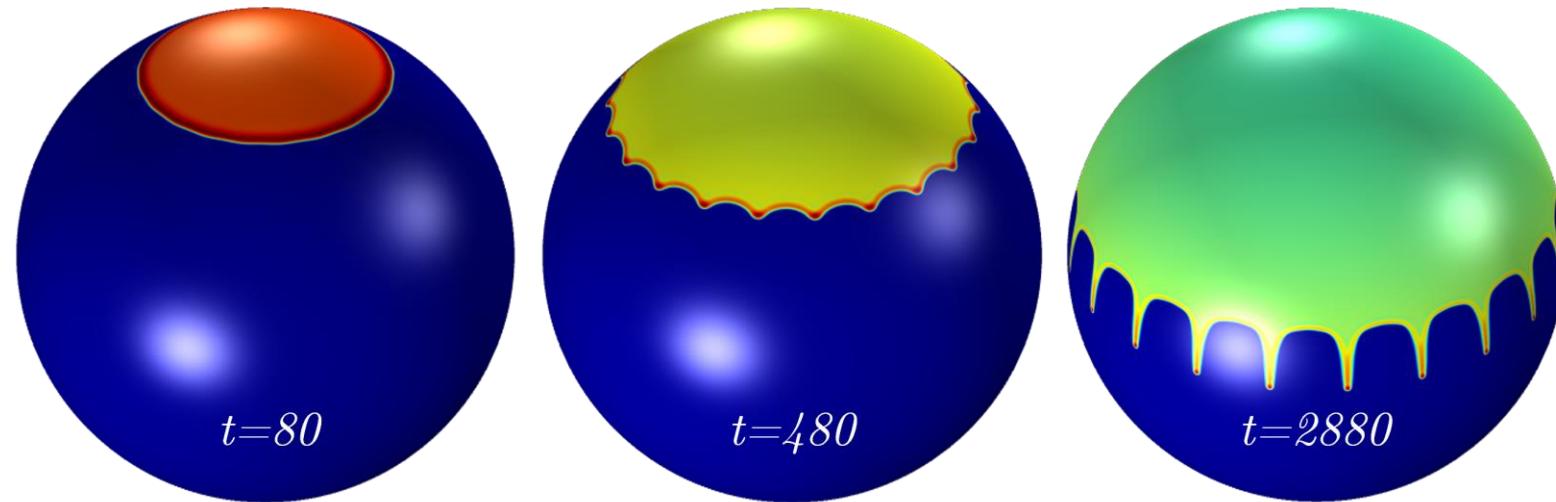
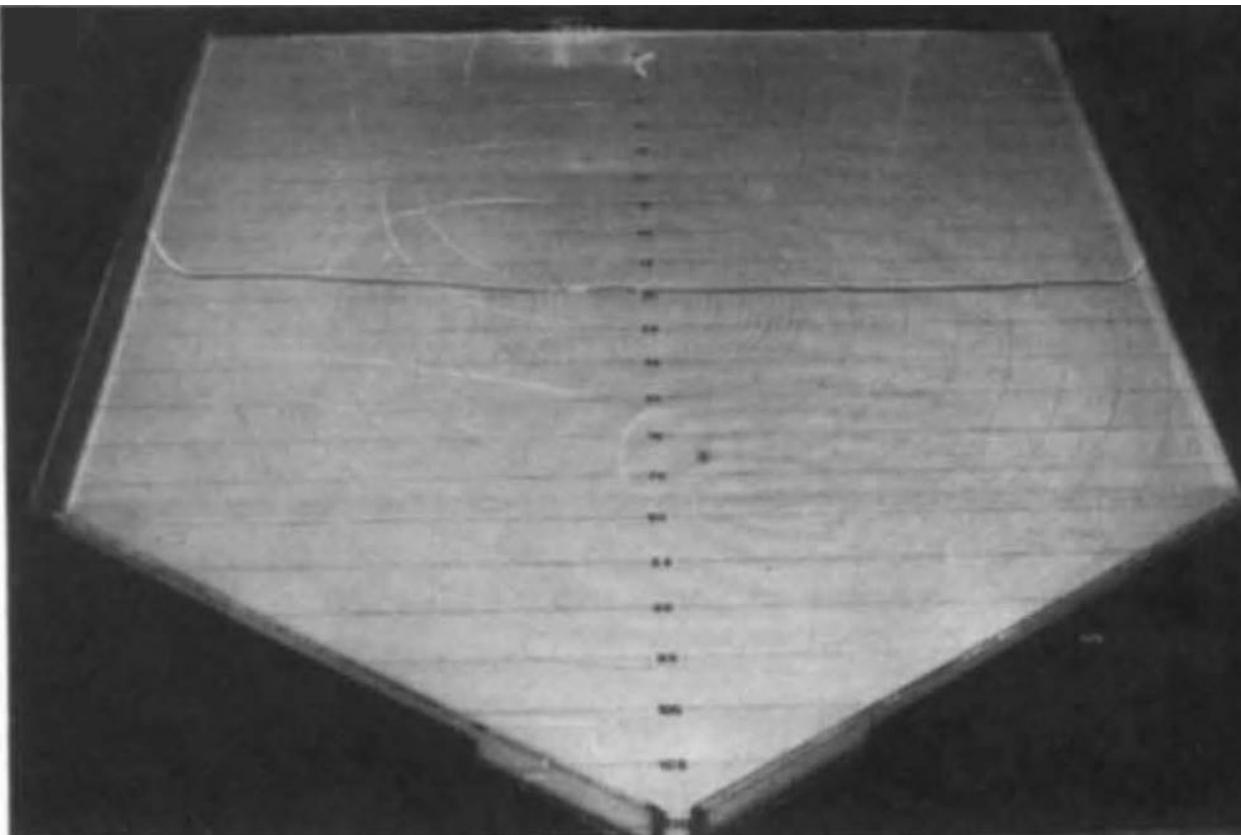
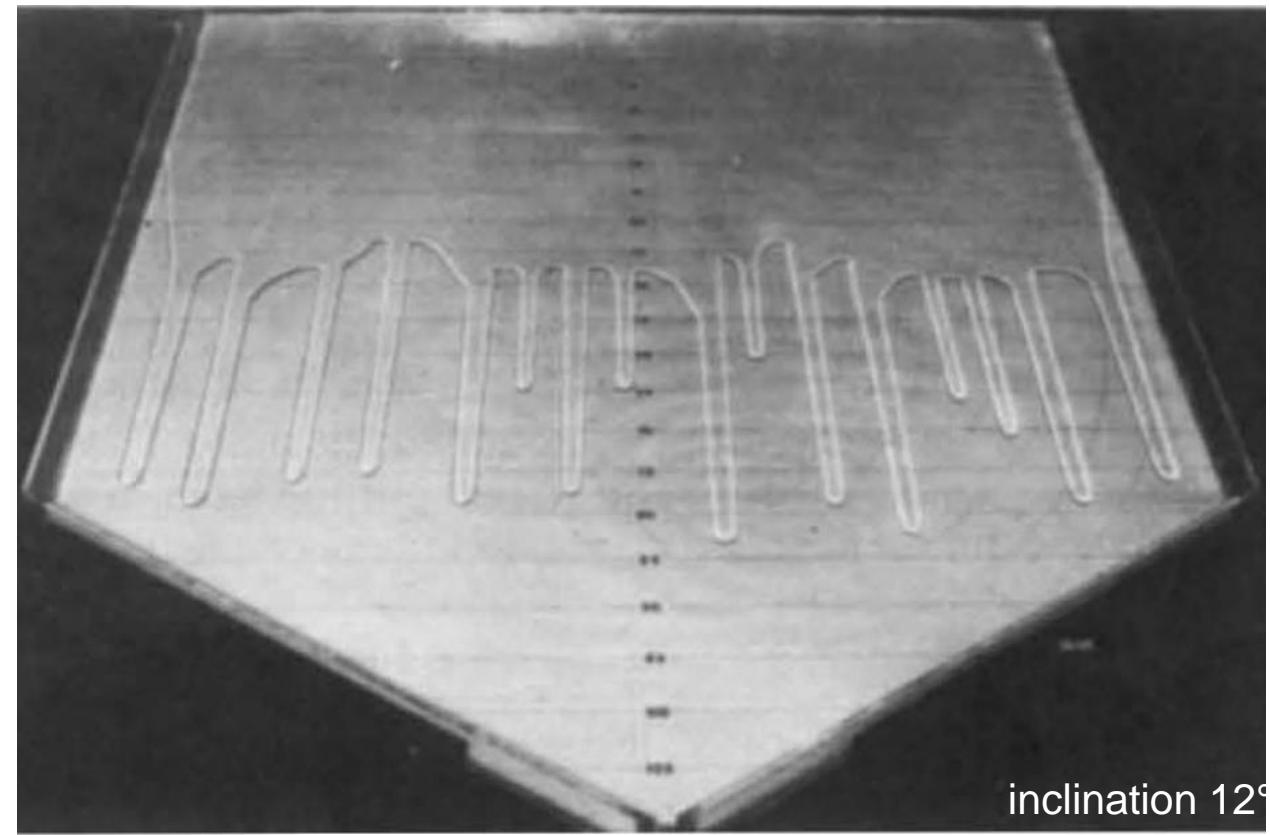


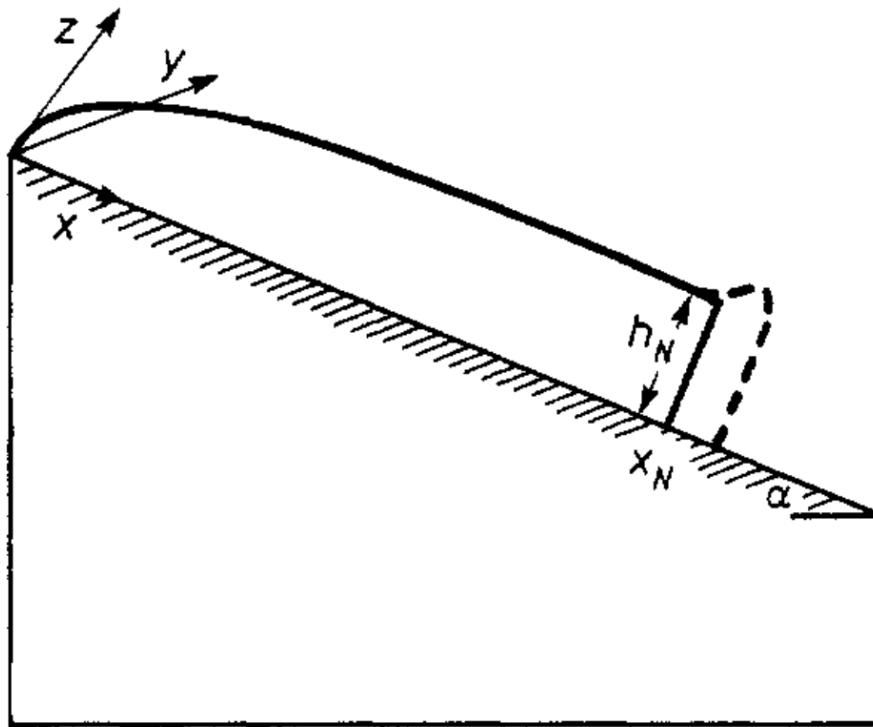
Contact line driven fingering



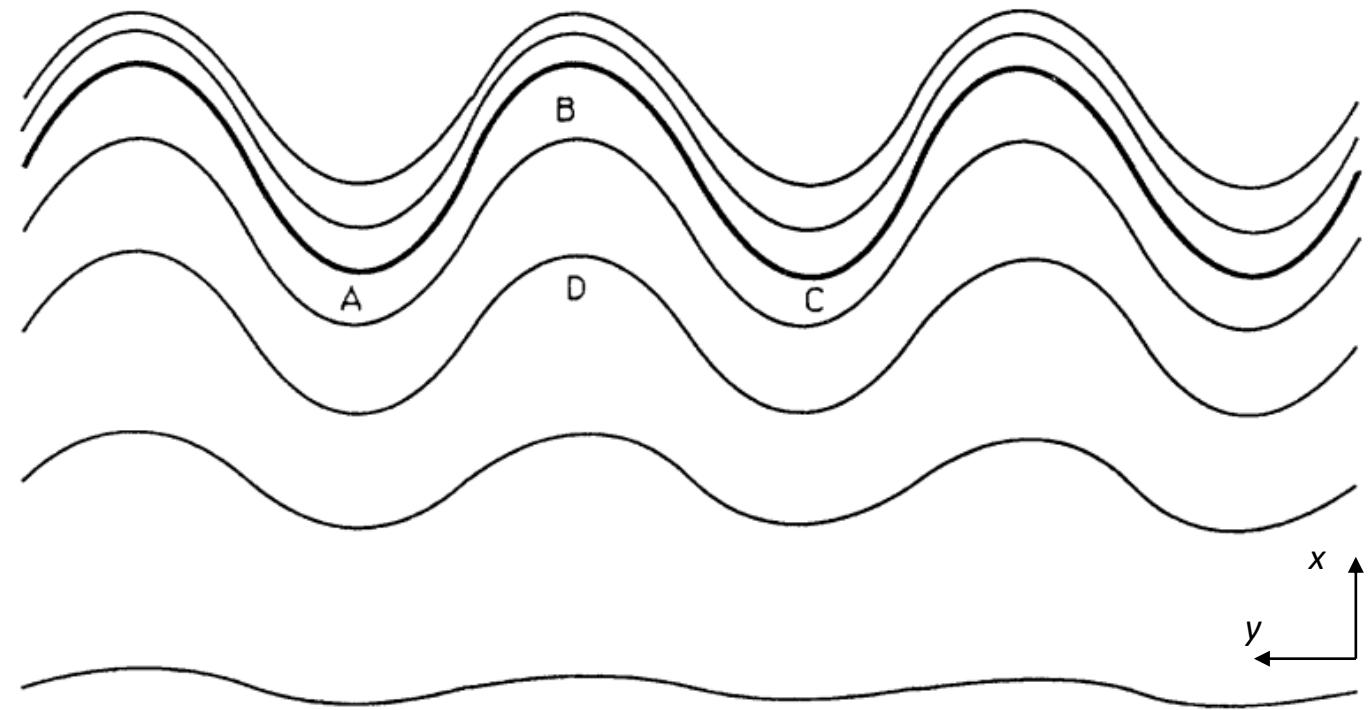


inclination 12°

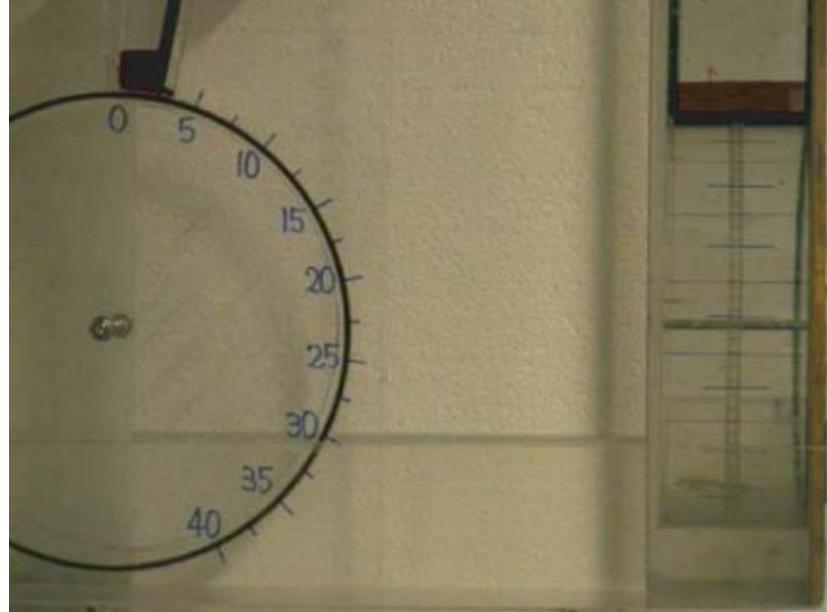
Huppert, "Flow and instability of a viscous current down a slope." *Nature* **300** (1982).



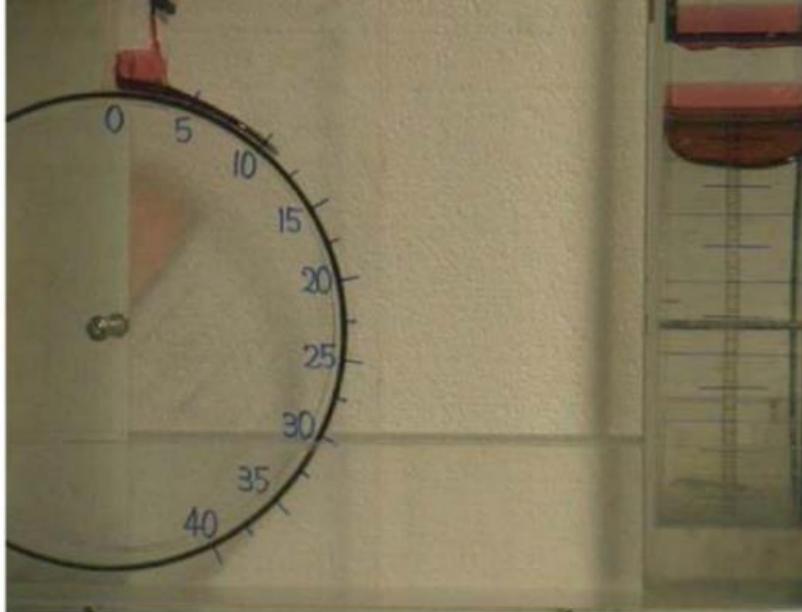
Troian, Herbolzheimer, Safran, and Joanny,
"Fingering instabilities of driven spreading
films." *Europhys. Lett.* **10**:1 (1989).



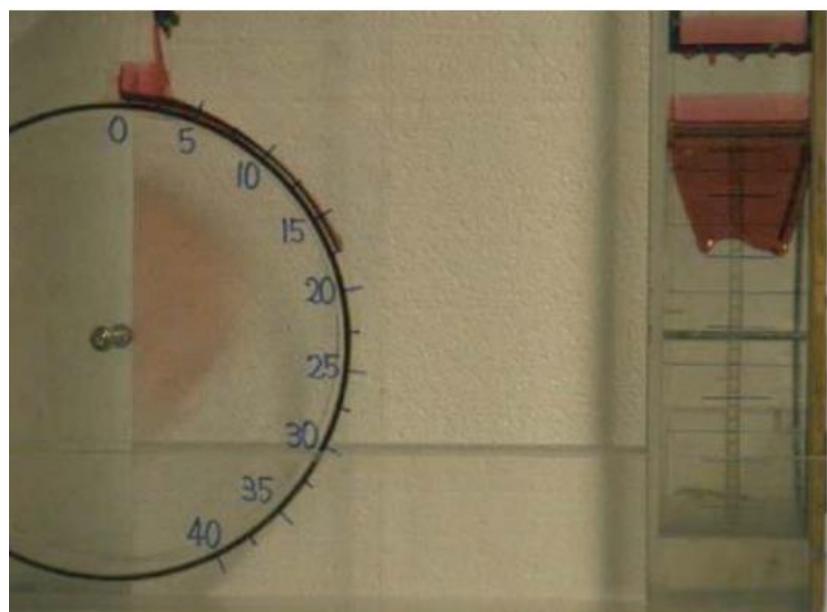
Brenner, "Instability mechanism at driven contact lines." *Phys. Rev. E* **47**:6 (1993).



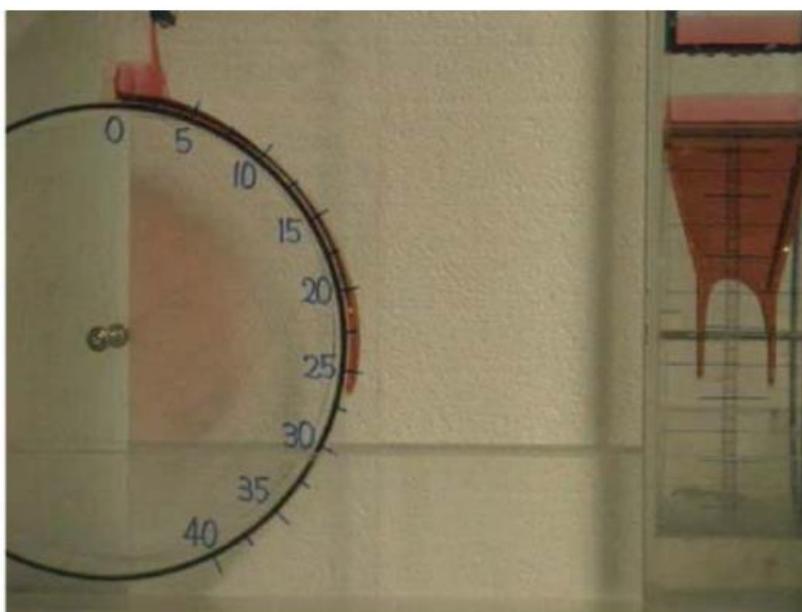
(a) $t = 0$



(b) $t = 0.7 \text{ s}$

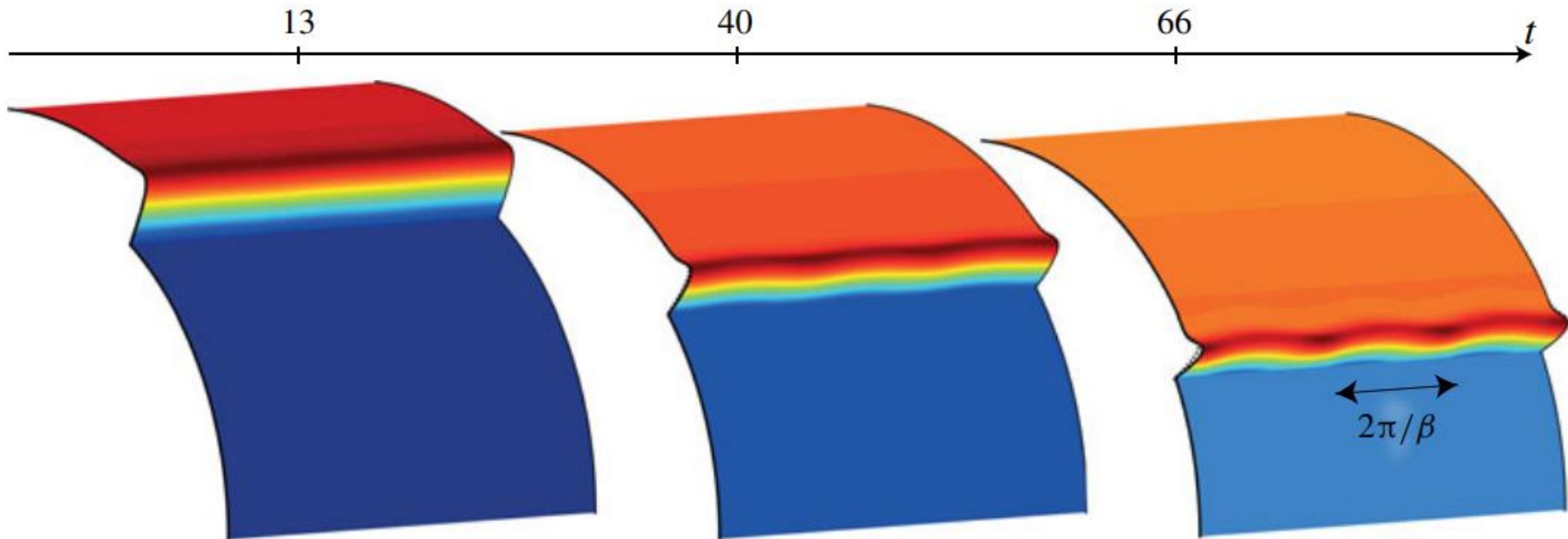


(c) $t = 1.5 \text{ s}$



(d) $t = 2.2 \text{ s}$

Takagi and Huppert, "Flow and instability of thin films on a cylinder and sphere." *J. Fluid Mech.* **647** (2010).

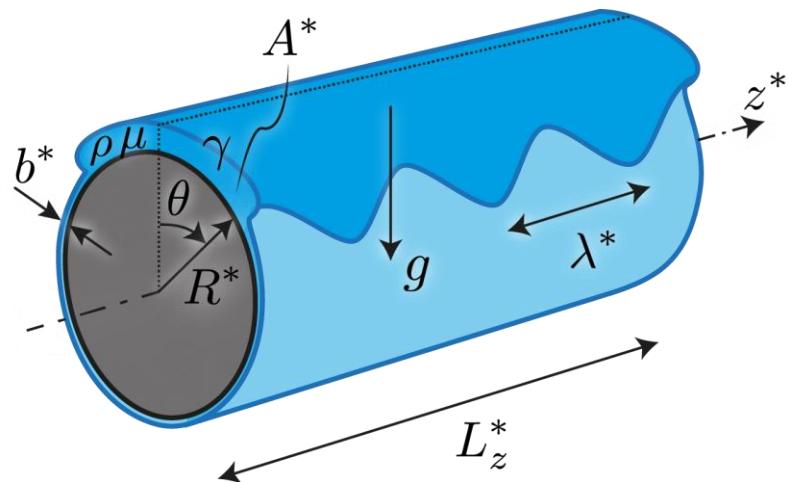


Balestra, Badaoui, Ducimetière, and Gallaire, “Fingering instability on curved substrates: optimal initial film and substrate perturbations.” *J. Fluid Mech.* **868** (2019)

Drainage solution

$$Bo = \rho g A^{3/2} / (\gamma R)$$

$$\delta = \sqrt{A}/R \ll 1$$

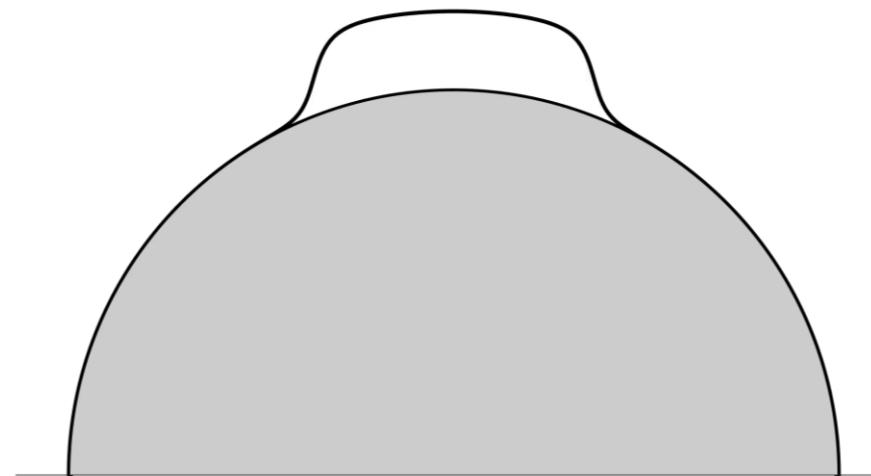


Newtonian fluid
Precursor film

Lubrication equation (1D)

$$H_t + \frac{1}{3} \left\{ H^3 \left[\underbrace{\frac{\delta^4}{Bo} (H_\theta + H_{\theta\theta\theta})}_{\text{I}} - \underbrace{\delta \cos \theta H_\theta}_{\text{II}} + \underbrace{\sin \theta}_{\text{III}} \right] \right\}_\theta = 0$$

Initial condition $H_0(\theta) = c_1 \{1 - \tanh[c_2(\theta - \phi)]\} + b$



Effect of the *curved geometry*

Forces depend on space and time

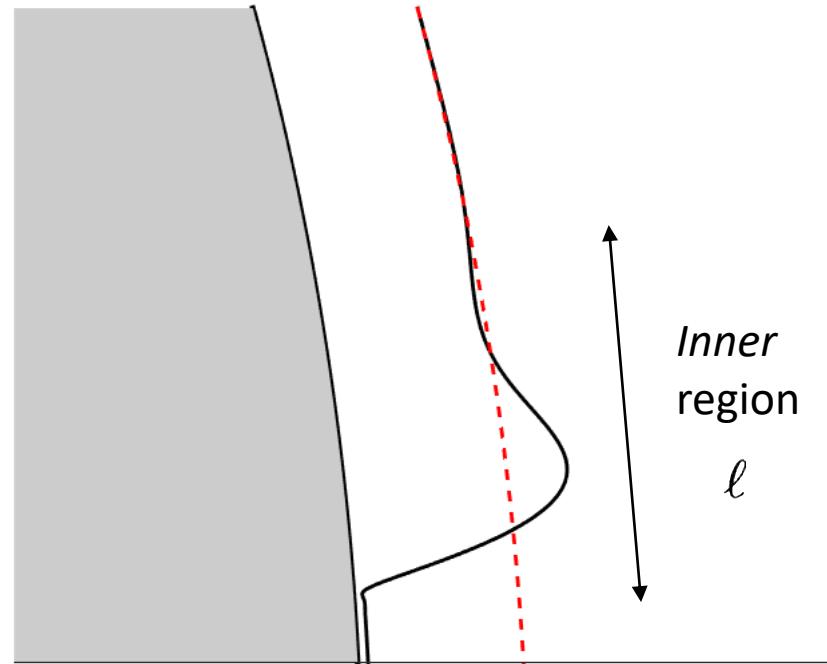
$$H_t + \frac{1}{3} \left\{ H^3 \left[\underbrace{\frac{\delta^4}{Bo} (H_\theta + H_{\theta\theta})}_{\text{I}} - \underbrace{\delta \cos \theta H_\theta}_{\text{II}} + \underbrace{\sin \theta}_{\text{III}} \right] \right\}_\theta =$$

Short times: drainage term negligible

$$\ell_c = \left(\frac{\delta}{Bo \cos \theta_N} \right)^{1/2}$$

Late times: var. hydro pressure term negligible

$$\ell = \left(\frac{\delta H_N}{Bo \sin \theta_N} \right)^{1/3} = \left(\frac{\delta^2}{Bo \theta_N \sin \theta_N} \right)^{1/3} \quad \ell \sim \left(\frac{2}{3} Bot \right)^{-1/3}$$



Nonmodal analysis \longrightarrow Optimal transient growth analysis

Capture disturbance growth also for asymptotically stable systems (Bertozzi & Brenner 1997)

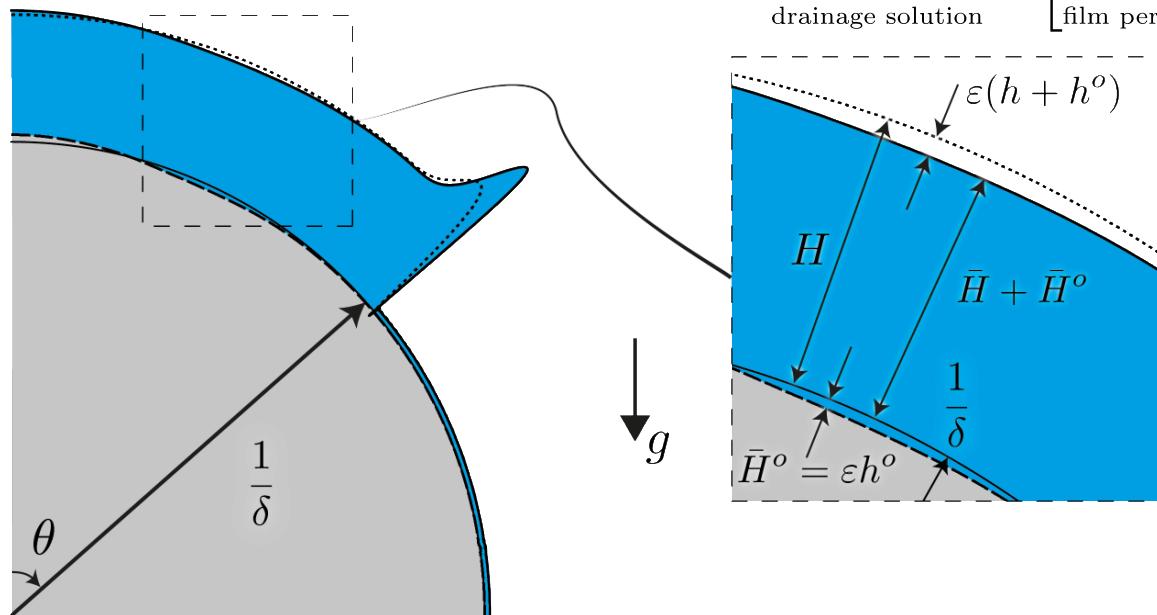
Optimal substrate perturbations

Lubrication equation

$$\begin{aligned} \bar{H}_t + \frac{1}{3} \left\{ \bar{H}^3 \left[\frac{\delta^2}{Bo} \bar{\kappa}_\theta - \delta \cos \theta (\bar{H}_\theta + \bar{H}_\theta^o) + \sin \theta \right] \right\}_\theta \\ + \frac{1}{3\delta^2} \left\{ \bar{H}^3 \left[\frac{\delta^2}{Bo} \bar{\kappa}_z - \delta \cos \theta (\bar{H}_z + \bar{H}_z^o) - \delta^2 \sin \theta \bar{H} \bar{H}_{\theta z}^o \right] \right\}_z = 0 \end{aligned}$$

Free-surface elevation decomposition

$$\bar{H}(\theta, z, t) + \bar{H}^o(\theta, z) = \underbrace{H(\theta, t)}_{\text{drainage solution}} + \varepsilon \left[\underbrace{\hat{h}(\theta, z, t)}_{\text{film perturbation}} + \underbrace{\hat{h}^o(\theta, z)}_{\text{substrate perturbation}} \right], \quad \varepsilon \ll 1$$



Linear disturbance equation

$$h_t + L(H, \beta, Bo, \delta)h = -L^o(H, \beta, Bo, \delta)h^o$$

Periodic assumption in the axial direction

$$\begin{aligned} \hat{h}(\theta, z, t) &= h(\theta, t) \exp(i\beta z) + \text{c.c.}, \\ \hat{h}^o(\theta, z) &= h^o(\theta) \exp(i\beta z) + \text{c.c.}, \end{aligned}$$

forcing

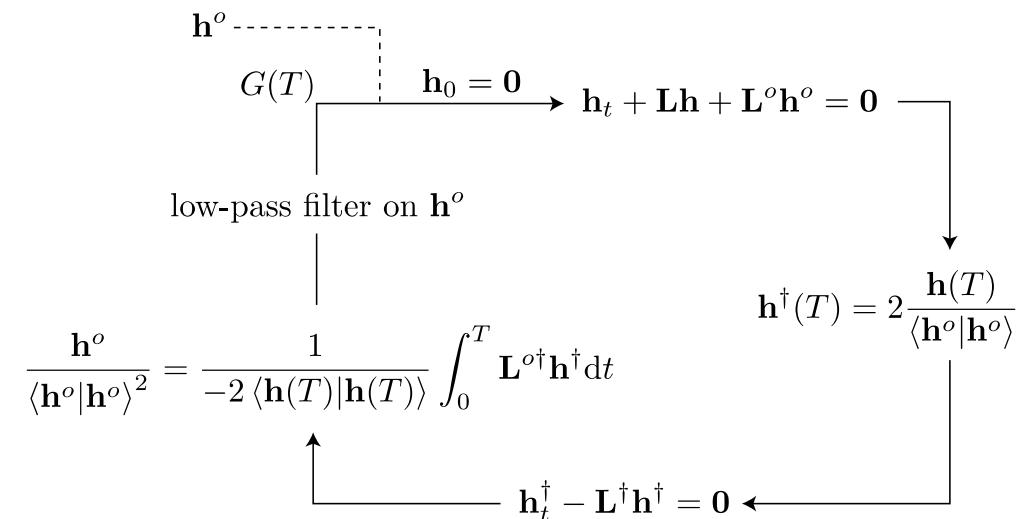
Transient growth analysis

Disturbance gain

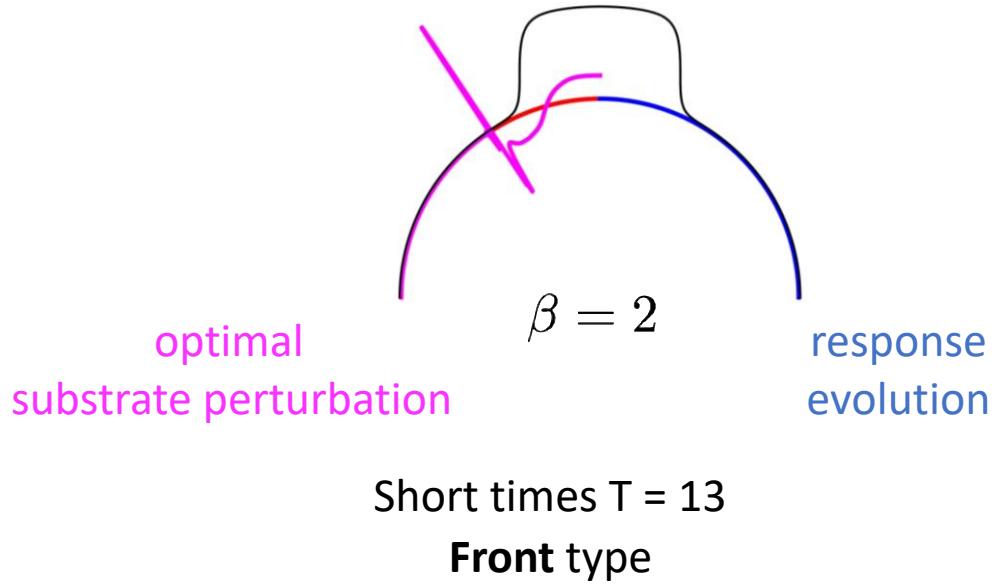
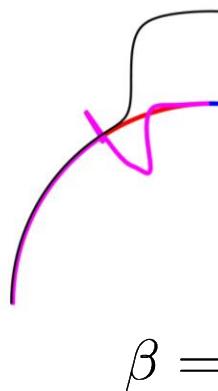
$$G(T) = \frac{E(T)}{E^o} = \frac{\langle h(T)|h(T) \rangle}{\langle h^o|h^o \rangle}$$

Linear operators are **space** and **time** dependent $\mathbf{L}(H, \beta, Bo, \delta)$ and $\mathbf{L}^o(H, \beta, Bo, \delta)$

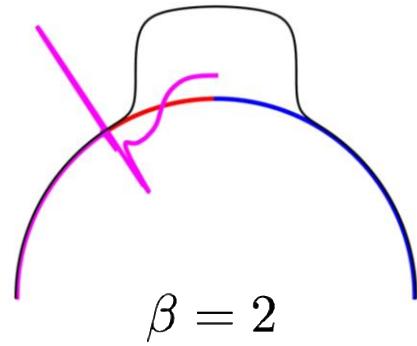
Iterative approach using **direct** and **adjoint systems**



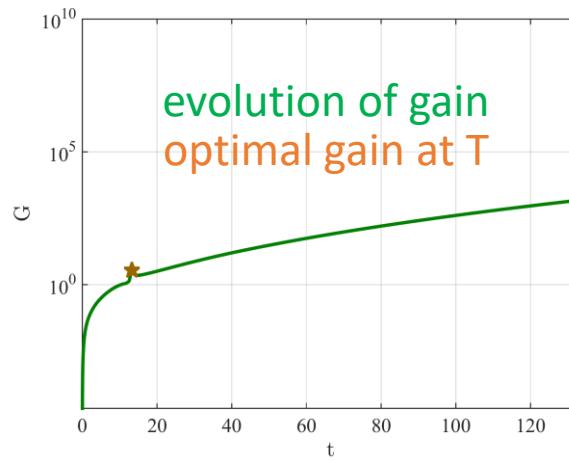
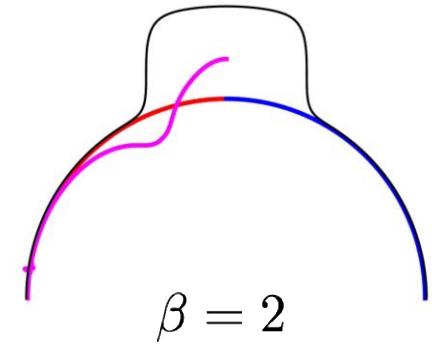
Types of optimal *substrate* perturbations



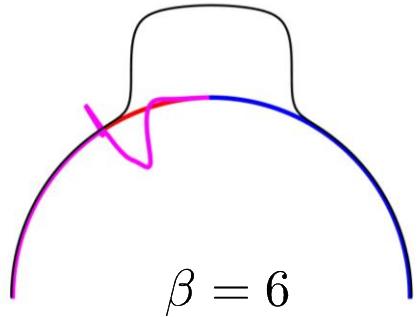
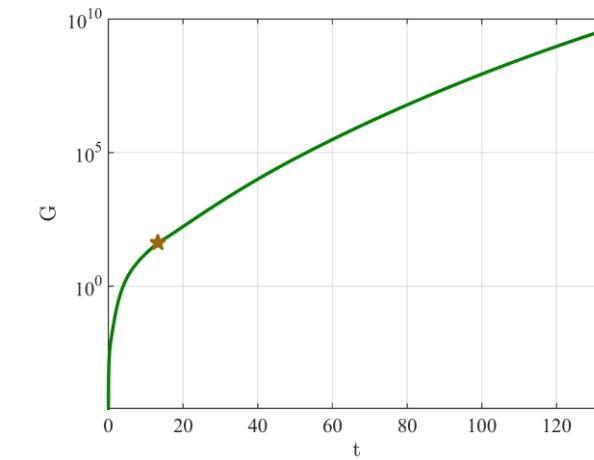
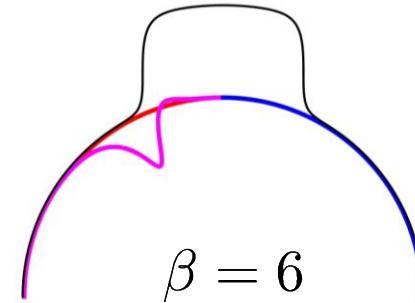
Types of optimal *substrate* perturbations



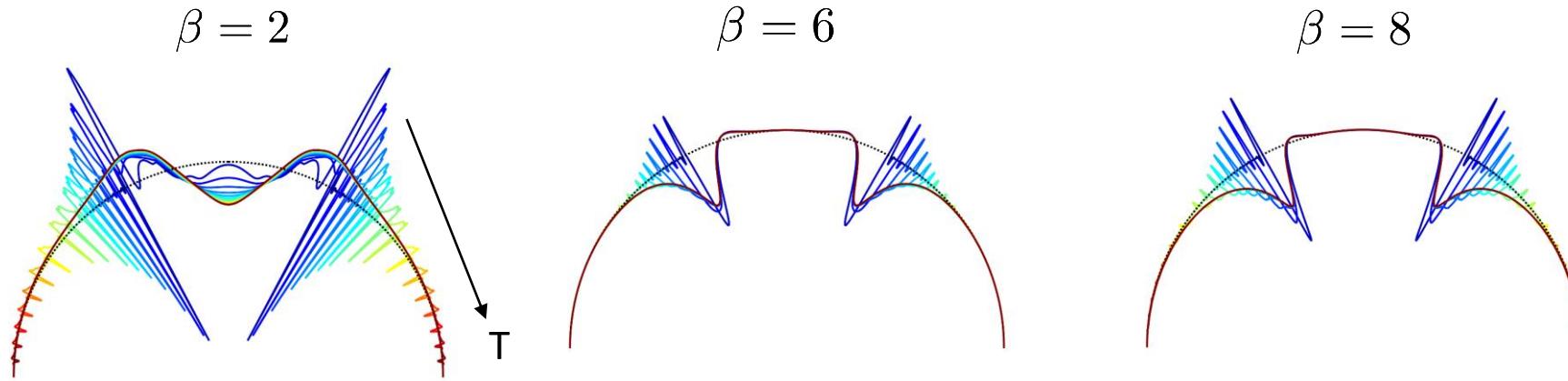
Short times $T = 13$
Front type



response
evolution optimal
 substrate perturbation
Late times $T = 120$
Bump type

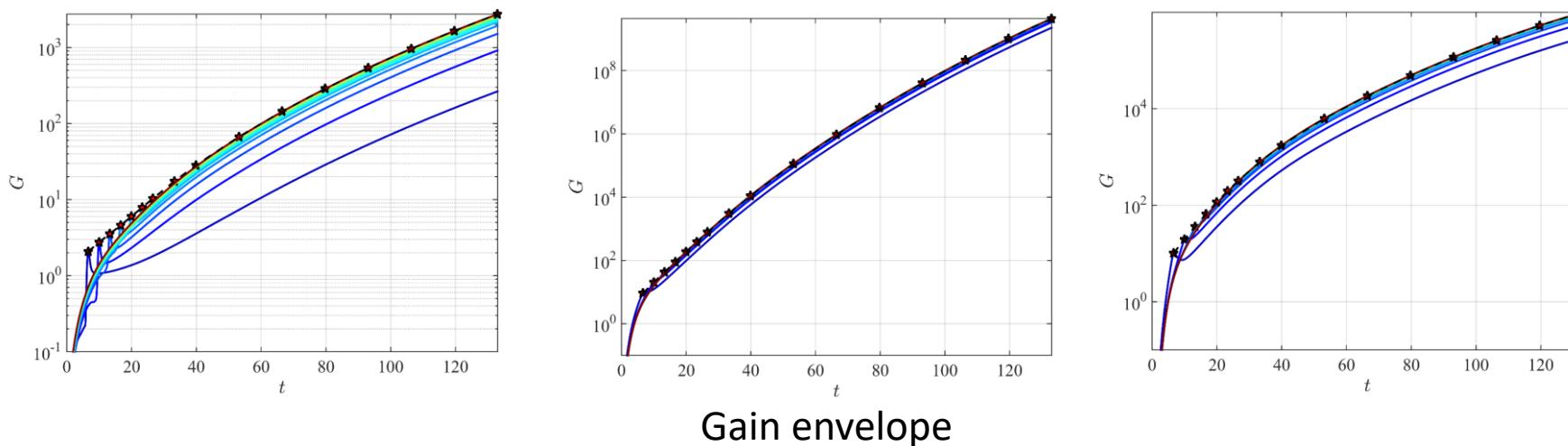


Effect of time horizon

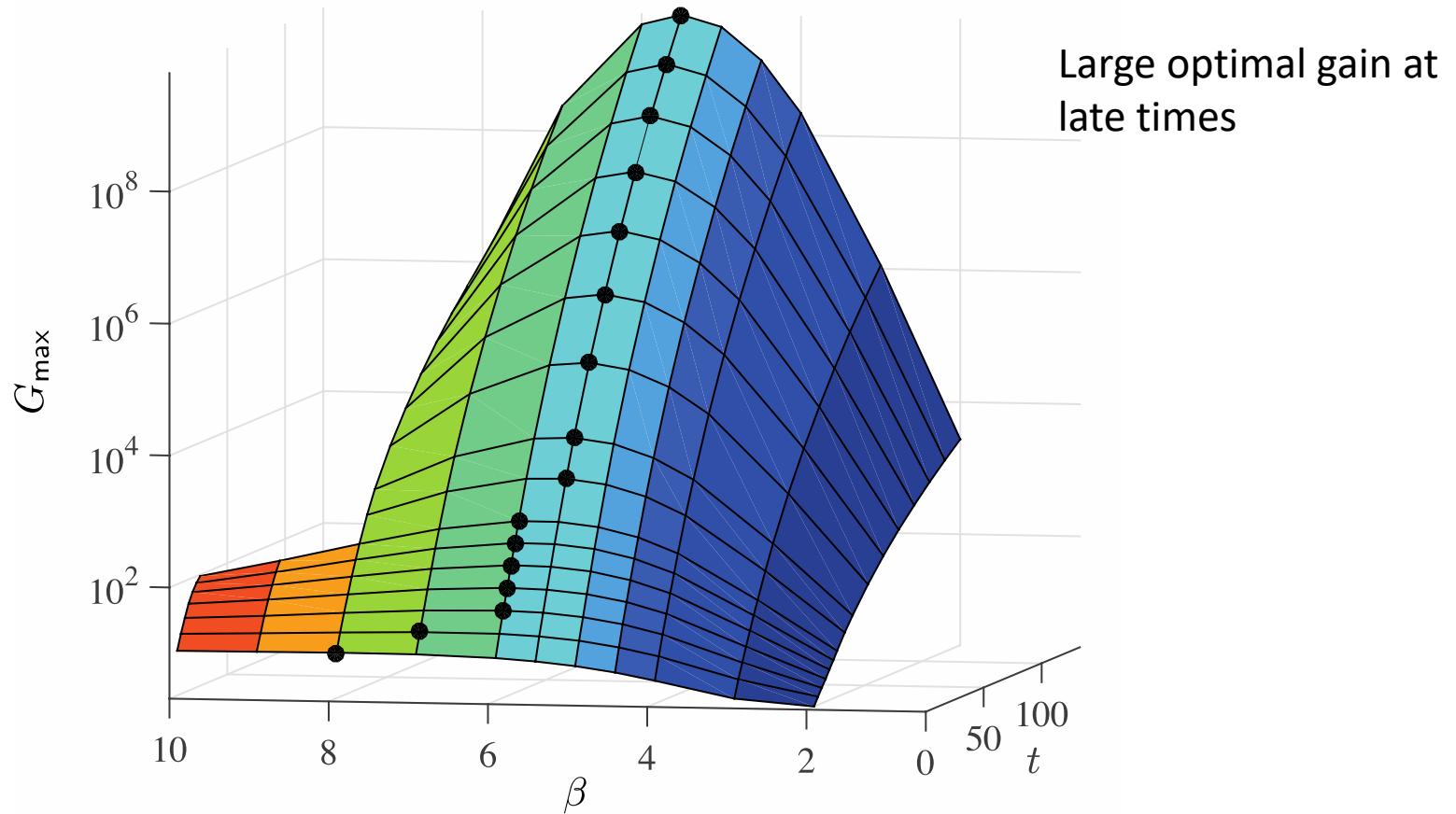


Bump location does not depend on beta

Most time independent optima substrate yields largest gain



Envelopes of optimal gains



Optimal wavenumber depends on optimization time

- *Large wavenumbers at short times*
- *Small wavenumbers at late times*

Thanks!

P.G. Ledda², G. Balestra⁵, S. Djambov¹, N. Kofman¹, G. Lerisson¹, M. Pezzulla⁴, E. Jambon-Puillet⁴, P.-T. Brun⁴

¹Laboratory of fluid Mechanics and Instabilities, EPFL, Lausanne, Switzerland

²DICAAR, University of Cagliari, Cagliari, Sardinia, Italy

³Århus University, Århus, Denmark

⁴Princeton University, Princeton, USA

⁵iPrint Institute, HEIA-FR, HES-SO, Switzerland

FONDS NATIONAL SUISSE
SCHWEIZERISCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO
SWISS NATIONAL SCIENCE FOUNDATION

