

Exercise 1.1

Phonon mean free path and relaxation time. Given the thermal conductivity of Si at room temperature as $145 \text{ Wm}^{-1}\text{K}^{-1}$, the speed of sound as 6400 ms^{-1} , the volumetric specific heat as $1.66 \times 10^6 \text{ Jm}^{-3}\text{K}^{-1}$,

- Estimate the phonon mean free path in Si at room temperature from the kinetic theory. In reality, this estimation usually leads to a much shorter mean free path (about a factor of 10 shorter) than with more sophisticated modelling.
- Estimate the relaxation time of phonons in silicon.

Exercise 1.2

$k_B T$ energy. One unit for energy is the electron-volt (eV). It is the energy difference of one electron under a potential difference of 1 V. Convert 1 $k_B T$ at 300 K into milli-eV (meV).

Note: The Boltzmann constant $k_B = 1.38064852 \times 10^{-23} \text{ J/K}$.

Exercise 1.3

Fick's Law. Using a simple kinetic argument that is similar to the derivation of the Fourier law, derive the Fick's law of diffusion, which gives the mass flux for species i under a concentration gradient as:

$$J_i = -\rho D \frac{dm_i}{dz}$$

where D is the mass diffusivity, ρ is the density of the mixture, and m_i the local mass fraction of species i. Also, state the assumptions made during this analysis.

Exercise 1.4

Planck-Einstein relations.

- An argon laser emits light at 514 nm and at a power of 1 W. Calculate:
 - The frequency of the photons in Hz
 - Their wavelength, expressed as a wavenumber
 - The energy of each photon
 - The momentum of each photon
 - The number of photons generated per second
- If the photons are completely absorbed by a 1 mm^2 surface, calculate
 - The pressure exerted on the surface by the photons
 - The heat flux generated by the photon absorption