

Learning Objectives of the Course

- Become familiar with fundamental concepts from quantum mechanics, solid state physics and statistical thermodynamics
- Know how the classical transport laws emerge from a microscopic picture
- Know the assumptions of the classical transport laws and understand the limits of their applicability
- Understand energy transport from nanoscale up to macroscale
- Learn about emerging opportunities in energy device engineering (materials and physical mechanisms)

Nanoscale Heat Transfer (and Energy Conversion)

Course Organization

Course Schedule	
Thu. 8-9	Exercises (HW)
Thu. 9-10	Project
Thu. 10-12	Lectures

Course Evaluation	
Mid-term Exam	30%
Project Report	30%
Final Assignment (Report)	40%

- **Exercises:**
 - New set of problems is assigned every Thursday, the solution becomes available on Friday, TAs are available for questions next Thursday 8-9.
 - Not part of the grade
- **Project Assignment (group):**
 - Set of problems requiring a combination of analytical derivations, reading&analysis, simple coding and numerical modelling
 - To be **solved in groups (4/5 students)**.
 - The Project is assigned at the beginning of the course and a **concise report must be handed in before 23:59h of 30.03.2025** (one per group)
 - **The report is evaluated and contributes to the final grade (30%).**
- **Mid-Term Exam (individual):**
 - Written Exam on the **lecture content of Week 1-7 (L1-L16)**.
 - The Exam will last ~2h and **take place on 17.04.25, 09:15-11:15**.
- **Final Assignment (group):**
 - We will assign 2 papers to read on the topics of nanophotonics for energy and hydrovoltaics
 - **There will be two lab experiences on Week 10 (Nanophotonics) and Week 13 (Hydrovoltaics)**
 - **Each group must submit a report** including: (i) a critical analysis of each paper, including a discussion of the underlying physics; (ii) a small literature review on the topic of the paper; (iii) a description/report of the lab experience (iv) a critical discussion on each paper and the results of the lab experience.
 - **Hand-in before 23:59h of 09.06.25**

Course Schedule

	Date	HOMEWORKS	PROJECT	H1 (8-9)	H2 (9-10)	H3 (10-11)	H4 (11-12)
Week 1	20.02	HW 1 - Ch1 & 2	Project Assignment Submit by 23:59h on 30.03	no class	L1+2 - Intro Course; Particle View & Wave Description	L3+4 - Planck and Einstein relations; Schrodinger Equation & Solutions	Special Lecture on the use of COMSOL by Dr. Narmada Gopal
Week 2	27.02	HW 2 - Ch 2 & 3		HW1 correction - TAs available for questions	TAs available for questions on Project	L5 - Crystal Structure; Intro to Periodic Potential;	L6 - Bloch's Theorem and Electronic Band Structure
Week 3	6.03	HW 3 - Ch 3 & 4		HW2 correction - TAs available for questions	TAs available for questions on Project	L7 - Density of States; Phonon Band Structure	L8 - Phonon & Photon Density of States; Q&A
Week 4	13.03	HW 4 - Ch 4 & 5		HW3 correction - TAs available for questions	TAs available for questions on Project	L9 - Partition Functions; Fermi-Dirac and Bose-Einstein Distributions;	L10 - Internal Energy; Specific Heat; Planck's Law
Week 5	20.03	HW 5 - Ch 5 & 6		HW4 correction - TAs available for questions	TAs available for questions on Project	L11 - EM Wave Propagation (reflection/transmission; evanescent waves; total internal reflection; tunnelling)	L12 - Landauer Formalisms; Quantum Conductance; Interfacial Thermal Resistance; Coherence Lengths
Week 6	27.03	HW 6 - Ch 6		HW5 correction - TAs available for questions	TAs available for questions on Project	L13 - Intro Boltzmann equation and Carrier Scattering;	L14 - Boltzmann approximation. Fourier Law and Thermal Conductivity;
Week 7	3.04	HW 7 - Ch 6		HW6 correction - TAs available for questions	TAs available for questions on Homeworks	L15 - Ohm's & Wiedemann Franz Laws;	L16 - Thermoelectric Effect & Thermoelectric devices
Week 8	10.04			RECAP time for exam & TAs available for questions	L17 - Thermoelectric Devices + Q&A	L18 - State-of-the-art topics - Intro to Plasmonics & nanophotonics	L19 - State-of-the-art topics: Plasmonic Hot Carriers and Photocatalysis
Week 9	17.04				Written Exam on topics from L1 to L16		
	24.04				Easter break		
Week 10	1.05		Final Assignment Submit by 23:59h on 09.06		Lab Experience: Nanophotonics		
Week 11	8.05			Reading time for papers	TAs available for questions on Homeworks & Project	L20 - State-of-the-art-topics: Thermoplasmonics, Radiative Cooling, near field heat transfer, interfacial evaporation	L21 - Liquids and Electrokinetic devices
Week 12*	15.05			Reading time for papers	TAs available for questions on Homeworks & Project	L22 - State-of-the-art topics - Hydrovoltaic devices 1 (taught by Tarique Anwar)	L23 - State-of-the-art topics - Hydrovoltaic devices 2 (taught by Tarique Anwar)
Week 13*	22.05				Lab Experience: Hydrovoltaic Devices		
Week 14	29.05	no new HW		ascention day			

RECAP of Important Dates & contacts

Date	
28.02.2025	Deadline for Defining the Groups
30.03.2025	Submission of Project Report
17.04.2025	Exam
09.06.2025	Submission of Final Report