
Dispersion relation of water waves in finite depth
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I. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Let consider a column of water of height h and density ρ that is infinitely extended in the
horizontal x-direction and that is surmounted by a semi-infinite layer of air with density ρA.
The inviscid motion in the two media is governed by the continuity and Bernoulli equations
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where z is the vertical direction aligned with gravity g and P and PA indicate the pressure
in the liquid and air phase respectively. In addition, Φ and ΦA are the velocity potential
and their gradient corresponds to the velocity components
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The governing equations (1) have to be completed by boundary conditions. No penetration
at the solid surface and null velocity in the far vertical field yield
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In addition, kinematic and dynamic boundary conditions have to be imposed at the liquid-
air interface η(x)
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where γ is the surface tension at the water-air interface.
We note that the governing equations of water and air are coupled through the pressure

term in the dynamic condition. However, if we consider that the air remains at rest at
atmospheric pressure we can decouple the equations and consider only the water phase.
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II. BASE STATE

By imposing the stationarity of the motion we get the following base-state solution for
the water phase

Φ = 0, U = 0, V = 0, η = 0, P = −ρgz. (5)

III. LINEARIZED EQUATIONS AND BOUNDARY CONDITIONS

Let perturb the base-state solution with an unsteady small perturbation of size ε� 1:

Φ = 0 + εφ, U = 0 + εu, V = 0 + εv, η = 0 + εσ, P = −ρgz + εp (6)

By injecting this expansion in the governing equations we get the following linearized equa-
tions and b.c.:
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IV. NORMAL MODE EXPANSION

Due to the linearity of the equations (7) and the horizontal invariance of the base-flow (6)
we can seek for a solution of the type

φ = f(z)ei(kx−ωt), σ = Bei(kx−ωt) (8)

where k is the wavenumber of the wave and ω is its frequency. The function f(z) and
the constant B are unknown. Since f(z) needs to satisfy the Laplace equation it is an
harmonic function of the kind f(z) = αekz + βekz. By imposing null derivative at the
bottom boundary (homogeneous Neumann condition) in order to satisfy the condition of
no-penetration we get:

f(z) = A cosh(k(h+ z)), (9)

where A is an arbitrary constant. Therefore, the following ansatz

φ = A cosh(k(h+ z))ei(kx−ωt), σ = Bei(kx−ωt), (10)

already satisfies continuity equation and no-penetration condition at z = −h.

V. DISPERSION RELATION

We need now to impose kinematic and dynamic condition to be satisfied. By substituting
the ansatz (10) in the last two equations of (7) we obtain:

kA sinh(kh) = iωB

−ρgB − iωρ cosh(kh)A = γk2B
(11)
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which is an homogeneous system of two equations in two unknowns, A and B. Therefore,
in order to avoid the trivial solution A = 0, B = 0, we require the determinant of[

k sinh(kh) −iω
−iωρ cosh(kh) −ρg − k2γ

]
(12)

to be null, yielding the famous dispersion relation:
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)
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Note as the frequency is given by the product of a gravity term, a capillary term and a term
accounting for the solid confinement at the bottom.


