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Exercise 1.1

Phonon mean free path and relaxation time. Given the thermal conductivity of Si at room tem-
perature as 145 Wm−1K−1, the speed of sound as 6400 ms−1, the volumetric specific heat as 1.66 ×
106 Jm−3K−1,

a) Estimate the phonon mean free path in Si at room temperature from the kinetic theory. In
reality, this estimation usually leads to a much shorter mean free path (about a factor of 10
shorter) than with more sophisticated modelling.

b) Estimate the relaxation time of phonons in silicon.

Solution

(a) According to the kinetic theory for a phonon gas, the thermal conductivity κ equals to 1
3CvΛ, so

the mean free path Λ of phonons in Si at room temperature is

Λ =
3κ

Cv
=

3 × 145

6400 × 1.66 × 106
≈ 4.1 × 10−8 m = 41 nm.

(b) The corresponding relaxation time of phonons in silicon at room temperature is

τ =
Λ

v
=

4.1 × 10−8

6400
≈ 6.4 × 10−12 s = 6.4 ps.
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Exercise 1.2

kBT energy. One unit for energy is the electron-volt (eV). It is the energy difference of one electron
under a potential difference of 1 V. Convert 1 kBT at 300 K into milli-eV (meV).

Note: The Boltzmann constant kB = 1.38064852 × 10−23 J/K.

Solution

When T = 300 K and 1 eV = 1.602177 × 10−19 J,

kBT =
1.38064852 × 10−23 × 300 × 1000

1.602177 × 10−19
= 25.85 meV.

Roughly, 1 kBT at 300 K is about 26 meV. This is an important energy-scale that you are encouraged
to remember, and the kinetic energy of an atom at room temperature is 3

2kBT = 39 meV.
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Exercise 1.3

Fick’s Law. Using a simple kinetic argument that is similar to the derivation of the Fourier law, derive
the Fick’s law of diffusion, which gives the mass flux for species i under a concentration gradient
as:

Ji = −ρDdmi

dz

where D is the mass diffusivity, p is the density of the mixture, and mi the local mass fraction of
species i. Also, state the assumptions made during this analysis.

Solution

Let us determine the diffusive flux of molecules from a region of high concentration to a region of low
concentration (z-direction) through the imaginary surface with arbitrary area A and position z. We
follow a similar derivation of L1 for the heat flux.

Figure 1: Illustration of mass diffusion due to molecules’s random motion across the imaginary surface

Let ci be the concentration and mi be the mass fraction of the ith species. Then it can be shown
that:

ci =
ρ

Mi
∗mi

where ρ is the density of the mixture and Mi is the Molecular mass of the ith species.

If L is the mean free path of the molecules, we can write the mass flux of the ith specie as:

ji(z) =
1

2
vzMi[ci(z − L) − ci(z + L)]

Using Taylor expansion, ci(z − L) = ci + dci
dz (zL), we get:

ji(z) = −vxLMi
dci
dz

We then assume that* vz = 1/3v and therefore combining with the expression of the concentration
we get:

ji(z) = −1

3
vLρ

dmi

dz

If D = −1
3vL is defined as the diffusion coefficient, we get:

ji(z) = −Dρdmi

dz

*What if we don’t make this assumption and start with the fact that molecules can move randomly in
all direction. In this case molecules can move any angle θ not just along the 3 mutually perpendicular
axis. Can we do such an analysis? If yes, then will the results be the same?
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Exercise 1.4

Planck-Einstein relations.

(1) An argon laser emits light at 514 nm and at a power of 1 W. Calculate:

a) The frequency of the photons in Hz

b) Their wavelength, expressed as a wavenumber

c) The energy of each photon

d) The momentum of each photon

e) The number of photons generated per second

(2) If the photons are completely absorbed by a 1mm2 surface, calculate

a) The pressure exerted on the surface by the photons

b) The heat flux generated by the photon absorption

Solution

1.a) For an Electromagnetic wave, frequency and wavelength are related as: λ ∗ ν = c, where c is the
speed of light.

ν =
c

λ
=

3 × 108

514 × 10−9
= 5.8366 × 1014Hz

1.b)

wavenumber = k =
1

λ
=

1

514 × 10−9
= 1.9455 × 106m−1 = 19455cm−1

1.c)
E = hν = (6.626 × 10−34) × (5.8366 × 1014) = 3.8673 × 10−19J

Energy in eV =
Energy in Joule

electronic charge
=

3.8673 × 10−19

1.6 × 10−19
= 2.417eV

1.d)

momentum = p =
h

λ
=

6.626 × 10−34

514 × 10−9
= 1.289 × 10−23Ns

1.e) The number of photons generated, n
(
photons

sec

)
Power

(
J

sec

)
= Energy of each Photon

(
J

photon

)
× n

(
photons

sec

)

n =
Power

Energy of each photon
=

1

3.8673 × 10−19
= 2.586 × 1018

(
photons

sec

)
2.a) Force exerted on the surface due to complete absorption of the photons = rate of change of
momentum due to photon absorption

F =
∆p

∆t
= n

(
photons

sec

)
× p

(
Ns

photon

)
F =

(
2.586 × 1018

)
×

(
1.289 × 10−23

)
= 3.33 × 10−5N

Pressure exerted =
Force

Area
=

3.33 × 10−5N

10−6m2
= 33.33

N

m2

4



Exercise Set 1
Nanoscale Heat Transfer ME-469

Prof. Giulia Tagliabue
EPFL-STI-GM-LNET

2.b) Assuming complete absorption of photons and 100 percent conversion efficiency of light-to-heat,
we have that the heat flux q” is equal to the energy absorbed per unit area and per unit time, i.e.

Heat flux =
Power

Area of the surface
=

1W

10−6 m2
= 106

W

m2

Note: In reality the flux generated will be much smaller than this because, photon absorption is
never 100 percent due reflection and transmission. Even after the absorption of certain percentage of
incident photons, the light-to-heat conversion is not 100 percent effective.
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