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Role of nuclear in today’s energy 

mix and current situation



• N       ~10%  f w    ’            y   n      n.

•     y’      -carbon/low-carbon split:

• Total fossil fuel ~62%  

• Low-carbon sources ~38% 

• 2000’      -carbon/low-carbon split:

• Total fossil fuel ~65%  

• Low-carbon sources ~35% 

Today’s worldwide energy mix – Electricity production

Note: derived from ourworldindata.org (data of 2021 from BP Statistical Review of World Energy)
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Today’s worldwide energy mix – Total energy consumption

Note: derived from ourworldindata.org (data of 2021 from BP Statistical Review of World Energy)

• N       ~4%  f w    ’   n   y   n       n.

•     y’      -carbon/low-carbon split:

• Total fossil fuel ~83%  

• Low-carbon sources ~17% 

• 2000’      -carbon/low-carbon split:

• Total fossil fuel ~86%  

• Low-carbon sources ~14% 



National Context: Electricity generation in Switzerland

Note: derived from ourworldindata.org (data of 2021 from BP Statistical Review of World Energy)

What about total energy consumption?
• Nuclear ~15.5%  

• Oil ~34.5% 

• Gas ~12%
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National Context: NPPs in Switzerland

NPP Type Shut down 50 yrs 60 yrs Net Elect. Power
Beznau I PWR (?) 2019 2029 (?) 365 [MWe]

Beznau II PWR 2021 2031 365 [MWe]

Mühleberg BWR 2019 - - 373 [MWe]

Gösgen PWR 2029 2039 1010 [MWe]

Leibstadt BWR 2034 2044 1220 [MWe]

X



▪ Continuous growth in energy demand worldwide due to rising living standards (though 

population growth may eventually stabilize and decrease).

▪ Continued reliance on fossil fuels poses significant risks, including climate change, air 

pollution, and the depletion of resources.

▪ “  n w b   ”  n                  , but have not yet reached the capacity to fully meet 

medium-      n   y n    …

▪ …thus, nuclear is increasingly recognized as part of the solution

▪ Fusion considered a long-term solution; timeline and feasibility still under research.

▪ Fission has potential for increased use, but advancements are needed to address 

safety concerns, waste management, and regulatory issues.

▪ Economic viability, environmental impact, and socio-political factors play critical roles in 

shaping energy policy and technology adoption.

General energy context today



Type #Units MWe

Fast Breeder Reactor 3 1 400

Light Water Graphite Reactor (RBMK) 11 7 433

Gas Cooled Reactor 9 4 885

Pressurised Heavy Water Reactor (CANDU) 47 24 314

Boiling Water Reactor (BWR) 49 49 565

Pressurised Water Reactor (PWR) 304 291 157

Total: 423 378 754
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Nuclear reactors in operation worldwide (data from IAEA)

Note: around 120 commercial reactors have been shutdown, of which less than 15 have been fully dismantled

89%



NPP worldwide under construction (updated 2023)
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Nuclear Power Plants Worldwide

Three Mile Island

Chernobyl

Fukushima

Note: data from World Nuclear Association, IAEA PRIS



Historic Development of NPPs: The beginnings

J. Chadwick discovers 

neutron

1938: Otto Hahn, Lise 

Meitner and Fritz 

Strassmann discover 

nuclear fission.

1942: Chicago Pile-1  is 

the first nuclear reactor 

(lead by E. Fermi)

1956: Calder Hall, gas-cooled Magnox 

at Sellafield (UK), 50 MW (later 200 

MW) is the first commercial Nuclear 

Power Plant (NPP) 

1932 1938 1942 1956 1951 

1951:  The Experimental Breeder Reactor 

I (EBR-I) is the world's first nuclear power 

reactor to generate electricity (developed 

by ANL and operated in Idaho, USA)



Historic Development of NPPs: Generation I-IV

- AP-1000

- EPR

- ESBWR

- APR-1400

- CAP-1400



Safety features in modern reactors

(Gen3 and Gen3+)



Gen3 and Gen3+ Plant Types

APR-1400 (Korea)

EPR (France)

AP-1000 

(USA)

WWER-1000/W-466B

Note: data from IAEA PRIS, updated 2023
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▪ Evolutionary Approach (e.g. EPR): use operational feedback from existing power plants

o Active Safety Systems with high Redundancy and Diversity

o Long-term power supply even under most adverse conditions

o Core melt scenarios are part of Design Basis Accidents

▪ Passive Safety Systems (e.g. AP1000): reduced reliance on active components and power 
supplies

o Deployment of passive systems driven by physical principles (gravitation and natural 
convection)

o Passive systems extend time margins for initiating severe accident measures

o Improved protection against internal and external hazards

Two different approaches to improving safety



EPR - Protection against Internal and External Hazards

Internal containment:

• metallic liner

• tightness pressure = 6.5 bar

Fuel storage building:
protected by the airplane 
protection

Divisions 2 and 3:
protected by the 
airplane protection

External containment:
part of the airplane protection 

IRWST :In-Reactor Water 
Storage Tank



EPR, Areva NP

EPR - Core Catcher



Pressurized nitrogen
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Motor 
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DWR: core flooding tanks

• N2 Pressure below reactor pressure

• Injection only after pressure relief 

➢ Shutdown function is an accident 

management measure

PWRs of Generation II PWRs of Generation III (AP-1000)

Injection at any reactor 

pressure possible

Emergency core cooling

No high-pressure pump 
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• Steel containment vessel acts as heat exchanger / is 

cooled by convective airflow

• PCCS limits heat and pressure rise below  design criteria 

(150 °C, 4 bar)  

• Air cooling can be supplemented by water evaporation 

(source: water tank on top)

AP-1000: Passive Containment Cooling System (PCCS)

Source: Westinghouse



1) In-Vessel-Retention (IVR) of core melt by Ex-Vessel Cooling 

• Core temperature > 650°C: the cavity is flooded with IRWST-water

• Convective flow of water/steam mixture between insulation and RPV 

2) Passive autokatalytic Recombiners and Igniter to prevent hydrogen explosions

AP-1000: Severe Accident Measures 

Source: Westinghouse



Generation IV Nuclear Reactors



▪ The reactor classification was primarily introduced around year 2000 to define the next generation 
of reactors.

Gen IV: noble idea & political signal for cooperation



The features of Gen IV reactors have been proposed and published in Gen IV technology roadmap:

▪ Sustainability: effective resources utilization for long-term availability, reduction of nuclear waste

• Large R&D effort needed for technologies of reprocessing, isotope separation, fabrication, etc.

▪ Economics: clear lifetime cost and financial risk comparable to other systems (fossil fuels)C

• Capital costs, as also time of licensing/construction need to be reduced strongly

▪ Safety and reliability: very low core damage frequency and no need of offsite emergency response

• Greater degree of public confidence needed (clear & transparent safety approach)

▪ Proliferation resistance and physical safety: M     n    n  “  f       ”,                n      
protection against terrorist attacks

Generation IV – Foreseen features



Gas-cooled Fast Reactor            Sodium Cooled Fast Reactor                Molten Salt Reactor

High Temperature Reactor        Lead-Cooled Fast Reactor         Supercritical LWR

Generation-IV Reactor Concepts



Fast Reactors: SFRs and LFRs



▪ December 2, 1942: at the University of Chicago, a team of physicists led by Enrico Fermi 
initiated the first self-sustaining chain reaction in the first man-made nuclear reactor called 
“        P   -1”.

First chain reaction was obtained in a thermal reactor

E. Fermi (1901-1954) Sketch of Pile-1. Courtesy of ANL.



▪ 1949: The EBR-I – Experimental Breeder Reactor I – was designed at Argonne National 
  b      y. In 1951     w    ’  f               y w     n       f    n       f     n  n     f   -
spectrum breeder reactor with plutonium fuel cooled by a liquid sodium.

First "nuclear" electricity obtained in a fast reactor

First “nuclear” electricity : four 200-watt light bulbs. Courtesy of ANL.



▪ Natural uranium contains only 0.7% of fissile isotope U235. The rest 99.3% is non-fissile U238. 

▪ The resources of U238 are estimated as 35 million tones. Only the U238 mass from the 
depleted uranium stocks in the world was estimated to be more than 1 million tons.

▪ We will obtain an almost infinite, sustainable energy source for millennia, if we find the way 
  w    “b  n”                n   f n n-fissile U238.

Why fast reactor?



Why fast reactor?



c,U-238

f,U-235

c,U-235

f,U-238
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c,U-238

Macroscopic reaction cross sections in natural uranium (U235 at 0.72 w%)

Fast reactor, how?



▪ Natural uranium contains only 0.7% of fissile isotope U235. The rest 99.3% is non-fissile U238. 

▪ The resources of U238 are estimated as 35 million tones. Only the U238 mass from the 
depleted uranium stocks in the world was estimated to be more than 1 million tons.

▪ We will obtain an almost infinite, sustainable energy source for millennia, if we find the way 
  w    “b  n”                n   f n n-fissile U238.

▪ A fast-spectrum nuclear reactor is a device that can make it possible via conversion of 
U238 to fissile Pu239

▪ Also, in fast spectrum one can burn fissile higher actinides, decreasing the decay time of 
nuclear waste

Why fast reactor?



b- b-

New fissile material

U-238
U-235, 70'000 kWhel/kg U-nat

Natural uranium:

Conversion process:

n0

1

U238

92 U239

92 Np239

93 Pu239

94
+

Breeding

More fission neutrons are needed beyond those required for sustaining chain reactions!



▪ Average number of fission neutrons emitted per neutron absorbed as a function of absorbed 
n     n’   n   y f   U-235 and Pu-239 fissile isotopes

Breeding: Pu-239 in fast neutron spectrum
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More fission neutrons are needed beyond those required for sustaining chain reactions!

▪ Use Pu-239 as fissile material → more new neutrons per fission

b- b-

New fissile material

U-238
U-235, 70'000 kWhel/kg U-nat

Natural uranium:

Conversion process:

n0

1

U238

92 U239

92 Np239

93 Pu239

94
+

Breeding



100
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moderation

fast leakage neutrons escape the reactor

absorption of fast neutrons

(in U-238, moderator, construction materials)

thermal leakage neutrons escape the reactor

absorption of thermal neutrons

(in U-238, moderator, construction materials)

absorption of thermal neutrons in control rods
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 Side product: conversion of U-238 into Pu-239 by neutron capture

Chain reaction in thermal reactor



Chain reaction in fast reactor



▪ All GIF fast-spectrum systems can operate in an equilibrium closed fuel cycle with BR=1 
(amount of fissile produced = amount of fissile consumed)

• Input: Uranium-238

• Output: Fission products + Losses

Sustainability: Iso-breeder in a closed fuel cycle

 

Cooling

Fission 

products

ReprocessingFR
U238

Final

storage

Spent fuel

Reprocessed fuel: 

U + Np + Pu + Am + Cm

Spent fuel Depleted

uranium stock

Assuming efficient reprocessing and final disposal technologies, fast-spectrum 

nuclear reactors are a sustainable energy source



( ) ( )*
fuel

2
inmax,th l~Q −−

( ) ( )fuelinmax,th ~q −−

▪ Positive void feedback is a consequence of the low moderation

• coolant does not contribute to maintaining chain reaction and mainly acts as neutron absorber

• loss of coolant = less absorption → positive feedback of voiding

Other particular issues:

▪ Low share of delayed neutrons because of the use of plutonium fuel (β = 0.212 %)

• Prompt super-criticality is reached at smaller positive reactivity perturbation (𝜌 > 𝛽)

▪ Less moderation → less resonance absorption → small fuel temperature feedback 

▪ Material compatibility/corrosion/erosion issues → more development needed

▪           n             x  n  “    y”         (       x    y)

Main issues of fast reactors



▪ Need elements with higher atomic weights because they have low energy loss per scattering event 

▪ Helium has been considered in the past (low density, low scattering XS) but not currently.

▪ Main options are liquid (molten) metals: sodium, potassium, lead, bismuth

Na
K

Pb
Bi

Na
K

Pb
Bi

H

H

Which coolants for fast reactors?
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Fast reactors: October 2017



Sodium-cooled fast reactor (SFR)

 

core

pump

SG

545ºC

395ºC

490ºC

240ºC

Na

~1 bar

H2O

185 bar

pump

IHX Na

~1 bar

340ºC

525ºC

Power: 3600 MWth

Fuel: (U-Pu)O2

Clad: stainless steel



▪ Sodium excellent thermal conductivity and high heat capacity allow for 
very efficient cooling and high natural circulation within the core.

▪ The large margin to boiling means that no pressurization is required.

▪ 300+ reactor-years of operational experience with SFR.

▪ Safety design features help prevent Loss of Coolant Accident

• Vessel non pressurized, no piping below core level

• Main vessel surrounded by safety vessel

▪ Gap sufficiently large to permit periodic robotic inspection 

▪ Gap sufficiently narrow to keep the sodium level near to 
nominal in case of RPV breach

• Space between main and safety vessel and above sodium level 
filled with inert gas

Sodium-cooled fast reactor (SFR): Advantages



▪ Sodium is chemically active when contacting water or air...

• Special measures like an intermediate circuit are required to exclude the contact of the 
primary sodium with water. 

• A specific sodium-fire protection system should be included in the plant design.

▪ Sodium has a non-neglibile scattering cross section...

• Sodium removal from the core results in a shift of a neutron spectrum that increases core 
reactivity and power (positive reactivity void effect).

• An accident in which sodium boiling occurs can result in a quick power excursion.

Specific SFR disadvantages



▪ 345MWe SFRr with gigawatt-hour-scale molten-salt based thermal storage:

• I    n b          y    ’            500M    f   w   f           n 5 hr when needed. 

▪ Application to NRC for building a demonstration plant

TerraPower NatriumTM reactor 45

https://www.terrapower.com/resources/



Lead-cooled fast reactor (LFR)

 

core

pump

SG

480ºC

400ºC

460ºC

335ºC

Pb

~1 bar

H2O

180 bar

Power: 1500 MWth

Fuel: (U-Pu)O2

Clad: stainless steel



▪ Lead is very heavy thus thermal inertia of the system is very high.

• All transients are smooth and slow.

▪ Lead has a high thermal conductivity and expansion coefficients

• The core can be efficiently cooled at low velocities. 

• Natural circulation level is high.

▪ Lead is passive with air and water

▪ Lead boils at a very high temperature (1740º C)...

• Lead boiling has low-probability. No pressurization is required.

Lead Fast Reactor (LFR): Advantages



▪ Lead is very heavy

• Erosion of structural materials in lead flow is significant. 

• Seismic stability of reactor becomes an important safety issue.

▪ Lead can dissolve components of stainless steel

• At high T structural materials (such as iron or nickel) are slowly dissolving in lead flow.

▪ Lead has a positive void reactivity effect

• Partial removal of lead from the core (e.g. due to gas injection) can lead to power excursion.

▪ Lead freezes at a high temperature (327º C).

• Lead freezing is a safety issue.

• Lead/Bismuth Eutectic (LBE) can be used to reduce the melting point (123º C)

Specific LFR Disadvantages



▪ Drawback of PbBi (LBE) systems over pure Lead

▪ Production of highly radiotoxic Po-210 (T1/2 = 138 d) 

Notes on Lead Bismuth Systems

protons + Bi generate Po isotopes up to Po-209

Po-209 + n → Po-210

Bi-209 + n  → Bi-210

Bi-210  → Po-210 + 𝛽-

→ pure Pb systems are interesting

Technology challenge: higher melting point

in ADS

in all fast LBE systems



▪ BREST is a Russian LFR:

• Two designs, BREST-300 (300 MWe) and the 
BREST-1200 (1200 MWe).

• Construction started in 2021 for BREST-300

▪ TRANSMUTEX – company in Switzerland – is 
developing a lead-cooled system that should generate 
energy by transmuting nuclear waste

▪ newcleo is developing the concept of an ultra-compact 
and transportable 200MWe LFR

Developments in LFRs 50

https://www.newcleo.com



Alternative GenIV Concepts: 

MSR and HTRs



Molten Salt Reactors (MSR)

▪ Coolant: fluor salts, without 

significant pressure (e.g. LiF-

BeF2-ZrF2-UF4)

▪ Moderator: graphite (only in 

thermal version)

▪ Fuel: U, Pu, or Thorium 

dissolved in the salts

▪ Coolant temperature at the outlet 

of the core: 850°C



▪ No core melt accidents by design, reactor can be shutdown safely by dumping the molten salt 
into emergency dump tanks 

▪ Very flexible neutron economy, can used both for Breeding and Transmutation/waste 
burning

▪ Fission products can be removed on-line during operation => Mitigation of radiological 
consequences if leakage occurs, also reduces the decay heat production

▪ Suitable for Uranium/Thorium fuel cycle

▪ Low amount of waste

MSR: Advantages



Molten Salt Reactors: Historical  Overview

1950s • Aircraft Reactor Experiment (ARE)*

1960s • Molten Salt Reactor Experiment (MSRE)* 

1970s • Molten Salt Breeder Reactor (MSBR)*

1970s • EIR (PSI) study (report nr. 411, 1975)

fast spectrum, chlorides

1980s • Denatured Molten Salt Reactor (DMSR)*

* ORNL



Molten Salt Reactors: Historical  Overview

1990s • Accelerator-driven transmutation 

of Nuclear Waste - ATW (LANL) 

2000s • Generation IV, Amster, Sphinx, …

2010s • MSFR, MOSART,…  fast spectrum, fluorides

Future • Th-U or U-Pu breeding, 

TRU transmutation (as start-up fuel) ..?
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▪ Corrosion and material challenges:

• Fluorine salts are highly corrosive with limited solubility for fission products.

• Structural materials face corrosion and irradiation embrittlement

▪ Operational and safety concerns:

• Melting temperature of the salts exceeds 500 °C, complicating handling and maintenance.

• High radiation exposure of components affects durability and safety - limited graphite lifespan due 
to irradiation.

• Thermal fluid dynamics of molten salt flow are complex, affecting stability and control.

▪ Reprocessing and waste management:

• Complex reprocessing techniques required

• Challenges in handling and treating fuel salts, such as on-line refueling and managing gaseous 
and volatile fission products

▪ Limited operating experience from reactors in the 1960s restricts empirical knowledge base.

▪ Potential ease of separating fissile materials like 233Pa or 233U poses significant proliferation risks.

MSR: Disadvantages & Challenges



▪ Copenhagen Atomics (Denmark) - https://www.copenhagenatomics.com/technology/

• Thorium cycle, thermal breeder reactor (based on U-233)

• Small modular reactor

• 100 MWth, 560 °C outer temperature

• Fuel is F7LiThPu

• Moderator is unpressurized heavy water

▪ Seaborg Technologies

• Compact Molten Salt Reactor

• Power Barge concept

Developments in MSRs 57

https://www.seaborg.com/the-reactor



▪ Power: 300 to 600 MWth

▪ Coolant: Helium, under 

pressure (40 – 90 bar)

▪ Moderator: Graphite

▪ Coolant temperature at the 

outlet of the core: 850°C to 

1000°C (or more)

▪ Fuel: Uranium low enriched (8 

to 15%); pebbles or compacts

UO2

Generation-IV: High Temperature Reactor (HTR)



Pyrolytic carbon (OPyC),  = 40 m
Silicon carbide (SiC) barrier coating,  = 35 m
Inner pyrolytic carbon (IPyC),  = 40 m
Porous carbon buffer (BL),  = 95 m

compensation of fuel swelling

 = 0.92 mm

 = 0.5 mm

main barrier against fission product release

HTR fuel – TRISO particles



Spherical fuel elements                    Prismatic fuel elements

Only periodic refueling 

→ excess reactivity needed

→ no wear during reactor operation

Two fuel concepts using coated particles

TRISO

Allow continuous refueling 

→ no excess reactivity needed

→ wear while moving through 

reactor, dust production



1 - pebble bed core, 2 - neutron reflector (graphite), 3 - iron 

shield, 4 - steam generator, 5 - cooling fan, 6 - pre-stressed 

concrete vessel, 7 - control rods, 8 - pebble extraction duct,        

9 - pebble supply duct, 10 - cooling gas (He), 11 - sealing (steel), 

12 - main steam,      13 - pre-heaters, 14 - feed water pump,     

15 - high-pressure turbine,     16 - low-pressure turbine,            

17 - generator, 18 - exciter machine, 19 - condenser,                

20 - cooling water circuit, 21 - cooling water pump, 22 - dry 

cooling tower, 23 - air flow

Scheme of a Gas-cooled HTR (Pebble Bed Reactor )



Uni Tsinghua

FZ Jülich

Hamm-

Uentrop

HTR-PM China                          2x250 MWth/210 Mwel since Dec, 2021

High-temperature gas cooled reactor prototype plants and projects



— Power density ~ 3.3 MW/m3 (factor of 30 lower than in PWR)

— High thermal inertia

— Core Outlet temperature: 750 °C, plant thermal efficiency: 44%

— There is no need in core emergency cooling system since decay 

heat is removed by natural mechanisms in case of accidents

Fuel

discharg

e

Single-Module HTR-PM: Courtesy of Tsinghua 
University

Steam 

generator

Pressure 

vessel
Reflector

Fuel region

Helium

circulat

or

Simulation Pebble Flow

Rycroft, Debhi (PSI)

Generation-IV: HTR-PM (China)



▪ Kairos Power develops a version of HTR called FHR that combines TRISO 
fuel with low-pressure fluoride salt as coolant. 

• 140 MWe, 585°C steam, 650°C outlet core temperature

▪ X-Energy is developing a small modular HTR, the Xe-100

• 80 Mwe, 750°C outer He T at 6MPa, 565°C Steam T

Kairos Power and X-Energy HTRs

https://x-energy.com/reactors/xe-100https://kairospower.com/technology/



Current trends: Small Modular 

Reactors and Micro-Reactors
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https://www.iaea.org/newscenter/news/what-are-small-modular-reactors-smrs



▪ A fraction of the size of conventional reactors (small); systems and components are factory-
assembled and transported for onsite installation (modular).

▪ Most often intended for PWR, but recent designs include Generation IV concepts

▪ Promised advantages:

• Smaller footprint – Units can be added to a site as necessary

• Cost-effective as prefabricated units would reduce cost and construction time

• Simplified designs with focus on passive safety systems and low operational pressure.

• Less frequent refueling - operational periods of 3 to 7 years, 

▪ However, there are uncertainties about actual costs and overall advantages on traditional NPPs:

• NuScale initial agreement to build reactors in Idaho by 2030 was cancelled in 2023 due to a 
cost increase from $3.6 billion to $9.3 billion for a 460 MWe plant.

Small Modular Reactors 67



▪ Designed to operate for 8 years without refueling using 19.75% enriched TRISO fuel.

▪ Factory-assembled and transported in shipping containers – suitable for remote locations.

▪ Requires minimal onsite staff and capable of supplying district heating and high-grade heat.

▪ Passive Safety Systems: 

• Heat pipes provide self-regulating heat transport, no need for traditional coolant systems. 

• Passive Heat Removal System (PHS) by natural convection and radiation.

Micro-reactors: e-Vinci from Westinghouse 68

https://www.westinghousenuclear.com/energy-systems/evinci-microreactor/



▪ M     M               (MM )    b  n      n     n   n     n      U. .A.  n           b      “    
first fission battery. Demonstration units are scheduled for first nuclear power in 2026.

▪ The idea is that multiple MMR units (3-15 MWe) can be linked together.

▪ MMR would be suitable for remote communities and large industrial sites: it uses no water and has 
no need for an electrical grid or infrastructure support. MMR is compatible with the harshest 
climates from arctic to desert to tropical.

▪ MMR uses a particular form of TRISO called the
Fully Ceramic Micro-encapsulated (FCM) fuel

Micro-reactors: MMR from Ultra Safe Nuclear 69

https://www.usnc.com/mmr/



▪ A fission-based rocket engine that heats a low molecular weight fluid like liquid hydrogen propellant 
using a nuclear reactor. The superheated hydrogen expands through a nozzle, producing thrust.

▪ Q      x  n  v        x     n   w    KI I         … NA A & DA PA'  D A O                 
demonstrate NTP in space by 2027.

▪ Advantages:

• 2× higher efficiency than chemical rockets, enabling faster travel.

• Shorter mission durations to Mars and beyond, reducing crew exposure to space hazards.

▪ Challenges:

• High-temperature materials needed to withstand reactor conditions.

• Safe handling of nuclear materials during launch and operation & Regulatory approvals.

The last frontier: Nuclear Thermal Propulsion (NTP) 70

https://www1.grc.nasa.gov/
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