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Exercise 4.1

Electrons in semiconductors. A semiconductor has a parabolic band structure:

E − Ec =
~2

2m∗
(k2x + k2y + k2z)

The Fermi level in the semiconductor could be above or below the conduction band edge. Take the
electron effective mass as the free electron mass. For µ−Ec = 0.05eV and T = 300K, do the following
in the range 0.0eV < E − Ec < 0.1eV :

a) Plot the Fermi-Dirac distribution as a function of E.

b) Plot the density of state as a function of E.

c) Calculate the product of f(E, T )D(E), which means the average number of eletrons at each E,
and plot the product as a function of E.

d) Calculate the product of (E − Ec)f(E, T )D(E), which means the actual kinetic energy at each
allowable energy level, and plot the product as a function of E.

e) Repeat the questions for µ− Ec = −0.05eV .
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Solution

a) We can rewrite the Fermi-Dirac distribution based on the relative Fermi level position(µ − Ec =
0.05eV ) with respect to conduction band edge Ec:

f(E, T ) = f(E, 300K) = 1/(e
(E−(0.05+Ec)

8.617·10−5·300 + 1)

Plotting f(E, T ) in the range 0 < E − Ec < 0.1eV , we get :

Figure 1: Fermi-Dirac distribution as a function of E − Ec

b) Density of state of spherical parabolic band per unit volume and per unit energy interval can be
written as (See lecture 5, slide 37 for the derivation) :

D(E) =
1

2π2
(
2m∗

~2
)
3
2 (E − Ec)

1
2

Considering free electron mass, m∗ = 9.1×10−31kg and the unit conversion 1kg = 6.24·1018eV ·m−2·s2,
plotting the D(E) in the range 0 < E − Ec < 0.1eV , we get :

Figure 2: Electron density of state as a function of E − Ec
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c) Plot of f(E, 300K)D(E) in the range gives :

Figure 3: Average number of electrons as a function of E − Ec

d) Plot of (E − Ec)f(E, 300K)D(E) in the range gives :

Figure 4: Kinetic energy of electrons as a function of E − Ec
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e) Now, Fermi energy level lies 0.05eV below the conduction band edge Ec. Shift in Fermi energy
basically shifts overall the Fermi-Dirac distribution. Therefore, we expect change in f(E, T )D(E),
(E − Ec)f(E, T )D(E) energy distribution as well but not the density of state of electron, which
remains the same regardless of the Fermi level position. Fermi-Dirac distribution when the Fermi
energy level lies 0.05eV below the conduction band edge Ec is written as:

f(E, T ) = f(E, 300K) = 1/(e
(E−(−0.05+Ec)

8.617·10−5·300 + 1)

Plotting this distribution in the same energy range, we get:

Figure 5: Fermi-Dirac distribution as a function of E − Ec. Blue(orange) line corresponds to Fermi
level above(below) the conduction band edge.

Orange line in the above figure refers to the Fermi-Dirac distribution at µ− Ec = −0.05eV .

Plotting similarly f(E, 300K)D(E) and (E − Ec)f(E, 300K)D(E) when µ − Ec = −0.05eV gives:

Figure 6: Average number of electrons as a function of E−Ec. Blue(orange) line corresponds to Fermi
level above(below) the conduction band edge.
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Figure 7: Kinetic energy of electrons as a function of E −Ec. Blue(orange) line corresponds to Fermi
level above(below) the conduction band edge.

As Fermi level moves away from the edge of conduction band toward the bandgap, lesser number of
electron will be excited in the conduction band at 300K.

5



Exercise Set 4
Nanoscale Heat Transfer ME-469

Prof. Giulia Tagliabue
EPFL-STI-GM-LNET

Exercise 4.2

Chemical potential and dopant concentration. The number of electrons in the conduction band can be
assumed to be equal to the dopant concentration. Calculate the chemical potential levels relative to
the band edge for the dopant concentrations of 1018 cm−3 and 1019 cm−3.
Assume the effective electron mass is approximated to free electron mass at T = 300K.
It is given that the density of states for electron is D(E), where

D(E) =
1

2π2

[
2m∗

~2

]3/2
(E − Ec)1/2

and , Ec is the energy of the conduction band edge.
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Solution

In order to obtain the number of all available states, we can integrate the density of states for all
possible values of Energy. However, to obtain the number of occupied states we need to include the
probability of an states being occupied which is given by Fermi-Dirac distribution, which is a function
of energy level, chemical potential and temperature.

f(E,µ, T ) =
1

e
E−µ
kBT + 1

If n is the number of occupied states, then n is can be expressed as:

n =

∫ ∞
Ec

f(E,µ, T )D(E) dE

n =

∫ ∞
Ec

1

e
E−µ
kBT + 1

1

2π2

[
2m∗

~2

]3/2
(E − Ec)1/2 dE

n =
1

2π2

[
2m∗

~2

]3/2 ∫ ∞
Ec

1

e
E−µ
kBT + 1

(E − Ec)1/2 dE

The above integral can be evaluated numerically and is a function of chemical potential and temper-
ature. Therefore, one can obtain the value of chemical potential for specified values of dopant con-
centration and temperature. However, if we make a classical assumption, the integral can be solved
analytically. This holds good at lower temperature, when E−µ

kBT
>> 1 and as a result Fermi-Dirac

distribution is approximated to Boltzmann distribution.

e
E−µ
kBT + 1 ≈ e

E−µ
kBT

n =
1

2π2

[
2m∗

~2

]3/2 ∫ ∞
Ec

e
−E−µ
kBT (E − Ec)1/2 dE

substituting z = E−Ec
kBT

in the above integral, we get,

n =
1

2π2

[
2m∗kBT

~2

]3/2
e
−Ec−µ
kBT

∫ ∞
0

e−zz1/2 dz

n =
1

2π2

[
2m∗kBT

~2

]3/2
e
−Ec−µ
kBT ×

√
π

2

n = 2

[
2πm∗kBT

h2

]3/2
e
−Ec−µ
kBT

Let,

Nc = 2

[
2πm∗kBT

h2

]3/2
then,

Ec − µ = kBT ln
Nc

n
At 300K,

Nc = 2 ×
[

2π× 9.1 × 10−31 × 1.38 × 10−23 × 300

(6.626 × 10−34)2

]3/2
= 2.5038 × 1025m−3 = 2.5038 × 1019cm−3

a) n = 1018 cm−3

Ec − µ = 3.22kBT = 83.4 meV

b) n = 1019 cm−3

Ec − µ = 0.918kBT = 23.77 meV
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Exercise 4.3

Blackbody radiation. Consider the Blackbody radiation at 300K.

a) Plot the Bose-Einstein distribution as a function of angular frequency ω

b) Plot the density of states as a function of ω

c) Plot fD as a function of ω

d) Plot ~ωfD as a function of ω

e) compute the emissive power as a function of temperature and the corresponding specific heat

f) Compare (a)-(e) for Photons and Phonons. Use Debye model with Debye velocity of 5000 m/s
and Debye temperature 500 K
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Solution

The Bose-Einstein distribution for bosons such as Photon, Phonon are expressed as:

f(ω, T ) =
1

e
~ω
kBT − 1

The density of states for photon and phonon(under Debye approximation) are expressed as below:

Figure 8: Bose-Einstein distribution as a function of frequency, ωfor various values of temperature

For photon,

D(ω) =
ω2

π2c3
for 0 < ω <∞

For photon,

D(ω) =
3ω2

2π2vd3
for 0 < ω < ωd

(a) Photon (b) Phonon, Debye approximation

Figure 9: Density of states for photon and phonon

Density of states gives the number of possible states (including the polarisation), and f is the average
number of particles in each states.therefore, fD(ω) gives the average number of particles present in
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the given states.
Note that, the aggregation of particles in the same state, is a characteristic of particles
obeying Bose–Einstein statistics.

(a) Photon (b) Phonon, Debye approximation

Figure 10: Density of number of particles for photon and phonon

The energy of each particles (photon or phonon) is ~ω, therefore, ~ωfD(ω) gives the energy density
for an interval of frequency dω. The total energy density can be obtained by integrating it for all
possible values of frequency. The total energy density for photon and phonon can be determined by

(a) Photon (b) Phonon, Debye approximation

Figure 11: Energy density for a frequency interval dω for photon and phonon

the following expression:
for photon,

u =
~

π2c3

∫ ∞
0

ω3

e
~ω
kBT − 1

dω

for phonon,

u =
3~

2π2vd3

∫ ωd

0

ω3

e
~ω
kBT − 1

dω

For photon, the intergral can be evaluated analytically, by use of proper substituion, x = ~ω
kBT

u = A0T
4

∫ ∞
0

x3

ex − 1
dx = A1T

4
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where,

A0 =
~

π2c3

(
kB
~

)4

Since a photon propagates in all direction with speed c, the intensity is expressed as:

I =
cu

4π
=
cA1

4π
T 4

where, the factor 4π is attributed to the total solid angle.
The emissive power is given by:

e = πI =
cA1

4
T 4

The specific heat of a blackbody is proportional to T 3, which is expressed as:

specific heat =
du

dT
= 4A1T

3

Note: Although, specific heat for phonon cannot be evaluated analytically, it is interesting to note
that the specific heat behaviour of phonon at low temperature. It is indeed proportional to T 3, which
is same as photon.
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Exercise 4.4

Phonon specific heat Assuming that phonons obey the following dispersion relation (three-dimensional
isotropic medium)

ω = 2

√
K

m
|sin |k|a

2
|

where a is the lattice constant, K the spring constant, and k the wavevector. Derive an expression
for the phonon internal energy and specific heat.
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Solution

Such dispersion relation corresponds to acoustic phonon mode. Although the acoustic phonon disper-
sion relation is non-linear, very often the Debye approximation (ω = νk) is used, which assumes a linear
dispersion relation between the frequency and the wavevector. It is especially a good approximation
at low frequency range. We start with the approximation that

ω = 2

√
K

m
|sin |k|a

2
|=
√
K

m
a|k|= ν|k|

where ν is velocity of the sound wave.

Here, we assume that the medium holds only acoustic phonon mode, not the optical one (a case with
1 atom per lattice). From the lecture slide p.28, we know the phonon density of state can be written
as

D(ω) =
k2V

2π2
d|k|
dω

Substituting with |k|= ω
ν and considering 3 polarizations of acoustic mode, we can rewrite it as

D(ω) =
3ω2V

2π2ν3

The phonon internal energy as a function of temperature can be calculated integrating all the possible
phonon vibration frequencies upto cut off frequency(ωD), which can be written as,

U =

∫ ωD

0
dωD(ω)~ω

1

e
~ω
kBT − 1

where ωD, D(ω), ~ω and 1

e
~ω
kBT −1

are phonon cutoff frequency, phonon density of states, phonon energy

at given frequency, and Bose–Einstein distribution, respectively.

Plugging above D(ω), we get phonon internal energy :

U =

∫ ωD

0
dω

3ω2V

2π2ν3
~ω

1

e
~ω
kBT − 1

=
3V ~

2π2ν3

∫ ωD

0
dω

ω3

e
~ω
kBT − 1

Phonon specific heat is calculated by differentiating the U with respect to temperature, T :

C =
∂U

∂T
=

∂

∂T

(
3V ~

2π2ν3

∫ ωD

0
dω

ω3

e
~ω
kBT − 1

)

=
3V ~

2π2ν3
~

kBT 2

∫ ωD

0
dω

ω4e
~ω
kBT

(e
~ω
kBT − 1)2

If there are N lattices in the medium, there are 3N acoustic phonon modes. With this information,
cut off frequency ωD can be defined and be replaced in above equations with :

3N =
3K3V

6π2
=

3ω3
DV

6π2ν3

ωD = (
6π2ν3N

V
)
1
3

.
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