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Tobias Schneider

Exercise Set 1: Symmetries – Solutions

Consider the diffusion equation

∂T

∂t
=

∂2T

∂x2
+ s(x, t) (1)

on the interval x ∈ [−L/2, L/2) with periodic boundary conditions and some source
function s(x, t). The temperature T (x, t) has initial conditions

T (x, t = 0) = T0(x). (2)

1 Symmetries of the System

The symmetries of the system depend on the function s(x, t).

a) Assume s is of the form s(t), i.e. it does not depend on x. What are the symmetries
of the system?

b) Under which condition (on s) is the system symmetric under reflection?

Solution:

a) The most basic symmetries of the system are a continuous translation symmetry σt

and a reflection symmetry σr around an arbitrary point (which we can choose to lie
at x = 0).

Translation symmetry
Let σt:

t, x, T 7−→ t̂ = t, x̂ = x+ a, T̂ = T ; a ∈ R.

We find that

∂
∂t̂

= ∂
∂t

∂
∂x̂

= ∂x
∂x̂

· ∂
∂x

= ∂
∂x

T̂ (x̂, t̂) = T (x̂− a, t̂) = T (x, t)

Therefore, the left hand side of (1) in the transformed system reads

∂
∂t̂
T̂ (x̂, t̂) = ∂

∂t̂
T (x̂− a, t̂) = ∂

∂t
T (x, t)
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and the right hand side reads

∂2

∂x̂2 T̂ (x̂, t̂) + s(t̂) = ∂2

∂x̂2T (x̂− a, t̂) + s(t̂) = ∂2

∂x2T (x, t) + s(t).

We see that the form of the PDE is invariant under σt. The boundary conditions
are also invariant under σt, because they are periodic. Therefore, the time evolution
f t does not change under translation; f t = σ−1

t ◦ f t ◦ σt. Since we did not make
assumptions about T , this result is valid for all initial conditions T0.

Reflection symmetry
We first only consider reflection around the point x = 0. Let σr:

t, x, T 7−→ t̂ = t, x̂ = −x, T̂ = T.

We find that

∂
∂t̂

= ∂
∂t

∂
∂x̂

= ∂x
∂x̂

· ∂
∂x

= − ∂
∂x

T̂ (x̂, t̂) = T (−x̂, t̂) = T (x, t)

Therefore, the left hand side of (1) in the transformed system reads

∂
∂t̂
T̂ (x̂, t̂) = ∂

∂t̂
T (−x̂, t̂) = ∂

∂t
T (x, t)

and the right hand side reads

∂2

∂x̂2 T̂ (x̂, t̂) + s(t̂) = ∂2

∂x̂2T (−x̂, t̂) + s(t̂)

= (−1)2 ∂2

∂x2T (x, t) + s(t)

= ∂2

∂x2T (x, t) + s(t).

Again, the boundary conditions also fulfill the symmetry, so that the time evolution
remains unchanged and σr is an equivariance. Note that the system is also reflection
symmetric around any other point b ∈ [−L/2, L/2). Since the symmetries form a
group, we can construct this symmetry from translations σt and a reflection σr at
the origin.

b) The function s does not have to be a constant (in x) in order for σr to be a symmetry
of the equation: From a), we can confirm that, if

s(x, t) = s(−x, t),

the argument still holds. By translation, if s is symmetric around any point in the
x-range, that point is a center of reflection symmetry.
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2 Symmetries of the Solution

a) Let s(x, t) = s(t) and T0(x) = const. Use a symmetry to show that T (x, t) is constant
with respect to x for all times.

b) Let s(x, t) = 0 and T0(x) = cos
(
4πx
L

)
. Without solving the diffusion equation, what

can you say about the shape of T (t) at t > 0?

c) Let s(x, t) = 0.01·cos
(
2πx
L

)
and T0(x) = cos

(
4πx
L

)
. How does this change your answer

from b)? Solve the equation to validate your predictions.

Solution:

a) We use translation symmetry σt, which is a symmetry of the system and the initial
condition: We know that σt ◦ T0 = T0 (from T0(x + a) = T0(x)). Therefore, the
solution T (x, t) at a later time t > 0 fulfills

T (x− a, t) = σt ◦ T (x, t) = σt ◦ f t(T0) = f t(σt ◦ T0) = f t(T0) = T (x, t)

=⇒ T (x− a, t) = T (x, t) ∀a ∈ R.

The only form of T which is translation invariant for any a is a constant function.

b) The function s(x, t) = 0 meets the criterion s(x, t) = s(t). Therefore the system is
translation invariant by any displacement and reflection invariant around any point.
The initial condition T0 however has far less symmetries; it is translation invariant
by a = kL

2
, k ∈ Z and reflection invariant at b ∈ {−L/2,−L/4, 0, L/4}. Because the

symmetries of the initial condition are symmetries of the system, the solution T (x, t)
must have the same symmetries.

Remark: A reflection plus flipping the sign of T is another symmetry that one could
consider here.

c) The system now only has discrete symmetries; a translation invariance σt with a =
kL, k ∈ Z and reflection at points b ∈ {−L/2, 0}. They are also symmetries of the
initial condition, and therefore of the solution; but the other symmetries of the initial
condition are not symmetries of the solution anymore.

The equation can be solved like the pressure field in the Navier-Stokes-equation: Let

T (x) =
∑
k∈Z

T̂k exp

(
i
2πk

L
x

)

With s(x) =
∑

k∈Z ŝk exp
(
i2πk

L
x
)
and the definition of ŝk, we get

ŝk =
1

L

∫ L/2

−L/2

exp

(
−i

2πk

L
x

)
s(x)dx =⇒ ŝk =

{
0.005 k = ±1

0 otherwise.
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The k-th component of the diffusion equation reads

∂tT̂k = − 4π2k2

L2
T̂k + ŝk

with initial conditions

T̂0,k =

{
0.5 k = ±2

0 otherwise.

Solving these equations for each k separately gives

T̂k(t) =


0.005L2

4π2

[
1− exp

(
−4π2

L2
t

)]
k = ±1

0.5 exp

(
−16π2

L2
t

)
k = ±2

0 otherwise,

or, after evaluating the sum over the T̂k,

T (x, t) =
0.01L2

4π2

[
1− exp

(
−4π2

L2
t

)]
cos

(2π
L
x
)
+ exp

(
−16π2

L2
t

)
cos

(4π
L
x
)
.

In this solution, we find again the reflection and translation symmetries that we
predicted.

Alternative approach: We can also solve the equation via separation of variables. We
first solve the homogeneous equation ∂tTh = ∂2

xTh by assuming Th(x, t) = τ(t)X(x).
After rearranging, we get

τ ′

τ
=

X ′′

X

The left-hand side purely depends on t, while the right-hand side only on x. This is
only possible if both sides are constant

τ ′

τ
=

X ′′

X
= −α

Solving the equation for τ , we get τ(t) = Ae−αt. From the periodic boundary condi-
tions we can deduce that α > 0, so we can write α = λ2, and solve for X(x)

X ′′ = − λ2X

=⇒ X(x) = B cos(λx) + C sin(λx)

for λ ̸= 0. If λ = 0 then X ′′ = 0 =⇒ X = B0x + C0. Since we need X(−L/2) =
X(L/2), we need B0 = 0 and sin(λL/2) = 0, and thus λ = 2πk

L
, with k ∈ Z. Thus

X(x) = C0 +
∞∑
n=1

{
Bn cos

(2πn
L

x
)
+ Cn sin

(2πn
L

x
)}
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For the particular solution, we guess from the form of s(x, t) that we might want to try
Tp = D cos(2πx/L). Plugging this into the full equation, we find D = 0.01(L/2π)2.
By combining all of these results and after relabelling we have

T (x, t) = 0.01
( L

2π

)2

cos
(2πx

L

)
+ exp

(
−4π2n2

L2
t
)(

c0 +
∞∑
n=1

{
bn cos

(2πn
L

x
)
+ cn sin

(2πn
L

x
)})

Matching with the initial condition T0(x) = cos(4πx/L) we get b1 = −0.01(L/2π)2, b2 =
1 and cn = bn = 0 otherwise, giving the same solution as before

T (x, t) =
0.01L2

4π2

[
1− exp

(
−4π2

L2
t

)]
cos

(2π
L
x
)
+ exp

(
−16π2

L2
t

)
cos

(4π
L
x
)
.
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