Contact line driven fingering
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Drainage solution

Bo = pgA*?/(yR)

Lubrication equation (1D)
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Initial condition  Hy(0) = c1 {1 — tanh[c2 (0 — @)]} + b

Newtonian fluid
Precursor film




Effect of the curved geometry

Forces depend on space and time
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Nonmodal analysis s Optimal transient growth analysis

Capture disturbance growth also for asymptotically stable systems (Bertozzi & Brenner 1997)



Optimal substrate perturbations
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Free-surface elevation decomposition

H(0,z,t)+H°(0,2)=  H(,t) +e ho,zt) + he(0, ) ] , ekl
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Periodic assumption in
the axial direction

~

h(0,z,t) =h(0,t) exp(ifz) + c.c.,
he (0, z) =h°(0) exp(ifz) + c.c.,

forcing

Linear disturbance equation ht + L(H, 5, BO, 5)h — —LO(H, 6, BO, 5)8h0



Transient growth analysis
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Disturbance gain G(T) —
Linear operators are space and time dependent L(H, 3, Bo,d) and L°(H,f,Bo0,0)

Iterative approach using direct and adjoint systems
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Types of optimal substrate perturbations

optimal p=2 response
substrate perturbation evolution

Short times T =13
Front type



Types of optimal substrate perturbations

evolution of gain
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Effect of time horizon

B =6

Bump location does not depend on beta

Most time independent optima substrate yields largest gain
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Gain envelope 12



Envelopes of optimal gains

Large optimal gain at
late times

Gmax

Optimal wavenumber depends on optimization time
* Large wavenumbers at short times
* Small wavenumbers at /late times

13



=PrL
Thanks!

P.G. Ledda?, G. Balestra®, S. Djambov?!, N. Kofman?, G. Lerisson!, M.
Pezzulla% E. Jambon-Puillet? P.-T. Brun?

lLaboratory of fluid Mechanics and Instabilities, EPFL, Lausanne, Switzerland
2DICAAR, University of Cagliari, Cagliari, Sardinia, Italy
3Arhus University, Arhus, Denmark
“Princeton University,Princeton, USA
S e 5iPrint Institute, HEIA-FR, HES-SO, Switzerland ele

14



