Most flows are unstable...

Intro-definitions

Rayleigh-Taylor

Rayleigh Plateau (destabilization through surface tension)
Rayleigh-Benard (convection)
Benard-Marangoni

Taylor Couette-Centrifugal instability
Kelvin-Helmholtz

Inflection point theorem Rayleigh
Orr sommerfeld, transient growth
10 Spatial growth

11. Spatio-temporal growth

O©CONOOhWNE



Which of these waves are unstable?

Im(k)<0?
Im(k)>0?

Recall : exp(i(kx-wt))



The stability of a spatial wave can be only
determined if one knows in which direction it
propagates!

k* waves propagate towards positive X

> X

k-waves propagate towards negative X

RV e



However, determining this direction of
propagation is particularly difficult, except in
the case of a temporally stable flow.



The addition of a positive imaginary offset to the frequency makes the
temporal problem stable!
This separates the spatial waves into k+ and k- waves.
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spatial stability: Im(w)=0
k) l

The branches are then followed by continuity

offset spatial stability




Validity of Gaster transformation?
R=0.4

xX: Gaster transformation
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Validity of Gaster transformation?

R=0.9 X: Gaster transformation
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Spatio-temporal instability theory

Convective instability Absolute instability

r ¢ .




Convective instability

Spectrum

R=10

L
N

amplifier

Absolute instability

14

A

T T T J|=Z

2000 4000

oscillator

Mixing layer experiments by Strikowsky and Niccum (1991)



Spatio-temporal instability theory

Convective instability Absolute instability
t ¢ p

We need to generalize the concept of group velocity since o
(and why not k) is complex

For neutral waves, the group velocity is dw/dk

Here this quantity is the derivative of a complex function with
respect to a complex variable. Cauchy-Rieman conditions
apply.



Spatio-temporal spectral analysis

Inverse Fourier Transform

00 00 :
u(x,) = / / o (k,w) e Re=w) e duy
—00 J—00

+r:)CI +rx} y g
a(k,w) = (212 / / u(ax,t) e~ ikz—wt) g0, ¢
—0o0 J—00

Direct Fourier Transform




Spatio-temporal spectral analysis

Inverse Fourier Transform

+le +OO ‘ » oyl
u(x,t) = / g G (kw) e)
—00 (/=0

Use dispersion relation w(k)!



Fourier transform:

Spectral analysis

u(z,t) =

|

2

/—I_OO
0

A

u

(k) el o= R qE 4 e c.




Carrier/enveloppe :

Carrier/enveloppe

u(x,t)

%A([L’, ) elkor=wot) oo




Spectral analysis

L[
Fourier transform: U(ZE, t) — 5/ U(k) el(km_w(k)t)dk + C.C.
0

1 .
Carrier/enveloppe : U(ZL’, t) = EA(I, t) el(kzoa:—wot) —+ C.C.




Spectral analysis

L[
Fourier transform: U(ZE, t) — 5/ U(k) el(km_w(k)t)dk + C.C.
0

1 .
Carrier/enveloppe : U(ZL’, t) = EA(I, t) el(kzoa:—wot) —+ C.C.

Enveloppe : Az, t) = / u(k) gl (k—ko)e—ilw=wo)t i
0




Fourier transform:

Enveloppe :

Spectral analysis at time=0




Spectral analysis

Gaussian spectrum: ﬁ/(k) = Uy 6_02 (k_ko)Q

Alx,0) = UO\/_ 40?2

Initial enveloppe : e 40



Gaussian spectrum
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Gaussian wavepackets
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Spectral analysis

Alx,0) = UO\/_ 40?2

Initial enveloppe : e 40

Gaussian spectrum: r&(k) = U 6—02 (k_kO)Q



Spectral analysis

U()\/_ — L

Initial enveloppe : A(;C, O) e 40

Gaussian spectrum: r&(k) = Uy 6—02 (k_kO)Q

Evolution of enveloppe : A(aj,t) = / ﬂ(k) ei(k_ko)w_i(W—WO)td]{.
0




Spectral analysis

A(x,0) = UO\/_ 02

Initial enveloppe : e 40

Gaussian spectrum: r&(k) = Uy 6—02 (k_kO)Q

Evolution of enveloppe : A(aj,t) = / ﬂ(k) ei(k_ko)w_i(W—WO)td]{.
0

— (ko)

Definition group velocity | W — Wy = Cg(k — k‘()), Cg =

Ok




Spectral analysis

Definition of group velocity W — Wy = Cg(]{j — /{jo)7 Cg —

(x—c t)2
A(ﬂf, t) — U()Qf e 40%




Group velocity
I"‘“‘]

Filjﬁ\/a\/\kfx
1 \

Wavepacket
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Spectral analysis

Higher order 2
development O ) 0%
¢g =z (ko),  wy =5 (ko)
Ug T (2 — cqt)?
Alx,t) = exp | —
(@9 2 \/02 + Hwft b ( 4(0? + 1iw{t)
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Wave packet dispersion

0.2
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Kelvin's wake
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Gravity waves created by a ship




Gravity waves created by a ship




Gravity waves created by a ship
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Gravity waves created by a ship
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Gravity waves created by a ship
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Gravity waves created by a ship

sin(a)/OG=cos(B8)/AG
sin(0-a)AG=GC=0G

_____

=sin(a)=cos(0)sin(0-a)
=sin(a)=cos(0)(sin(0)cos(a)+cos(B)sin(a))

=>tan(a)=cos(8)sin(0)/(1+cos?(0))



Gravity waves created by a ship
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Gravity waves created by a ship
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Gravity waves created by a ship




But observations show

Moisy and Rabaud 2013



But observations show

40

Wake angle o (deg.)
S

—Model (3)

- ==Asympt. (4)
@ Images
O Simul.

0.1 0.2 0.4 0.6 ] 2 3

Hull Froude number, Fr

Moisy and Rabaud 2013



Generalization: Spatio-temporal instability theory

First find the zero group velocity wave: dw/dk=0 = (k,,®,)
and consider the sign of Im(w,)

Convective instability Absolute instability

r ¢ p




LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

Green’s function or impulse response

-

s

\

Stable Unstable Unstable Unstable

Briggs (1964) Bers (1983)
Huerre and Monkewitz (1985)



LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

Linearly stable flow

lim G(x.t) =0 along all rays x/t = const.

t—00

Linearly unstable flow

flim G(x.t) = along at least one ray x/t = const.
F—00



LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

Green’s function or impulse response

-
4@:@*
T T T T
convectively absolutely
Stable Unstable Unstable Unstable

Briggs (1964) Bers (1983)
Huerre and Monkewitz (1985)



LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

Convectively unstable flow

1Llim G, t) =0 along the ray x/t=0
Absolutely unstable flow
lim G(x,t) = o along the ray x/t =0

t—0o0
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ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU
CRITERION

Temporal growth rate « at velocity v »

>
v+\

Convective instability Absolute instability




ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU
CRITERION

Important notions

Absolute wavenumber k, and frequency wy = w(ko)

observed along ray v = 0, 1.e. for a stationary observer,
defined by

Ow

— (k) =0

dlf( 0)
Absolute growth rate 1s

0(0) = u.z'o‘g'






Spatial analysis

w Is real, k complex, k+ and k- waves, plotting kr(w) and -ki(w) .

z
stable



Spatial analysis

w Is real, k complex, k+ and k- waves, plotting kr(w) and -ki(w) .

stable convectively unstable



Spatial analysis

w Is real, k complex, k+ and k- waves, plotting kr(w) and -ki(w) .

convectively unstable absolutely unstable



Spatial analysis

w Is real, k complex, k+ and k- waves, plotting kr(w) and -ki(w) and ki(kr)

_—

B / 0 / 0
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kK (w) K, : \ k;

\w / )O

\‘j
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Fx

k_{(w

s

AN

convectively unstable

absolutely unstable



Add w, offset and vary w;,

k(o) k. ®,
\_ 1 ;___.——? iy‘ Lm
kl‘
(a) O
O Wy
k_(w) o
—_— | T 0
w:=0
w k; /( i @i !
1 Yq. . . -
r spatial instability theory OK
(b) k O o,
k_{w \ o1 Lo
Ww) k; / i’Y-'wi
@) E k,
kO 0)0
k_(0) Ly
N ki e iyt
o) k,
@ 9 “
0
L(.t)




Add w; offset and vary w,

k
N T O
Fy . L
- iy )
(a) O r
O Wy
k_(w)
—_— oo

w;=0

K(w) .
NG ki spatial instability theory OK

iy¢ !

(b)
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\
%
/
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k_(@ \ Wy 1 Lo
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Saddle point koK ] ©1 We<O
0 Tk
() . 5 ™
K, o
i Lo . .
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0 K,
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Add w, offset and vary w;,
Saddle point condition

L@ , o;
N__’/{
0 " iy 4 Lw
(a) ' o
oh
k/((:))_/,————\ 0 ®r
k4 (@) k;
0 /{ iy L

(b) Fy @o

k_(@ \ © o

Saddle point ~©O - e, W0
1y . . ope
k spatial instability NOT OK
(c) N Fp o) P Lo Y
k, 0 o,
(o) . -
) Absolute instability
\ ki i’}" “i
0 k,

@ o, Ly




Spatio-temporal analysis (vary both kr and ki)

Isocontours of w; in the kr-ki plane

]
. M
k; \\ Contour of maxtmu- —

temporal-erowth rate
T L=}

dw/dk =0
Saddle point condition

Absolute frequency w,=w(k,)

Absolute wavenumber k

—10
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ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU
CRITERION

[nstability criteria

Wi maz < 0 linearly stable
Wi maz > U linearly unstable
wo,i < 0 convectively unstable

wo; >0 absolutely unstable



Hyperbolic tangent mixing layer
by U 1

AU 2y
Uly) = U+—2--— a,nh((sw) .

() = =)

Velocity ratio

([@U/dYmax |
A

Ui -U, _ AU
Uy +Us, U

R

U(y:R) =1+ Rtanhy U,




APPLICATION TO MIXING LAYERS

Locus of complex absolute frequency

Wi
0.4
[
02- @og |
AU -'
T (1.5}}
1.315
0 F ( ). |
l 0.2 0.4 U
cu (1.0)
-0.24 (0.84)

H.&Monkewitz (1985)



uunmmﬂmmmnnnnnnu\

)




Influence of coutercurrent shear on turbulence level
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Influence of coutercurrent shear on turbulence level

Base flow

a) Single stream shear layer b) Countercurrent shear layer
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Influence of coutercurrent shear on turbulence level

Turbulence intensity

a) Single-stream shear layer b) Countercurrent shear layer
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THE MIXING LAYER: SHIFT TO OSCILLATOR !

Frequency (Hz)

/
14 . ./o
%) /
001 | /
I\ /
- ;
o._.JumJ 1 |
'1.0 1.2 1.4 1.6
LA "
0 w0 a0 Strykowski & Niccum (1991)



Direct Numerical Simulations with top-hat profile at inlet

Viscous diffusion — Non-parallel flow

B Noc = (Unax — Unin)/(Unax + Unin)
B 0 = (Unax — Upnin)/(1dU/Ay|max)

A SLIP

log,(1

SLIP



Vorticity field: Re =100, h =1

N =-0.739

N =-0.667

An increase in A (more coflow) advects the perturbation



Vorticity field: Re =100, A =-0.739

h=3

Destabilizing influence of confinement!



Spatio-temporal diagram, h=1 and A =-0.667

V(x,0,0)] |

600 0 - abs(v) - 0209

GLOBALLY STABLE

wave front




Spatio-temporal diagram, h=1 and A =-0.739

abs(v)

GLOBALLY UNSTABLE




THE BLUFF BODY WAKE: A TYPICAL FLOW
OSCILLATOR

Re = 140
Periodic
flow

Taneda (1982)



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL

WAKES
Family of wake profiles
UGO'
y —
U(y) = Use + (U — Uso) U (%:,N) .
0" .U
| U. 20
Uy(&N) =1+ sinh®Y {€sinh™H(1)}] 7! > R
u,

Monkewitz (1988)



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL
WAKES
Family of wake profiles

y I. "R

2 -
Uy ; < I
; t 1+l\§:0 f
IR 2 " I-R
a) (b) (c) | (d)
-1<R<0 R=-1 R<-1

Effect of velocity ratio R Effect of N



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL
2D PARALLEL FLOW CONCEPTS

sech? y wake
Temporal approach
0 /R=wy (cr=1+R)/2R = ¢y
0,15
0.10
0.05 varicose mode 05 F
sinuous mode
k k
| |
0 R 2 0 ‘ :

Betchov & Criminale (1966)



2D PARALLEL FLOW CONCEPTS

Sinuous and varicose modes

oy
1)

sech? y wake

& 1

{a)

{b)

SINUOUS

varicose



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL

WAKES

Effect of steepness, velocity ratio and Reynolds number

==y
|

—d

Monkewi1tz (1988)



LOCAL INSTABILITY BEHAVIOR OF CYLINDER WAKE

5 < R(’ < 9”5 Convective instability

25 < Re < 48.5 Absolute instability



Dripping/Jetting transition linked to
absolute/convective transition?

Absolutely unstable

Convectively unstable

Guillot et al. (2008), Utada et al. (2008)



5. Dispersion relation

k- 1\ (kR
w=Uk* L k2 O( )

P R(Q) fo(k’R)

‘Unstable if there exists one w, Im(w)>0 at k<1/R,
*Neutral if for all w, Im(w)=0 at k>1/R,,

-Stable (or damped) if for all w, Im(w)<O:

The flow considered is not damped, we have
neglected dissipation by neglecting viscosity




Destabilisation d'un jet

04 ~
| Large Wavelength§ Small wave
lengths
B L) .
¢ b /
A UNSTABLE STABLE
i ’ large wave
Small wavenumbers numbers
(7485 T S T N U YT N N T N B
0 1

ka

Fic. 2.10 - Tauz de croissance 1.0, avec 1. = \/pa3/y, de Uinstabilité d'un filet
fluide non visqueuz, et points expérimentaux. D’aprés (Drazin € Reid 2004).
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Surface tension is destabilizing as a consequence of the radial curvature
Surface tension is stabilizing as a consequence of the axial curvature



