Most flows are unstable...

Intro-definitions

Rayleigh-Taylor

Waves (phase velocity-group velocity)

Rayleigh Plateau (destabilization through surface tension)
Rayleigh-Benard (convection)

Taylor Couette-Centrifugal instability

Kelvin-Helmholtz

Inflection point theorem Rayleigh - Orr sommerfeld
Tollmien schlichting waves+ transient growth

O Spatial growth
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SPATIALLY DEVELOPING SHEAR FLOWS

Flat plate boundary layer

Cylinder wake

Mixing layer ?5;;

Plane channel flow

2D jet i
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2D PARALLEL FLOW CONCEPTS
Dispersion relation

2D vorticity equation

9 OV o ov o |
— _ VU = — V4
(Ot LT S ay) Re

Basic flow + perturbation

W(z,t) = /U(y)dy + Y(x,y,t)
Linear vorticity equation

0 9, 2 % dw__ 4
(0f+U( )ax)vd U Wgr = eV Y



Dispersion relation

D(k,w)=0

Temporal approach: Spatial approach:
K is real; w is complex w Is real; k is complex
Perturbation grow and Perturbations grow and

decay in time! decay in space!



Shear layer Is inviscidly unstable!

Hyperbolic tangent mixing layer
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Why?



Only a necessary condition for instabllity!
Remember: Influence of confinement
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2D PARALLEL FLOW CONCEPTS

Hyperbolic tangent mixing layer

U(y; R) =14+ Rtanhy
Ui(y) = tanh y

Dispersion relation

w(k;R) =k 4+ Rwi(k)



PARALLEL FLOW CONCEPTS
Effect of velocity ratio
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2D PARALLEL FLOW CONCEPTS
Hyperbolic tangent mixing layer

Temporal approach

wi(k) = iwr (k)

cr = w,/k=1

Temporal approach: k is real; w is complex



2D PARALLEL FLOW CONCEPTS

Broken-line profile mixing layer

U, y > 6&-1/2
Uly) = { (U +Ua)/2+ (Uy = Ua)y/fée, |yl < 8u/2
Us, y < —d,/2

¢H_k2¢)=0

o) =Ae™™, y>4,/2,
'3&2(9'] = Bi’ Ekyt ¥ < _"5-.-1/21
do(y) = Age™ ¥ +Bye. |yl < 6,/2




2D PARALLEL FLOW CONCEPTS

Broken-line profile mixing layer
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2D PARALLEL FLOW CONCEPTS

Broken-line profile mixing layer

A AU
__3__(_{ .Oe—kﬁu/'i_*_ [Qk(Ul _ C) . '6_6. By ekﬁ...;f? =0

[Qk(Ug -c)+ %(—j-} Ag ekde/? -:'-%EB@ e~kSu/2 _ g



2D PARALLEL FLOW CONCEPTS

Broken-line profile mixing layer
4(k8) e - 0) - (K8, = 1) = ] AU =
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2D PARALLEL FLOW CONCEPTS

Broken-line profile mixing layer
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Temporal |

Spatial 01f
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2D PARALLEL FLOW CONCEPTS
Hyperbolic tangent mixing layer
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Michalke (1964, 65)



2D PARALLEL FLOW CONCEPTS
Hyperbolic tangent mixing layer

Spatial approach

E+Rwi(k) =w

R <1

—ki(w,R) ~ Rwy ;(w)

Gaster transformation



Solving a spatial instabllity problem
ex: Rayleigh equation



Back to temporal stability analysis!
How to solve Rayleigh equation for real k and complex w?

We fix k, we need to find all w and g such that

12 {2
(U (=) =U")) v =w(——F
dyy? dyy?

V(L) = 0(L) =0

Formally,

A =c& | cmun

Discretize

AV = cEV

Generalized eigenvalue problem




How to solve Rayleigh equation for real k and complex w?

Finite differences of order 1
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How to solve Rayleigh equation for real k and complex w?

Finite differences

[0\ (=2
(Y 1 -9
A 0 1
WKI—S 0
wKI—Q 0

Sparse matrix but low order!
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How to solve Rayleigh equation for complex k and real w?

We fix w, we need to find all k and g such that

I [
(U (=) =U")) v =w(——F
i iy

V(L) = 0(L) =0

Formally,

(AO(U),y)+kA1((.U,y)+k2A2((U,y)+k3A3((L),y)) (U =0

Polynomial eigenvalue problem



Many more eigenvalues
(for Rayleigh equation: 3 x more!)

U=1+0.9*tanh(y); w=0.4; L=5

imagik)

| | | | | | | | |
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real(k)



Which of these waves are unstable?

Im(k)<0?
Im(k)>0?

Recall : exp(i(kx-wt))



The stability of a spatial wave can be only
determined if one knows in which direction it
propagates!

k* waves propagate towards positive X

> X

k-waves propagate towards negative x

R We



However, determining this direction of
propagation is particularly difficult, except in
the case of a temporally stable flow.



The addition of a positive imaginary offset to the frequency makes the
temporal problem stable!
This separates the spatial waves into k+ and k- waves.
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offset spatial stability

spatial stability: Im(w)=0

(k)

The branches are then followed by continuity



Validity of Gaster transformation?
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Validity of Gaster transformation?

R=0.9 X: Gaster transformation
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LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

Green’s function or impulse response

Stable Unstable Unstable Unstable

Briggs (1964) Bers (1983)
Huerre and Monkewitz (1985)



LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

Linearly stable flow

lim G(a.t) =0 along all rays x/t = const.

t—00

Linearly unstable flow

tlim G(r,t) =0 along at least one ray x/t = const.
500



LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

Green’s function or impulse response

Stable Unstable Unstable Unstable

Briggs (1964) Bers (1983)
Huerre and Monkewitz (1985)



LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

Convectively unstable flow

tlim Gz, t) =0 along the ray x/t =0
Absolutely unstable flow
lim G(z,t) = along the ray x/t =0

t—0o0

32



Théorie de la stabilité lineaire spatio-temporelle

Instabilité convective Instabilité absolue

Amplificateur Oscillateur
1‘t /ﬁ

/ : WHW/
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Onde de vitesse de groupe nulle : dw/dk=0 = (kq,®,)



ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU
CRITERION

Temporal growth rate « at velocity v »

:
v+\

Convective instability Absolute instability




Go into Fourier space !

(x,ty)= —— o) / fF (Kyw,y)e! o= ~0) ke duw
' k

+0oC +0o0 )
U (k,wy)= / / (% (:1‘.t,y)€_""(‘!‘"r_""”t) da dt
— 00 — O

Manipulate these integrals....



ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU
CRITERION

Important notions

Leading and trailing edge velocities of wavepacket

:l?/t =T gr/t —
defined by

c(vt) =a(v™) =0

Maximum temporal growth rate
Wimar = wi(kma;r)
such that

&u@
E (kfm.a;r) =0

observed along ray

()U.z' / U k(k-m.a.;r) — 'L"'m.a:.r



ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU
CRITERION

Important notions

Absolute wavenumber k, and frequency wy = w(ky)

observed along ray v =0, 1.e. for a stationary observer,

defined by
Oow

—(ky) =0
&)Lﬂ( 0)

Absolute growth rate 1s

U(O) — Lu‘oji



Isovaleurs de w;

Absolute frequency w,

Saddle point condition

38



ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU
CRITERION

[nstability criteria

Wi maz < 0 linearly stable
Wi maz > U linearly unstable
wo,i < 0 convectively unstable

wo; >0 absolutely unstable



Hyperbolic tangent mixing layer
by U ]

AU
Uly) = U+—2—-— anh((sw) o

(U1 - Ua) |
(AU dy)max -
.

U -Uy _ AU
Uy+Us, U

d,(z) =

Velocity ratio

R

U(y:R) =14 Rtanhy U,




APPLICATION TO MIXING LAYERS

Locus of complex absolute frequency
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H.&Monkewitz (1985)



pump
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Hot wire measurement
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Influence of coutercurrent shear on turbulence level

43



Influence of coutercurrent shear on turbulence level

Base flow

a) Single stream shear layer b) Countercurrent shear layer

44



Influence of coutercurrent shear on turbulence level

Turbulence intensity

a) Single-stream shear layer b) Countercurrent shear layer

45



THE MIXING LAYER: SHIFT TO OSCILLATOR'!

Frequency (Hz)
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0 w0 a0 Strykowski & Niccum (1991)



Direct Numerical Simulations with top-hat profile at inlet

Viscous diffusion — Non-parallel flow

B Noc = (Unax — Unin)/(Umax + Unin)
B 0 = (Unax — Unin)/(|dU/dy|max)

y SLIP

log,(x




Vorticity field: Re =100, h=1

N\ =-0.739

N\ =-0.667

An increase in A\ (more coflow) advects the perturbation



Vorticity field: Re =100, A =-0.739

h=3

Destabilizing influence of confinement!



Spatio-temporal diagram, h=1 and A =-0.667

lv(x,0,t)]

600 0 - abs(v) - 0209

GLOBALLY STABLE

wave front




Spatio-temporal diagram, h=1 and A =-0.739

abs(v)

GLOBALLY UNSTABLE




THE BLUFF BODY WAKE: ATYPICAL FLOW
OSCILLATOR

Re = 140
Periodic
flow

Taneda (1982)



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL

WAKES
Family of wake profiles
UOO
y —f
) = Ui + (U~ Un) Ui (%) .
o[ - U
| 0 28
Ur(&N) = [1 +sinh®V {¢sinh (1)} _> Lt
U, |

Monkewi1tz (1988)



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL

WAKES
Family of wake profiles
y L IR Y 2 - ¥ IR
Uof U F v
| t 1+l&§:0 ’
TR ) IR
a) (b) (©) | (d)
-1 <R <0 R=-1 R<-1

Effect of velocity ratio R Effect of N



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL
2D PARALLEL FLOW CONCEPTS

sech? y wake
Temporal approach
0 /2R =0 ; (cr=1+R)/2R = ¢y
0,15
0.10
0.05 varicose mode 0.5 F
sinuous mode
k k
| |
0 R 2 0 ‘ 2

Betchov & Criminale (1966)



2D PARALLEL FLOW CONCEPTS

Sinuous and varicose modes

oy
i F

sech? y wake

& 1

(a)

{b)

SINUOUS

Varicose



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL

WAKES
Ettect of steepness, velocity ratio and Reynolds number

Monkewitz (1988)



LOCAL INSTABILITY BEHAVIOR OF CYLINDER WAKE

5 < R(’ < 9”5 Convective instability

25 < Re < 48.5 Absolute instability



