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Exercise 3.1

Lennard-Jones potential. The Lennard-Jones potential is widely used to describe the interactions be-
tween similar atoms or molecules in liquidus or gaseous phases. It has the simple analytical form

U(r) = 4ε[(
σ

r
)12 − (

σ

r
)6],

where ε is the depth of the potential well, σ is the distance at which the potential between the two
atoms is zero, and r is the distance between the two atoms. For argon crystal (ε = 0.0104 eV and
σ = 3.40 Å),

a) Calculate the equilibrium interatomic distance.

b) Calculate the energy at the minimum (called cohesive energy).

c) Calculate the effective spring constant between two argon atoms.
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Solution
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Figure 1: Graph of the Lennard-Jones potential

(a) At the equilibrium, the potential has its lowest energy. To obtain the interatomic distance, we take
the derivative of the potential U with respect to the interatomic distance r and get its zero,

dU

dr
= −4ε[12(

σ

r
)12

1

r
− 6(

σ

r
)6

1

r
] = 0.

The physically meaningful solution is r = 21/6σ. So the equilibrium interatomic distance is

r0 = 21/6 × 3.40 ≈ 3.82 Å.

(b) Substituting r0 = 3.82 Å obtained in (a) into the Lennard-Jones potential, we have the energy at
the minimum as

Umin = 4× 0.0104× [(
3.40

3.82
)12 − (

3.40

3.82
)6] ≈ −0.0104 eV.

You can see that this energy is just the depth of the potential well ε (also called cohesive energy). By
absorbing this amount of energy, the interatomic bonding is broken and atoms in the crystal would
be free. In other words, atoms arranged periodically in certain order form the crystal, releasing the
amount of energy σ, and that is where the name cohesive energy comes from.

(c) The effective spring constant is the second-order derivative of the potential U with respect to
interatomic distance r, we can do it in the Taylor expansion around the equilibrium interatomic
distance r0,

U(r) = U(r0) +
1

2

d2U

dr2

∣∣∣∣
r=r0

(r − r0)2 +O[(r − r0)3].
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The first-order derivative does not appear in the above equation because it vanishes at the equilibrium
interatomic distance (you can understand this through the fact that the forces exerted on atoms at the
equilibrium are zero). Hence, the effective spring constant for the Lennard-Jones potential is

Keff =
d2U

dr2

∣∣∣∣
r=r0

= [4ε(
156σ12

r14
−42σ6

r8
)]

∣∣∣∣
r=r0

= 4×0.0104×(
156× 3.4012

3.8214
−42× 3.406

3.828
) ≈ 0.0504 eV/Å2.

From the plot, it can also be concluded that harmonic approximation (the Taylor expansion of the
potential up to the second order) is only valid close to the equilibrium.
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Exercise 3.2

Phonon spectra of a diatomic lattice chain. Consider a diatomic chain of atoms as shown in figure
2. The masses of the two atoms are different but the spacing and the spring constant between them
are the same. Derive the following given expression for the phonon dispersion in this diatomic lattice
chain and schematically draw it:

ω2 = K(
M1 +M2

M1M2
)±K

√
(
M1 +M2

M1M2
)2 − 4 sin2 (ka/2)

M1M2
,

where K is the spring constant and k the wavevector with the following values

k = 0,± 2π

Na
,± 4π

Na
, ...,

π

a
,

and N is the total number of lattice points in the chain.

Figure 2: A diatomic lattice chain
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Figure 3: Phonon spectra of a 1D diatomic lattice chain

There are N lattice sites (labelled as 0, 1, ..., N −1) in the chain with two different atoms at each site.
For an arbitrary lattice site n, the atom of mass M1 occupies the sublattice position R1

n = na and
the one of mass M2 occupies the position R2

n = (n + 1
2)a, as shown in the figure. We further denote

their displacements by un and vn, respectively. If we only consider the nearest-neighbor interactions
by spring constant K and apply the Hooke’s law, the classical equations of motion for the two types
of atoms from Newton’s Second Law read:

M1
d2un
dt2

= −K(un − vn−1)−K(un − vn), (1)

M2
d2vn
dt2

= −K(vn − un)−K(vn − un+1). (2)

These two differential equations are coupled and can be readily solved by the traveling waves ansatzs,

un(t) = A1e
i(kna−ωt), (3)

vn(t) = A2e
i[k(n+1/2)a−ωt]. (4)

By substituting Eq. (3)-(4) into Eq. (1)-(2), we obtain

(M1ω
2 − 2K)A1 + 2K cos (ka/2)A2 = 0, (5)

2K cos (ka/2)A1 + (M2ω
2 − 2K)A2 = 0. (6)

In order to have a non-trivial solution, i.e. A1 6= 0 and A2 6= 0, the determinant of the coefficient
matrix of the equation set (5)-(6) must be zero,

∣∣∣∣∣ M1ω
2 − 2K 2K cos (ka/2)

2K cos (ka/2) M2ω
2 − 2K

∣∣∣∣∣ = 0. (7)
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The solutions thus are

ω2 = K(
M1 +M2

M1M2
)±K

√
(
M1 +M2

M1M2
)2 − 4 sin2 (ka/2)

M1M2
.

For this 1D diatomic lattice chain, the phonon spectra is shown in the above figure. There is one
acoustic branch and one optical branch. In general, a d-dimensional system with m atoms in the
primitive cell, having d acoustic branches and d(m− 1) optical branches.

Additional questions (if you are interested): How does the phonon spectrum change qualitatively if
M1 = M2? At the Brillouin zone border, is there still an energy gap between acoustic and optical
phonons?
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