
1

Most flows are unstable...

1. Intro-definitions

2. Rayleigh-Taylor

3. Rayleigh Plateau (destabilization through surface tension)

4. Rayleigh-Benard (convection)

5. Benard-Marangoni

6. Taylor Couette-Centrifugal instability

7. Kelvin-Helmholtz

8. Inflection point theorem Rayleigh 

9. Orr sommerfeld, transient growth

10. Spatial growth

11. Spatio-temporal growth



Which of these waves are unstable?
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Im(k)<0?

Im(k)>0?

Recall : exp(i(kx-ωt))



The stability of a spatial wave can be only 

determined if one knows in which direction it 

propagates!
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k+ waves propagate towards positive x

k- waves propagate towards negative x

x
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However, determining this direction of 

propagation is particularly difficult, except in 

the case of a temporally stable flow.
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The addition of a positive imaginary offset to the frequency makes the 

temporal problem stable!

This separates the spatial waves into k+ and k- waves.  

The branches are then followed by continuity

offset spatial stability

spatial stability: Im(ω)=0
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R=0.4

Validity of Gaster transformation?

x: Gaster transformation
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R=0.9

Validity of Gaster transformation?

x: Gaster transformation



Spatio-temporal instability theory

Convective instability Absolute instability



Convective instability Absolute instability

amplifier oscillator

Mixing layer experiments by Strikowsky and Niccum (1991)

Hz Hz

Spectrum
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Spatio-temporal instability theory

We need to generalize the concept of group velocity since w 

(and why not k) is complex

For neutral waves, the group velocity is dw/dk

Here this quantity is the derivative of a complex function with 

respect to a complex variable. Cauchy-Rieman conditions 

apply.

Convective instability Absolute instability
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Spatio-temporal spectral analysis

is given by Fourier transform at time t=0

u

û

û(k,ω)  =  (2π)2

u(x,t)  =

Inverse Fourier Transform

Direct Fourier Transform
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Spatio-temporal spectral analysis

is given by Fourier transform at time t=0

u

û

û(k,ω)  =  (2π)2

u(x,t)  =

Inverse Fourier Transform

Use dispersion relation ω(k)!
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Spectral analysis

Fourier transform:
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Carrier/enveloppe

Carrier/enveloppe :
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Spectral analysis

Fourier transform:

Carrier/enveloppe :
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Spectral analysis

Fourier transform:

Carrier/enveloppe :

Enveloppe :
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Spectral analysis at time=0

Fourier transform:

Enveloppe :

is given by Fourier transform at time t=0

0 dk + c.c.

0 dk + c.c.
)
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Spectral analysis

Gaussian spectrum: 

Initial enveloppe :
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Gaussian spectrum

wave

spectrum
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Gaussian wavepackets
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Spectral analysis

Gaussian spectrum: 

Initial enveloppe :
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Spectral analysis

Gaussian spectrum: 

Initial enveloppe :

Evolution of enveloppe :
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Spectral analysis

Gaussian spectrum: 

Initial enveloppe :

Definition group velocity

Evolution of enveloppe :



24

Spectral analysis

Definition of group velocity
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Group velocity

Wavepacket


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Spectral analysis

Higher order 

development
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Wave packet dispersion

t=0

t>0
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Kelvin’s wake

t=0t=-Δt

O A
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O A

C

G

Gravity waves created by a ship
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O A

C

G

Gravity waves created by a ship
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Gravity waves created by a ship
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O A

C
G

Gravity waves created by a ship
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O A

Gravity waves created by a ship
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θ
α

O A

C

G

sin(α)/OG=cos(θ)/AG

sin(θ-α)AG=GC=OG

sin(α)=cos(θ)sin(θ-α)

sin(α)=cos(θ)(sin(θ)cos(α)+cos(θ)sin(α))

tan(α)=cos(θ)sin(θ)/(1+cos2(θ))

Gravity waves created by a ship
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tan(α)

θ0° 90°30°

O A

θ
α

R 3R

α=19°

θ=54°

Gravity waves created by a ship
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54°

19°

Gravity waves created by a ship
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O A O A

lent

rapide

Gravity waves created by a ship
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But observations show

Moisy and Rabaud 2013
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But observations show

Moisy and Rabaud 2013
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Generalization: Spatio-temporal instability theory

Im(w0)>0

First find the zero group velocity wave:   dw/dk=0  (k0,w0)

and consider the sign of Im(w0)

Convective instability Absolute instability

Im(w0)<0
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Huerre and Monkewitz (1985)
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Huerre and Monkewitz (1985)

convectively absolutely



44



45



46



47



48

Spatial analysis

ω is real, k complex, k+ and k- waves, plotting kr(ω) and -ki(ω) :

stable
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Spatial analysis

ω is real, k complex, k+ and k- waves, plotting kr(ω) and -ki(ω) :

stable convectively unstable
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Spatial analysis

ω is real, k complex, k+ and k- waves, plotting kr(ω) and -ki(ω) :

stable convectively unstable absolutely unstable 
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Spatial analysis

ω is real, k complex, k+ and k- waves, plotting kr(ω) and -ki(ω) and ki(kr)

convectively unstable absolutely unstable 
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Saddle point condition

Add ωi offset and vary ωr

ωi=0 

spatial instability theory OK



53

Saddle point condition

Add ωi offset and vary ωr

ωi=0 

spatial instability theory OK

Saddle point ω0i<0  

convective instability
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Saddle point condition

Add ωi offset and vary ωr

Saddle point ω0i>0  

spatial instability NOT OK

Absolute instability
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Spatio-temporal analysis (vary both kr and ki)

Isocontours of ωi in the kr-ki plane

Saddle point condition

Absolute frequency ω0=ω(k0)

Absolute wavenumber k0
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R
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R
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Hot wire measurement

t

ω

FFT
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Influence of coutercurrent shear on turbulence level

It will not respond to an harmonic forcing

The spatial instability problem is ill-posed
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Influence of coutercurrent shear on turbulence level

Base flow
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Influence of coutercurrent shear on turbulence level

Turbulence intensity
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Viscous diffusion Non-parallel flow

SLIP 

Direct Numerical Simulations with top-hat profile at inlet 

SLIP 



Vorticity field: Re = 100, h = 1

Λ = -0.739

Λ = -0.667

An increase in Λ (more coflow) advects the perturbation



Vorticity field: Re = 100, Λ = -0.739

h=1

Destabilizing influence of confinement!

h=3



Spatio-temporal diagram, h=1 and  Λ = -0.667

GLOBALLY STABLE

|v(x,0,t)|

wave front



GLOBALLY UNSTABLE

Spatio-temporal diagram, h=1 and  Λ = -0.739
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R
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R
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R
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R



74

R
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R
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Dripping/Jetting transition linked to 
absolute/convective transition?

Guillot et al. (2008), Utada et al. (2008)

Absolutely unstable

Convectively unstable
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5. Dispersion relation

•Neutral if for all ω, Im(ω)=0                             at k>1/R0

•Unstable if  there exists one ω, Im(ω)>0        at k<1/R0

•Stable (or damped) if  for all ω, Im(ω)<0:

The flow considered is not damped, we have 

neglected dissipation by neglecting viscosity
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Destabilisation d’un jet

Large wavelengths

Small wavenumbers

UNSTABLE

Small wave

lengths

large wave

numbers

STABLE
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Surface tension is destabilizing as a consequence of the radial curvature

Surface tension is stabilizing as a consequence of the axial curvature


