplified to the following expression:

< §>=_—eorE?
2 uco
where,
d 41k
r= and o = —
cosOp Ao

As intensity is proportional to Poynting vector, we can express intensity of the transmitted wave in
terms of Poynting vector of the incident wave and Reflectivity.

[ =11 R)e =n

The decrease in intensity with the penetration depth is converted to volumetric heat generation. So
the heat generation rate is given by:

dI __azx
_@:IZ(I_R) @ e cosOp

7= c0sOp

where,

| —=N2cosO; + NicosOp 2

R =
Nocos©; + N1cosOpr

and from Snell’s law,
N1sin®; = NosinOp

We can simplify the expression for ¢, or use a simple matlab code to determine heat generation for
different values of incidence angles.

d = 1.9505 x 10! Re [e‘ coiéa} [Wm—?

9
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Figure 2: Volumetric heat generation rate as a function of distance normal to the surface, for various
values of incidence angles.

Note: The value of ©p obtained from the Snell’s law is a complex angle. What does a complex angle

mean? In order to understand the significance of complex angle, one can substitute the value of O
in the expression for transmitted wave and notice that the constant amplitude and constant phase
surface doesn’t coincides. Such a wave with different constant amplitude and phase surfaces is called
an inhomogeneous wave.

10



