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Exercise 4.1

Electrons in semiconductors. A semiconductor has a parabolic band structure:

h2
2m*

2 2 2
E—-E. = (ky + Ky, +k2)

The Fermi level in the semiconductor could be above or below the conduction band edge. Take the
electron effective mass as the free electron mass. For n— E. = 0.05eV and T = 300K, do the following
in the range 0.0eV < E — E, < 0.1eV:

a) Plot the Fermi-Dirac distribution as a function of E.

b) Plot the density of state as a function of E.

c¢) Calculate the product of f(E,T)D(E), which means the average number of eletrons at each E,
and plot the product as a function of E.

d) Calculate the product of (E — E.)f(E,T)D(FE), which means the actual kinetic energy at each
allowable energy level, and plot the product as a function of E.

e) Repeat the questions for 1 — E. = —0.05¢V.
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Solution

a) We can rewrite the Fermi-Dirac distribution based on the relative Fermi level position(p — E. =

0.05eV) with respect to conduction band edge E.:

(E—(0.05+E¢)

f(E,T)= f(E,300K) = 1/(es61710-5-300 4 1)

Plotting f(E,T) in the range 0 < F — E. < 0.1eV, we get :
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Figure 1: Fermi-Dirac distribution as a function of £ — E,

b) Density of state of spherical parabolic band per unit volume and per unit energy interval can be

written as (See lecture 5, slide 37 for the derivation) :

1 2m*

D(E) =5 5(55

Considering free electron mass, m* = 9.1 x 1073 kg and the unit conversion 1kg = 6.24-10%eV -m 2.2

plotting the D(E) in the range 0 < F — E,. < 0.1eV, we get
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Figure 2: Electron density of state as a function of £ — E.



=PFL

EXERCISE SET 4

Nanoscale Heat Transfer ME-469
Prof. Giulia Tagliabue
EPFL-STI-GM-LNET

c) Plot of f(E,300K)D(F) in the range gives :
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Figure 3: Average number of electrons as a function of £ — E,

d) Plot of (£ — E.)f(E,300K)D(FE) in the range gives :
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Figure 4: Kinetic energy of electrons as a function of F — E,
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e) Now, Fermi energy level lies 0.05¢V below the conduction band edge E.. Shift in Fermi energy
basically shifts overall the Fermi-Dirac distribution. Therefore, we expect change in f(E,T)D(E),
(E — E.)f(E,T)D(FE) energy distribution as well but not the density of state of electron, which
remains the same regardless of the Fermi level position. Fermi-Dirac distribution when the Fermi
energy level lies 0.05e¢V below the conduction band edge E. is written as:

(E—(—0.05+E¢)

Plotting this distribution in the same energy range, we get:
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Figure 5: Fermi-Dirac distribution as a function of £ — E.. Blue(orange) line corresponds to Fermi
level above(below) the conduction band edge.

Orange line in the above figure refers to the Fermi-Dirac distribution at 1 — E. = —0.05¢V.

Plotting similarly f(F,300K)D(E) and (E — E.)f(E,300K)D(E) when p — E. = —0.05eV gives:
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Figure 6: Average number of electrons as a function of £ — E.. Blue(orange) line corresponds to Fermi
level above(below) the conduction band edge.
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Figure 7: Kinetic energy of electrons as a function of E — E.. Blue(orange) line corresponds to Fermi

level above(below) the conduction band edge.

As Fermi level moves away from the edge of conduction band toward the bandgap, lesser number of
electron will be excited in the conduction band at 300K.
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Exercise 4.2

Chemical potential and dopant concentration. The number of electrons in the conduction band can be
assumed to be equal to the dopant concentration. Calculate the chemical potential levels relative to
the band edge for the dopant concentrations of 10'® ¢m™3 and 10! em=3.

Assume the effective electron mass is approximated to free electron mass at T = 300K.

It is given that the density of states for electron is D(E), where

1 [2m*]%/?
D(E) = B |:hgj| (E — E.)Y/?

and , F. is the energy of the conduction band edge.
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Solution

In order to obtain the number of all available states, we can integrate the density of states for all
possible values of Energy. However, to obtain the number of occupied states we need to include the
probability of an states being occupied which is given by Fermi-Dirac distribution, which is a function
of energy level, chemical potential and temperature.

1
fEuT) = 57—
ekBT + 1

If n is the number of occupied states, then n is can be expressed as:

n= [ J(E.uT)D(E)dE
E.

© 1 [2m*]%/? o
E. e*BT +1

x713/2 roo
n_l[Zm ] / ¥(E—Ec)l/2dE

2 2 E—
2w h E. ekBi;i +1

The above integral can be evaluated numerically and is a function of chemical potential and temper-
ature. Therefore, one can obtain the value of chemical potential for specified values of dopant con-
centration and temperature. However, if we make a classical assumption, the integral can be solved
analytically. This holds good at lower temperature, when % >> 1 and as a result Fermi-Dirac
distribution is approximated to Boltzmann distribution.

E—p E—pn
ekBT + 1 ~ ekBT

* 3/2 (e.0) E—
n=2—12 {2;;} / ¢ bt (B — E)V2dE
™

substituting z = Ek_Bgc in the above integral, we get,

« 3/2 g
1 [Zm k‘BT:| e_b;B;/ooezzu2dZ
0

"Tor|T R
272 h? 2
. 32 p_
n=2 [27rmh2k'BT] 67%
Let,
2mrm*kgT 3/2
s [
then,
N,
E.—pu=kgTn —=
n
At 300K,
27 x 9.1 x 10731 x 1.38 x 10~23 x 3001%/>
Ne=2x |7~ (6,626 X 10-31)2 ] =2.5038 x 10%m ™" = 2.5038 x 10"%em ™

a) n =108 cm=3
E, —p=322kpT =83.4 meV

b) n =10 cm=3
E. — p=0918kpT = 23.77T meV
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Exercise 4.3

Blackbody radiation. Consider the Blackbody radiation at 300K.

a) Plot the Bose-Einstein distribution as a function of angular frequency w

b) Plot the density of states as a function of w

c) Plot fD as a function of w

e

)
)
d) Plot fw fD as a function of w
) compute the emissive power as a function of temperature and the corresponding specific heat
)

f) Compare (a)-(e) for Photons and Phonons. Use Debye model with Debye velocity of 5000 m/s
and Debye temperature 500 K
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Solution

The Bose-Einstein distribution for bosons such as Photon, Phonon are expressed as:
1
fwT) =——

ekBT —1

The density of states for photon and phonon(under Debye approximation) are expressed as below:

Bose-Einstein distribution, f
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Figure 8: Bose-Einstein distribution as a function of frequency, wfor various values of temperature
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Figure 9: Density of states for photon and phonon

Density of states gives the number of possible states (including the polarisation), and f is the average
number of particles in each states.therefore, fD(w) gives the average number of particles present in
9
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the given states.
Note that, the aggregation of particles in the same state, is a characteristic of particles
obeying Bose—Einstein statistics.
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Figure 10: Density of number of particles for photon and phonon

The energy of each particles (photon or phonon) is fw, therefore, hwfD(w) gives the energy density
for an interval of frequency dw. The total energy density can be obtained by integrating it for all
possible values of frequency. The total energy density for photon and phonon can be determined by
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Figure 11: Energy density for a frequency interval dw for photon and phonon

the following expression:
for photon,

h 3
u=— 3/ " dw
TeC 0 ekBT _1

3h wi 3
=553 o dw
TVa” Jo  eRpT — 1
e

For photon, the intergral can be evaluated analytically, by use of proper substituion, z = TeT

for phonon,

00 3
u = A0T4/ xLL‘ 1 dr = A1T4
0

et —



- Nanoscale Heat Transfer ME-469
P r L EXERCISE SET 4 Prof. Giulia Tagliabue

EPFL-STI-GM-LNET

I

where,

(ke
Ag= ——= | —
m2e3 \ h
Since a photon propagates in all direction with speed c, the intensity is expressed as:

cu  cAi, 4
=——= T
4m

T o4m

where, the factor 47 is attributed to the total solid angle.

The emissive power is given by:

CAl A
(& m 4

The specific heat of a blackbody is proportional to 73, which is expressed as:

du
i fic heat = — = 4A,T3
speci fic hea T 1

Note: Although, specific heat for phonon cannot be evaluated analytically, it is interesting to note
that the specific heat behaviour of phonon at low temperature. It is indeed proportional to T, which
is same as photon.

11
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Exercise 4.4

Phonon specific heat Assuming that phonons obey the following dispersion relation (three-dimensional

isotropic medium)
| K k
w=2 —]sin&\
m 2

where a is the lattice constant, K the spring constant, and k the wavevector. Derive an expression
for the phonon internal energy and specific heat.

12
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Solution

Such dispersion relation corresponds to acoustic phonon mode. Although the acoustic phonon disper-
sion relation is non-linear, very often the Debye approximation (w = vk) is used, which assumes a linear
dispersion relation between the frequency and the wavevector. It is especially a good approximation
at low frequency range. We start with the approximation that

k K
=2y K pain = R o= v
m m

where v is velocity of the sound wave.

Here, we assume that the medium holds only acoustic phonon mode, not the optical one (a case with
1 atom per lattice). From the lecture slide p.28, we know the phonon density of state can be written

as
K2V dlk|

22 dw

Substituting with |k|= % and considering 3 polarizations of acoustic mode, we can rewrite it as

D(w) =

3wV

D(w) = 2m2y3

The phonon internal energy as a function of temperature can be calculated integrating all the possible
phonon vibration frequencies upto cut off frequency(wp), which can be written as,

wp 1
0

where wp, D(w), hw and are phonon cutoff frequency, phonon density of states, phonon energy

e B —1
at given frequency, and Bose—Einstein distribution, respectively.
Plugging above D(w), we get phonon internal energy :

“JD 3w2V 1
o=

2 3 _hw
27r v eFBT _ 1

3Vh [P w3
=533 | MW —
TV 0 6@ 1
Phonon specific heat is calculated by differentiating the U with respect to temperature, T :
ou o ( 3Vh [“P 3
8T 8T 2wy 0 GkaT -1

3Vh h /“’D weFsT
S A A
27208 kpT? J, (

If there are N lattices in the medium, there are 3N acoustic phonon modes. With this information,
cut off frequency wp can be defined and be replaced in above equations with :

oy _ SV Bwhv
6m2  6m23
o — (67r 1 Nﬁ
b=y
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