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Logistics for the remaining week

Reminder: Project deadline May 30 17h00 sharp

May 23rd: RANS & LES – last class of the semester (!!!)

Week of May 26th: if possible,  one extra Q&A session 
 -> likely: Monday, May 26, 17h15 [TBC, Moodle] 



Ch. 9 – Simulation and Models
Engineering problems involving turbulence - examples

Features of the flow:
 - high Reynolds number
 - complex geometries
 -…

Typical tasks
 - determine forces (drag, lift,…)
 - design geometries optimizing forces
 - …

Tools
 - experiments (full-size / models)
 - computer simulation CFD – Computational Fluid Dynamics

Question: How to simulate the flow?



What about direct numerical 
simulation (DNS)?

Scale separation

No of grid points: 

Full DNS is impossible for most applications!!



We need to ‘model’ part of the 
turbulent dynamics!

Reynolds averaged Navier-Stokes
(RANS)

 - eddy viscosity
  - k-ε model(s)
 - Reynolds-stress models

Model at all spatial scales
Computationally cheap

Large-eddy simulations (LES)

 - various sub-grid-models

Model only at small scales
Computationally much more expensive



The plan for the last class
9.1 Introduction and motivation – Why models?

9.2 RANS Concepts
 Reynolds decomposition and equations
  - closure problem
 eddy viscosity models
  - mixing length 
  - k-ε model
  - Reynolds stress models

9.3 LES (very short)



l  = l/Re3/4

Direct numerical simulation (DNS) 

Large eddy simulation (LES)

Reynolds averaged Navier-Stokes equations (RANS)

Hierarchy of simulation approaches 

DNS: Direct numerical simulation
 - no model assumptions
 - resolving all scales

LES: Large-eddy simulation
 - resolve large scales
 - model assumptions for small
  scales

RANS: Reynolds averaged Navier
 Stokes simulation
 - model at basically all scales
 - solve for mean flow



RANS – the aim
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The basic hypothesis used in such arguments is that the flow under considerat ion exhibits at
least two widely-separated t ime scales, say T1 and T2 such that T2 ≫ T1. Then one expects that

there will be a range if t imes T such that T1 ≪ T ≪ T2. Furthermore, one might then associate
turbulent fluctuat ions with the t ime scale T1 and large-scalefluid mot ions with T2. In the context of
modern comput ing environments, the lat ter mot ions should be easily resolvable, so there is no need
to indirect ly account for them via averaging. Thus, we now define Reynolds averaging in terms of

the t ime scales T as, e.g.,

u (x , t) =
1

T

T

0

U (x , t) dt ,

where T ≪ T2, and no limit is taken. In part icular, u now depends on t ime with respect to the
scale T2 ≫ T; and since T is assumed to sat isfy T ≫ T1, we have evident ly accurately averaged the
turbulent fluctuat ions while retaining the slow time scale of the large-scale mot ions. This is shown

pictorially in Fig. 2.1 which also suggests a correspondence with low-pass temporal filtering.

T t

u

1T

2

.

Figure 2.1: Mult iple t ime scales for construct ion of t ime-dependent RANS equat ions.

On the surface the preceding is a quite compelling argument, and it is now widely accepted.

But like all other proposed just ificat ions for retaining the u t term in the RANS equat ions, it is
seriously flawed. We first note, as does Wilcox [98], that most turbulent flows contain far more
than two t ime scales. One would expect this from the nature of the Galerkin approximat ion to
the N.–S. equat ions given in Chap. 1. In this case the above formalism cannot lead to accurate

results (essent ially any choice of T will be inadequate), and Wilcox recommends use of LES rather
than attempting to employ RANS modeling. Second, we should observe that even in the case of
two dist inct t ime scales, the scale T with respect to which averaging is actually performed, is not
well defined—we never say what T is, or how one might determine it . From a purely-mathemat ical
perspect ive this is an extremely serious (essent ially fatal) flaw, but even in pract ice this poses a

significant problem. In part icular, we will later see that determinat ion of various constants present
in any turbulence model requires experimental data. But if the t imescaleof theaveraging isnot well
defined, the model constants, themselves, are not well defined, leading to very significant difficult ies
in employing experimental data (or results from DNS).

Weconcludefrom this that, in general, lit t le is likely to begained by at tempt ing to computet ime-
dependent solut ions using RANS equat ions. Doing so is in conflict with the formal mathemat ics

used to derive the equat ions, and at best it results in an undefined t ime scale that ult imately works
its way into model constants.

Aim: Develop equation for the mean flow



RANS concepts 
Reynolds decomposition

Mean fluctuations

Reynolds averaged Navier-Stokes for the mean flow

Closure problem:

10 unknown fields: but only 4 equations

Models for Reynolds stress tensor required

Reynolds stress tensor
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The si j and s′i j represent components of mean and fluctuat ing strain rate tensors, respect ively:

si j =
1

2

∂ui

∂x j

+
∂uj

∂xi

, and s′i j =
1

2

∂u′i
∂xj

+
∂u′j

∂xi

. (2.67)

Similarly, from Wilcox [98] we obtain

kt + uj

∂k

∂x j

= − u′
i u

′
j

∂ui

∂xj

− ε +
∂

∂xj

ν
∂k

∂xj

− p′u′j −
1

2
u′i u

′
i u

′
j , (2.68)

with ε expressed in Cartesian tensor form as

ε = 2νs′i j s
′
i j . (2.69)

At first glance Eqs. (2.65), (2.66) and (2.68) all appear to be rather different; but with the
except ion of the t ime-derivat ive term (incorrect ly) retained in (2.68), these equat ions are actually
equivalent. To see this we first note the similarit ies and then briefly explain the apparent discrep-
ancies.

We immediately recognize the term corresponding to advect ion of turbulence kinet ic energy
appearing in the left -hand side of all three equat ions. The only difference between (2.65) and the
other two equations is the Cartesian tensor notat ion employed in the lat ter two; in part icular,
we have u ·∇ k = uj ∂k/ ∂x j . Similarly, the first term on the right-hand side of (2.65) equals the

corresponding term in (2.66) and the fourth term on the right-hand side of (2.68):

∇ · p′u ′ =
∂

∂x j

p′u′j ,

showing the equivalence of these terms. We next observe that the remaining term on the left-hand
side of Eq. (2.65) is easily shown to be ident ical to the velocity “ t riple correlat ions” appearing in
the right-hand sides of Eqs. (2.66) and (2.68). That is,

∇ · u ′k′ =
1

2

∂

∂xj

u′
i u

′
i u

′
j .

Finally, we easily see that the diffusion terms on the right-hand sides of Eqs. (2.65) and (2.68)

exact ly match; namely,

ν∆ k =
∂

∂x j

ν
∂k

∂x j

,

but there appears to beno corresponding term in Eq. (2.66). At the same time, there seem to be no
strain-rate terms in either of Eqs. (2.65) and (2.68) while there are three such terms in Eq. (2.66).

However, using the definit ion of ε from Eq. (2.69), we see that the last term on the right-hand side
of (2.66) is precisely the ε term of (2.68). Finally, we observe that by making use of the propert ies
of the Cartesian tensor notat ion it can be checked that to within a factor of two, we have

u′i u
′
j si j ∼ u′i u

′
j

∂ui

∂xj

.

Thus, to reconcile the forms of Eqs. (2.66) and (2.68) we must account for the factor of two, and
for the lack of a term in (2.66) corresponding to diffusion of turbulence kinet ic energy.

The latter of these is easily explained, and this in turn leads to resolut ion of the factor of two as

well as all the apparent discrepancies between Eqs. (2.65) and (2.66). In part icular, if one begins
derivat ion of the equat ion for turbulence kinet ic energy with the N.–S. equations expressed in terms
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We next consider approximation of the pressure work term p′u′j appearing in the right-hand
side of Eq. (2.68). To accomplish this we first observe that a slight modificat ion of the Boussinesq

hypothesis leads to an approximation of scalar turbulent fluxes analogous to the Reynolds stress
component fluctuat ions. For example, suppose we decompose temperature as T = θ + θ′ . Then
the Reynolds-averaged thermal energy equation will contain terms of the form u′j θ

′ known as scalar

fluxes, and these are approximated as (νT / σT )∂θ/ ∂x j where σT is the turbulent Prandt l number.
So one might suppose that we could represent the pressure work term (usually called pressure
diffusion in the modeling literature) as p′u′j = νT∂p/ ∂x j . But this does not work. Indeed, it is clear

that pressure does not sat isfy a transport equation, so the not ion of pressure diffusion is completely
fallacious. Much effort has been devoted to modeling this term, and rather complicated results have
been obtained and used in the context of second-moment closures (see [98]). There is lit t le physical
or mathematical justificat ion for any of these, so we will not provide any further descript ions.

Within the confines of k–ε models a simpler approach is usually taken. This begins by also
recognizing that wehave lit t le in theway of sound theory for modeling thevelocity triplecorrelat ion.
So we (arbit rarily) combine this with the pressure diffusion term and model these together as
“ diffusion of kinet ic energy:”

− p′u′j −
1

2
u′i u

′
i u

′
j =

νT

σk

∂k

∂x j

. (2.74)

Here, σk is an addit ional closure constant. We emphasize that there is no physical just ificat ion for
use of Eq. (2.74). It is merely a convenience that permits us to express Eq. (2.68) as

∂k

∂t
+ uj

∂k

∂xj

= − u′
i u

′
j

∂ui

∂x j

− ε +
∂

∂xj

(ν + νT / σk)
∂k

∂xj

. (2.75)

It is worthwhile to point out the types of terms appearing in this equat ion because it is common
pract ice in RANS modeling to presume all turbulence quant it ies, physical or otherwise, sat isfy

transport equations of this basic form. Thus, we observe that in addit ion to the t ime-dependent
term on the left-hand side there is also advect ion (macroscopic transport) of kinet ic energy. On the
right-hand sidewefind product ion, dissipat ion and diffusion of kinet ic energy. This isalmost always
the point of departure for construct ion of essentially all such models. The fact that there is no a

priori reason to expect that many such quantit ies (e.g., eddy viscosity, as in the Spalart–Allmaras
models) should sat isfy a transport equat ion is never considered.

Wehaveyet to construct a model for ε. Webegin thisby recalling thedefinit ion from Eqs. (2.67)
and (2.69). Clearly, a model is needed since we do not know u′i , and we therefore cannot compute

the required derivat ives. We also observe that when we present the equat ion for second-moment
closure in the next sect ion we will see that within this context dissipat ion of turbulence kinet ic
energy is a second-rank tensor—a matrix:

εi j = 2ν
∂u′i
∂xk

∂u′
j

∂xk

.

So the first approximat ion we make here in our effort to model dissipat ion as it appears in (2.75)
is the usual one; that is, dissipat ion is locally isotropic, meaning that small-scale (high wavenum-
ber) behavior is independent of direct ion and sat isfies required rotat ion and reflect ion propert ies
discussed earlier. Then we express the above as

εi j =
2

3
εδi j ,

with

ε ≡ ν
∂u′i
∂xk

∂u′i
∂xk

. (2.76)

The k-ε model
Evolution of turbulent energy k: (exact)

production

dissipation

redistribution

Model the redistribution terms:

Diffusive energy flux!!
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Effects of this, and modifications, have been widely studied (see [98] and references therein), and
we will not dwell on this in these lectures. We mention, however, that in the context of a Reynolds

decomposit ion it is much more difficult to just ify invocat ion of a local isotropy hypothesis than
is the case for a LES decomposit ion for the simple reason that the u′i represent far more than
high-wavenumber behavior, in general, in the present case.

Even within theconfinesof local isotropy, theequat ion for ε isdifficult to derive, and it introduces

a total of six new higher-order correlat ions that must be modeled. These are all stat ist ical, and as
noted by Wilcox [98], the result is not a model of physics but rather a model of the original PDE(s)
associated with the tensor components εi j . Nevertheless, it is widely used, and we present it here:

∂ε

∂t
+ uj

∂ε

∂xj

= −Cε1

ε

k
u′i u

′
j

∂ui

∂x j

− Cε2

ε2

k
+

∂

∂xj

(ν + νT / σε)
∂ε

∂x j

.

This equat ion contains three new closure constants, Cε1, Cε2 and σε. But assuming values of these
can be found, it can be seen that we now have a complete system of equat ions. In part icular, we
observe that the required length and velocity scales needed for construct ion of νT now are available
at each point of a computat ional grid. To see this, we note that k ∼ (L/ T)2, and ε ∼ L2/ T3. Thus,

we immediately obtain a velocity scale from k1/ 2, as is obvious; moreover, it is clear that k/ ε ∼ T.
It then follows that k3/ 2/ ε ∼ L, and since νT ∼ L2/ T, we obtain

νT = Cν

k2

ε
,

where Cν is a constant needed to account for the fact that this has been derived ent irely via
dimensional analysis. It is important to recognize that with νT given in this form the diffusion
terms of the kinet ic energy and dissipat ion equations become highly nonlinear, and while fairly
elaborate numerical techniques probably should be employed to handle this, in pract ice this is

seldom done.
We now collect the complete set of equat ions comprising the “standard” k–ε RANS model.

These consist of the mean flow cont inuity and momentum equat ions, with the lat ter containing
the eddy viscosity, the equations for turbulence kinet ic energy and its dissipat ion rate, and those

corresponding to the Boussinesq hypothesis and eddy viscosity in this context . Thus, we have the
following:

∇ ·u = 0, (2.77a)

u t + u ·∇ u = −∇ p + ∇ ·[(ν + νT )∇ u] , (2.77b)

kt + u ·∇ k = P − ε + ∇ ·[(ν + νT / σk)∇ k] , (2.77c)

εt + u ·∇ ε = Cε1

ε

k
P − Cε2

ε2

k
+ ∇ ·[(ν + νT / σε)∇ ε] , (2.77d)

with product ion P given by

P = − u′i u
′
j

∂ui

∂x j

, (2.78a)

− u′i u
′
j = 2νT si j −

2

3
kδi j , (2.78b)

and

νT = Cν

k2

ε
. (2.79)

The closure constants corresponding to the so-called standard k–ε model are:

Cν = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (2.80)
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The k-ε model
The ε equation (modeling of 6 higher order correlations)

Closing the k-ε model by



The k-ε model (Fluent ‘standard’)
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This equat ion contains three new closure constants, Cε1, Cε2 and σε. But assuming values of these
can be found, it can be seen that we now have a complete system of equat ions. In part icular, we
observe that the required length and velocity scales needed for construct ion of νT now are available
at each point of a computat ional grid. To see this, we note that k ∼ (L/ T)2, and ε ∼ L2/ T3. Thus,
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where Cν is a constant needed to account for the fact that this has been derived ent irely via
dimensional analysis. It is important to recognize that with νT given in this form the diffusion
terms of the kinetic energy and dissipation equations become highly nonlinear, and while fairly
elaborate numerical techniques probably should be employed to handle this, in pract ice this is

seldom done.
We now collect the complete set of equat ions comprising the “standard” k–ε RANS model.

These consist of the mean flow continuity and momentum equat ions, with the latter containing
the eddy viscosity, the equations for turbulence kinetic energy and its dissipation rate, and those

corresponding to the Boussinesq hypothesis and eddy viscosity in this context. Thus, we have the
following:
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The closure constants corresponding to the so-called standard k–ε model are:

Cν = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (2.80)
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Note: Pope version: molecular viscosity Fluent Doc

http://aerojet.engr.ucdavis.edu/fluenthelp/html/ug/node1.htm


Large eddy simulations
Idea: - Decompose the flow into large scales and small scales
  - Fully resolve the dynamics of large scales
  - Only model on the small scales

Note: Different decompositions

RANS: Mean + fluctuations
LES:  Large scales + small scales

x xx

Full signal Low (spatial) frequencies
Large scales (resolved)

High (spatial) frequencies
Small scales (modeled) 



LES equations

3.1. LARGE-EDDY SIMULATION 113

where the origin of the second term in the Leonard stress will be made clear below.

It is important to recognize that the last of these terms are fundamentally different from the
Reynolds stress componentsarising in RANSformalisms, despite their common name. In part icular
we should recall that the individual fluctuat ing quantit ies appearing in the usual Reynolds stress
tensor contain information from all but the zeroth mode of their Fourier representat ions (recall Eq.

(2.23)), while the subgrid part of a LES representation is associated with a high-pass filtering of
the solut ion, thus carrying information only from the modes above some cut-off wavenumber kc

corresponding to what can be supported by the discret ization employed in treat ing the filtered,
large-scale equations. Furthermore, it should again be observed that, for example, u′ = 0 in

RANS formulat ions; but u′ ̸= 0 in the LES case, as we have already stressed. In short, at least

from a fundamental mathematical viewpoint we must expect that u′v′ and u′v′ are quite different,

and in part icular we should not expect u′v′ = u′v′ in general, although they have been given the
same nomenclature and notat ion. On the other hand, due to presence of the Leonard stress, the
overall SGS stresses may not differ significant ly from the corresponding Reynolds stresses of RANS

approaches aside from their t ime dependence.

We remark that in early treatments of SGS modeling each of the contributions listed above was
modeled separately; since they correspond to different parts of theenergy spectrum onecould argue
that this should be an advantage. On the other hand, it is shown by Sagaut [73] that for typical

simple filters (but not for all filters) the invariance propert ies of the N.–S. equations are preserved
under filtering, but in contrast, the individual parts of the LES decomposit ion do not all separately
preserve all invariances. In part icular, neither Leonard nor cross stresses areGalilean invariant, but
their sum is; hence, the complete SGS stress is Galilean invariant. This, however, suggests that at

least from the standpoint of maintaining N.–S. invariances, it is probably best to model SGS stress
as a single ent ity. This is now the usual pract ice. Beyond this is the addit ional fact that unless
explicit t ime integrat ions are employed for the advect ive terms, an iterat ion process is required for
construct ion of Leonard and cross stresses at each t ime step, although this might be incorporated

in the nonlinear iterat ions of an implicit scheme in any case.

We also note that more elaborate filters can result in loss of invariance of the filtered equa-
t ions themselves. Specific examples include those with different filter lengths in different direct ions

and those having variable filter lengths in any, or all, direction(s). Such difficult ies suggest that
alternat ives to filtering the governing equations should possibly be sought.

We now observe that the filtered momentum equations still are not yet in a useful form. To
obtain such a form we recognize that what is needed for the nonlinear term on the left-hand side of

Eq. (3.9) is ∇ ·(uu). But we have seen that this form does not occur in the analysis of the filtered
nonlinear term (except in the Leonard stress where it was apparently added art ificially). Thus, the
only choice for obtaining what is needed is to add and subtract this term from the left-hand side
of Eq. (3.9). Once this is done, we replace the filtered nonlinear terms on the left-hand side of Eq.

(3.10) with

uu + (u + u′) (u + u′) − uu ≡ uu + τ
SG S

,

where τ
SG S

is notat ion for the LES subgrid-scale stress. We now can write Eq. (3.9) as

u t + ∇ ·(uu) = −∇ p + ν∆ u − ∇ ·τ
SG S

, (3.12)

with

τ
SG S,i j

≡ L i j + Ci j + Ri j . (3.13)

This is the equation for the large- (resolved-) scale part of a LES formulation. We observe that
only τ

SG S
needs to bemodeled, and in that senseEq. (3.12) takeson thesameappearanceaswould a
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T he M oment um Equat ions

From the preceding straight forward exercise in filtering the cont inuity equat ion we can easily
deduce the filtered form of the momentum equat ions. These can be expressed as

∂u

∂t
+ ∇ · U U = − ∇ p + ν∆ u . (3.9)

Obtaining the first term on the left -hand side involves a trivial (assuming t ime-independent coordi-
nates) commutat ivity of the filter with the temporal derivative, while both terms on the right-hand

side follow in the same way as in the cont inuity equat ion. Thus, just as was true with Reynolds
averaging, filtering of the momentum equat ions leads to significant difficulty only in the nonlinear
terms (provided simple filters with propert ies as we have been supposing here are employed). As
will be clear as we proceed, the difficult ies associated with the nonlinear terms are similar to (but

more complicated than) those arising in the RANS case, and in generalized coordinates they occur
for linear terms as well.

For the nonlinear terms we introduce the LES decomposit ion Eq. (3.1) and write

∇ · U U = ∇ · (u + u ′ ) (u + u ′ ) .

(u + u ′ ) (u + u ′) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(u + u′ ) (u + u′ ) (u + u′ ) (v + v′ ) (u + u′ ) (w + w′)

(u + u′ ) (v + v′ ) (v + v′ ) (v + v′ ) (v + v′ ) (w + w′ )

(u + u′ ) (w + w′ ) (v + v′ ) (w + w′) (w + w′ ) (w + w′)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.10)

We examine one component of this tensor in detail to deduce the structure induced by decom-

posit ion and filtering. Consider

(u + u′ ) (v + v′ ) = u v + uv′ + vu′ + u′v′ . (3.11)

We observe that there are three specific types of terms in this expression, and in all of the analogous

ones corresponding to the remaining components of Eq. (3.10). The first of these, u v (a part of
what is known as the Leonard stress), would have simply been of the form u v in a Reynolds-

averaging procedure. On the other hand, despite its greater complexity, u v st ill can be computed
direct ly (without any modeling required) since we have equat ions for u and v.

The second pair of terms, uv′ + vu′ , is known as the cross stress, and this would be ident ically
zero in a Reynolds-averaging formalism. In the present context , however, these terms are not only
nonzero, but they must be modeled because they contain small-scale factors.

Finally, terms of the form u′v′ are analogous to components of the Reynolds stress tensor that
occurs in RANS procedures, and they are usually called Reynolds stresses even in the LES context .
In usual t reatmentsof LES, the termson the right-hand sideof Eq. (3.11) areexpressed in Cartesian
tensor notat ion as given here parenthet ically:

L i j ≡ u v − u v = ui uj − ui uj , (Leonard stress)

Ci j ≡ ui u
′
j + ui u

′
j = ui u

′
j + ui u

′
j , (cross stress)

Ri j ≡ u′v′ = u′
i u

′
j , (Reynolds stress)

Sub-grid stress

Leonard stress

Cross stress

Reynolds stress

Smagorinsky sub-grid-model



Example of a LES

3D unsteady SVV-LES (Minguez et al. 2013), 
Mesh O(106) points
500h supercomputer Nec SX8, GENCI



Summary turbulence theory
Navier-Stokes equations

Energy transport

Statistics

E(k) <-> correlations

3 hypotheses
H1: restored symmetries

H2: self-similar scaling
H3: finite dissipation

K41 theory, including spectrum

Physical picture
 - Richardson cascade
 - characteristic scales 



l  = l/Re3/4

Direct numerical simulation (DNS) 

Large eddy simulation (LES)

Reynolds averaged Navier-Stokes equations (RANS)

Simulation approaches 
DNS: Direct numerical simulation
 - no model assumptions
 - resolving all scales

LES: Large-eddy simulation
 - resolve large scales
 - model assumptions for small
  scales

RANS: Reynolds averaged Navier
 Stokes simulation
 - model at basically all scales
 - solve for mean flow

RANS LES



Have a great summer break!!
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