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Effect of the curved geometry
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Forces depend on space and time

Short times: drainage term negligible

Late times: var. hydro pressure term negligible
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Optimal substrate perturbations
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6.5. Optimal substrate perturbationsfor an initially unperturbed film

To conclude, from the optimization of the initial conditions over a smooth surface we have

learned that an optimal wavenumber exists and that, for late times, it corresponds to the

least time-dependent optimal initial conditions, allowing for an optimal growth over a longer

time. Note that at later times, t > t f = 133, the ridge is on the lower part of the cylinder and

is asymptotically unstable to the Rayleigh-Taylor instability (Indeikina et al., 1997; Takagi &

Huppert, 2010).

The perturbation in the thin-fi lm region being stationary, one is tempted to ask the question

whether or not the perturbation of the precursor fi lm thickness can be also attributed to a

perturbation in the substrate. This is the subject of Sec. 6.5.

6.5 Optimal substrate perturbations for an initially unperturbed

film

6.5.1 Free-surface-elevation decomposition

When the substrate is perturbed, i .e. H̄ o 6= 0, the free surface of the film is located at a distance

H̄ + H̄ o from the originally smooth cylindrical substrate. As announced in Sec. 6.2, we consider

only small substrate perturbations of order " ø 1: H̄ o = " ĥo, so that the base state drainage

solution H discussed in Sec. 6.3 remains unaffected. The substrate perturbations are assumed

to be time independent. Hence, the elevation of the fi lm free surface can be decomposed as

(see Fig. 6.13)

H̄ (µ,z, t )+ H̄ o(µ,z) = H (µ, t )
| {z }

drainage solution

+"

2

6
4 ĥ (µ,z, t )

| {z }
film perturbation

+ ĥo(µ,z)
| {z }

substrate perturbation

3

7
5 , " ø 1. (6.27)

Figure 6.13 –Decomposition of the free-surface elevation H̄ + H̄ o starting from the smooth

cylindrical substrate into draining solution H and first-order perturbations " (h + ho) for

the optimal transient growth over a perturbed substrate with an initially uniform film. It

is important to stress that the liquid thickness is only H̄ = H + " h , whereas H̄ o = " ho is the

substrate-topography perturbation. The axial dependence as in Fig. 6.5 is not repeated here.
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Transient growth analysis

9

Disturbance gain

Linear operators are space and time dependent

Iterative approach using direct and adjoint systems
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Figur e 13. Decomposit ion of the free-surface elevat ion H̄ + H̄ o start ing from the smooth
cylindrical subst rate into draining solut ion H and first -order perturbat ions " (h + ho) for the
opt imal t ransient growth over a perturbed subst rate with an init ially uniform film. It is
important to st ress that the liquid thickness is only H̄ = H + "h, whereas H̄ o = "ho is the
subst rate-topography perturbat ion. The axial dependence as in Fig. 5 is not repeated here.

lubricat ion equat ion (2.5) and considering terms at order " :

h t + L(H, β, Bo, δ)h = − L o(H, β, Bo, δ)ho. (5.4)

The linear operators L (H, β, Bo, δ), which is the same as in Sec. 4, and L o(H, β, Bo, δ)

are a funct ion of the drainage solut ion, the spanwise wavenumber, the Bond number and

the film aspect rat io (see Appendix A for their expressions). Thus, the linear operators

are space dependent and not autonomous.

As expected, the perturbat ion of the substrate results in the apparit ion of a t ime-

dependent – through H (✓, t) – forcing term: L o(H, β, Bo, δ)ho. Note that a change of

variable in order to homogenize equat ion (5.4), making the opt imal substrate and the

opt imal init ial condit ion problems mathemat ically similar (the state variable being only

the di↵erence h − ho) was found not to be possible due to the t ime dependency of the

forcing term.

5.3. Optimization method

We will now derive the equat ions leading to the opt imizat ion algorithm for the

substrate-topography perturbat ions. The gain to be opt imized at a t ime horizon T is

defined as the rat io of the film disturbance energy E (T) and the substrate disturbance

energy E o = hho|hoi / 2:

G(T ) =
E (T )

E o
=

hh(T )|h(T )i

hho|hoi
. (5.5)

In order to guaranteetheconvergenceof theopt imizat ion algorithm with thecost funct ion

chosen as (5.5), it is primordial to have hh(T )|h(T)i = 0 if hho|hoi = 0, result ing in

G(0) = 0. Otherwise, the algorithm will bring ho to zero naturally, leading to an infinite

gain as soon as h(T ) is a non-zero number (which is the case if h0 6= 0). A pragmat ic way

to sat isfy this condit ion is to set the init ial condit ion on the perturbat ion to zero: h0 = 0,

so that perturbing the substrate – the forcing term in the state equat ion (5.4) – is the

only way to perturb the base flow. This choice also has a pract ical relevance since it is

sufficient to let the base flow evolve on the substrate, without having to experimentally

impose an init ial condit ion for the perturbat ion.

and
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Effect of time horizon
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Optimal wavenumber depends on optimization time
• Large wavenumbers at short times
• Small wavenumbers at late times

Large optimal gain at 
late times
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