
Stratified shear flow : from Rayleigh’s theorem to Richard-
son’s criterion

Q1
The Squire theorem, although one should be careful using it. Indeed, it stipulates that conclu-
sions of the simplified analysis , without the transverse direction, applies to a full analysis with
it, but for different non-dimensional numbers.

Q2
The proposed expansions are to be injected in Euler equations plus the temperature equation
and collecting terms at order ε.

Q3
It is the continuity equation, and, as written in (8), expresses the divergence of the perturbation
field in velocity to be equal to zero. The physical counterpart is the incompressibility of the
fluid (everything that arrives in a fluid control volume must go out : no fluid accumulation is
possible).

Q4
The Boussinesq hypothesis is used. Namely, the density is assumed constant (of value ρ0) in
the continuity and momentum equations, excepted for the buoyancy term.

Q5
The flow is indeed said to be stably stratified as the heavy (cold) fluid is below the light (hot)
fluid. No Rayleigh-Bénard instability is to be expected (which does not imply the flow to be
stable)

Q6
We differentiate the Eq.(5) with respect to z :

(−iω + ikU)Du+ ikU ′u+ U ′′v + U ′v′ = −ikDp/ρ0

then multiply Eq.(6) by ik :

(−iω + ikU)(ikv) = −ikDp/ρ0 + ik
β

ρ0
gθ

then subtract the former to the latter :

(−iω + ikU)(Du− ikv) + ikU ′u+ U ′′v + U ′v′ = −ik β
ρ0
gθ
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In terms of streamfunction : v = −ikψ, u = Dψ. We inject :

(−iω + ikU)(D2 − k2)ψ + ikU ′Dψ + U ′′(−ikψ) + U ′(−ikDψ) = −ik β
ρ0
gθ ⇔

(−iω + ikU)(D2 − k2)ψ − ikU ′′ψ = −ik β
ρ0
gθ

but θ = −T ′(z)v/(−iω + ikU). Thereby :

(−iω + ikU)(D2 − k2)ψ − ikU ′′ψ = −ik β
ρ0
g

(
T ′(z)ikψ
−iω + ikU

)
⇔

(−iω + ikU)(D2 − k2)ψ − ikU ′′ψ = β

ρ0
g

(
k2T ′(z)ψ
−iω + ikU

)
⇔

(−iω + ikU)(D2 − k2)ψ − ikU ′′ψ =
(

k2N2

−iω + ikU

)
ψ

with :

N2 = βgT ′(z)
ρ0

Q7
[β] = [ρ0]/[T ], so

[N2] = [ρ0]
[T ] ∗

m

s2 ∗
[T ]
m
∗ 1

[ρ0]
= 1
s2

N being in s−1 (Hertz), it is indeed a frequency. Without stratification, the Taylor-Goldstein
equation reduces to the Rayleigh equation.

Q8
It is a polynomial eigenvalue problem in a temporal sense ( ω(k)) (and also in a spatial (k(ω))
sense). Indeed there are terms proportional to ω and ω2.

Q9
With the chosen form for the Fourier mode : ∝ ei(kx−ωt) = ei(kx−ωrt−iωit) = eωitei(kx−ωrt). Thus
instability happens whenever ωi > 0.
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Q10
Let’s first notice that −iω becomes −i(ωr + iωi) = ωi − iωr. The Taylor-Goldstein becomes in
turns :

[ωi + i(kU − ωr)](D2 − k2)ψ − ikU ′′ψ =
(

k2N2

[ωi + i(kU − ωr)]

)
ψ ⇔

[ωi + i(kU − ωr)](D2 − k2)ψ − ikU ′′ψ =
(
k2N2[ωi − i(kU − ωr)]

[ω2
i + (kU − ωr)2]

)
ψ ⇔

We multiply by ψ∗ then integrates over y.

[ωi + i(kU − ωr)]
∫

(D2 − k2)ψψ∗dy − ik
∫
U ′′ψψ∗dy =

∫ (
k2N2[ωi − i(kU − ωr)]

[ω2
i + (kU − ωr)2]

)
ψψ∗dy ⇔

[ωi + i(kU − ωr)]
∫

(− |Dψ|2 − k2 |ψ|2)dy − ik
∫
U ′′ |ψ|2 dy =

∫ (
k2N2[ωi − i(kU − ωr)]

[ω2
i + (kU − ωr)2]

)
|ψ|2 dy ⇔

∫
(− |Dψ|2 − k2 |ψ|2)dy − ik[ωi − i(kU − ωr)]

[ω2
i + (kU − ωr)2]

∫
U ′′ |ψ|2 dy =

∫ (
k2N2[ωi − i(kU − ωr)]2

[ω2
i + (kU − ωr)2]2

)
|ψ|2 dy ⇔

Where boundary terms have been put to 0 thanks to the boundary conditions. We use [ωi −
i(kU − ωr)]2 = ω2

i − 2iωi(kU − ωr)− (kU − ωr)2, and take the imaginary part of this integral
equation :

−kωi
[ω2
i + (kU − ωr)2]

∫
U ′′ |ψ|2 dy =

∫ (
−k2N22ωi(kU − ωr)
[ω2
i + (kU − ωr)2]2

)
|ψ|2 dy ⇔

∫
U ′′ |ψ|2 dy =

∫ (
2kN2(kU − ωr)

[ω2
i + (kU − ωr)2]

)
|ψ|2 dy ⇔

U ′′ =
(

2kN2(kU − ωr)
[ω2
i + (kU − ωr)2]

)

It is not a useful explicit condition, because it contains the unknown frequency.

Q11
Key is to go by step :

Dχ = −ikU
′

2 (−iω + ikU)−3/2ψ + Dψ√
−iω + ikU

so
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(−iω + ikU)Dχ = − ikU ′

2
√
−iω + ikU

ψ +Dψ
√
−iω + ikU

so

D[(−iω + ikU)Dχ] = −ik2

(
U ′′√

−iω + ikU
− ikU ′2

2 (−iω + ikU)−3/2
)
ψ − ikU ′

2
√
−iω + ikU

Dψ+

D2ψ
√
−iω + ikU + ikU ′

2
√
−iω + ikU

Dψ

= −ik2

(
U ′′√

−iω + ikU
− ikU ′2

2 (−iω + ikU)−3/2
)
ψ +D2ψ

√
−iω + ikU

= −ik2
U ′′ψ√
−iω + ikU

− k2U ′2

4 (−iω + ikU)−3/2ψ +D2ψ
√
−iω + ikU

If we multiply by
√
−iω + ikU we obtain :

√
−iω + ikUD[(−iω + ikU)Dχ] = −ik2 U

′′ψ − k2U ′2

4(−iω + ikU)ψ +D2ψ(−iω + ikU)

Now we deal with the second part, also multiplied by
√
−iω + ikU . it is equal to :

k2 U ′2

4(−iω + ikU)ψ − k
2 N2

(−iω + ikU)ψ −
ikU ′′

2 ψ − k2(−iω + ikU)ψ

The sum of the two parts gives effectively :

(D2 − k2)(−iω + ikU)ψ +D2ψ(−iω + ikU)− ikU ′′ψ − k2 N2

(−iω + ikU) = 0

Q12
Again step by step :

∫
D[(−iω + ikU)Dχ]χ∗ = [BT ]− (−iω + ikU)

∫
DχDχ∗ = −[ωi + i(kU − ωr)]

∫
|Dχ|2

This becomes :
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− [ωi + i(kU − ωr)]
∫
|Dχ|2 dy+∫ (

k2(U ′2/4−N2) [ωi − i(kU − ωr)]
[ω2
i + (kU − ωr)2] − ikU

′′/2− k2[ωi + i(kU − ωr)]
)
|χ|2 dy = 0

If we take the real part of this equation:

−ωi
∫
|Dχ|2 dy +

∫ (
k2(U ′2/4−N2) ωi

[ω2
i + (kU − ωr)2] − k

2ωi

)
|χ|2 dy = 0⇔

∫ (
k2(U ′2/4−N2) ωi

[ω2
i + (kU − ωr)2]

)
|χ|2 dy = ωi

(∫
|Dχ|2 + k2 |χ|2 dy

)

but [ω2
i + (kU − ωr)2] > 0 . If U ′2/4 − N2 < 0 everywhere in the flow domain, then we

equate a positive and a negative number and the only solution is ωi = 0, so no instability.
the necessary condition for an instability to occur is that there exist a pocket in y
where U ′2/4 +N2 > 0 .

Q13
A necessary condition for the instability to occur is :

N2(z)
U ′(z)2 = βgT ′(z)

ρ0U ′(z)2 <
1
4

to occur somewhere in the flow. It is clear that a higher β and or T ′(z) makes it less likely
to occur (everything else being fixed), thus increasing the strength of stratification stabilizes
the flow. Notice that the dimensionless number Ri compare the potential energy of the flow
βgT ′(z)L2 over the shear-induced kinetic one ρ0U

′(z)2L2 (where L is the length scale of the
problem). As Ri → 0, the density field is easily disturbed by the velocity one, stratification
not being strong enough to resist the shear

Q14
It is sufficient to integrate :

N2(z) = J(1− tanh2(Rz)) = βgT ′(z)
ρ0

which gives T (z) = Ta + ρ0J
βg

(
tanh(Rz)

R
− tanh(Rza)

R

)
. This is an increasing function of z : the

hotter fluid is above thus the flow is stably stratified.
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Q15
N − 1 interior points and 2(N − 1) eigenvalues.

Q16
For R = 1 :

Ri(z) = N(z)2

U ′(z)2 = J

(1− tanh2(z))

Its minimum value is simply equal to J since the denominator is at most equal to one (in
z = 0).

Q17
For R = 1, the necessary condition for the instability to occur is J < 1/4. In other terms, no
instability can occur if J > 1/4, which seems to be the case on figure 3a.

Q18
The instability necessary (not sufficient) condition predicts that the flow could be unstable for
all possible J . Figure 4 shows that unstable modes indeed exist for all the J considered.

Q19
Increasing the stratification suppresses the Kelvin-Helmoltz instability for that the entertain-
ment of the heavy fluid in the Kelvin-Helmotz billows cost too much potential energy.

Increasing the stratification creates the Holmboe instability, briefly make its growth rate higher
then suppresses it for high J . The most unstable wavenumber seems to monotonously increase
with J . Everything else being fixed, a sharp density (temperature) interface (strong R) seems
necessary to create the Holmboe instability.

Q20
For Kelvin-Helmoltz instability : the dispersion relation is said to be non-dispersive, as the
frequency does not change with the wavenumber. Thus dw/dk = 0 ∀k meaning that the
wavepacket is static (it growth on place) : the instability is certainly absolute.

For Holmboe instability, it is impossible to deduce if the instability will be convective or absolute
be visual inspection only.
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