
Reactor 
Kinetics and 
Control



We have seen that 𝑘𝑒𝑓𝑓 must be equal to 1 for the reactor to be critical (= constant power). 

However, different mechanisms can cause variation of 𝑘𝑒𝑓𝑓:

1. Changes in composition of the reactor core due to fissions and activation (i.e. neutron 

capture) effectively change the material composition of the reactor, and thus the cross 

sections. Temperature and density changes during common transients (like a power ramp) 

due to changes in reactor load, maintenance etc. can also influence cross sections 

→ These effects need to be compensated as to maintain 𝑘𝑒𝑓𝑓 = 1

2. The position of control rods or the concentration of neutron poisons can change over time. 

For instance, sometimes it is necessary to increase/decrease power or switch off reactor.

3. Undesired accidental situation can lead to sudden changes of 𝑘𝑒𝑓𝑓
→ Automatic reactor shutdown needs to be guaranteed.

Indeed, the reactor power needs to be closely monitored and regulated, but how to study the 

time-dependent behaviour of the neutron population (and thus the power) in the reactor?

Reactor Control



In general, one seeks to determine Φ Ԧ𝑟, 𝐸, 𝑡 the time- and energy-dependent neutron flux from 
the time-dependent diffusion or transport equation (solved numerically).

A good approximation for mono-energetic, uniform systems (i.e. uniform cross sections) is the 
so-called point kinetics model that studies the neutron population 𝑁 𝑡 in the whole reactor

𝑁 𝑡 = න

𝑉𝑡𝑜𝑡

𝑛 Ԧ𝑟, 𝑡 𝑑𝑉

▪ It assumes that the shape of the neutron population does not change with time

▪ Does not describe spatial effects in large complex systems but it is very useful to understand 
the global time-dependent behaviour.

One particular case can be solved analytically, i.e. a step change in 𝑘𝑒𝑓𝑓 starting from critical 
conditions. This will lead us to the Reactivity Equation (or Inhour Equation)

Reactor Kinetics –Point Kinetics



We start by going back to the neutron balance equation this time written for the whole neutron 
population (i.e. P, A, L integrated over whole core). Let’s start with an infinite core, without 
production and no external source from t=0 onward:

𝑑𝑁(𝑡)

𝑑𝑡
= −𝐴 𝑡 = −Σ𝑎 ҧ𝑣𝑁(𝑡)

where ҧ𝑣 is the average neutron velocity. The solution is an exponential:

𝑁 𝑡 = 𝑁0 exp −Σ𝑎 ҧ𝑣 𝑡

I.e. in a purely absorbing infinite medium, the neutron population decreases with a characteristic 
time 𝑙∞ called the neutron mean lifetime:

𝑙∞ = 1/Σ𝑎 ҧ𝑣

Point Kinetics (w/o Delayed Neutrons)



Let’s now consider production always for an infinite medium:

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑃 − 𝐴 = Σ𝑓 ҧ𝑣𝑁 𝑡 − Σ𝑎 ҧ𝑣𝑁 𝑡 =

𝑘∞ − 1

𝑙∞
𝑁 𝑡

The solution is always an exponential:

𝑁 𝑡 = 𝑁0 exp
𝑘∞ − 1

𝑙∞
𝑡

The population grows exponentially if k∞ > 1 and decreases if k∞ < 1 as expected

Point Kinetics (w/o Delayed Neutrons)



Let’s now consider a finite medium, where we assume that the leakages 𝐿 can be expressed as 
proportional to the absorption with a coefficient of proportionality Γ :

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑃 − 𝐴 − 𝐿 = Σ𝑓 ҧ𝑣𝑁 − Σ𝑎 ҧ𝑣𝑁 − ΓΣ𝑎 ҧ𝑣𝑁 = Σ𝑓 ҧ𝑣𝑁 − 1 + Γ Σ𝑎 ҧ𝑣𝑁

We can say that

𝑃𝑁𝐿 = 1 −
ΓΣ𝑎 ത𝑣𝑁

Σ𝑎 ത𝑣𝑁+ΓΣ𝑎 ത𝑣𝑁
= 1 −

Γ

1+Γ
=

1

1+Γ
→ 1 + Γ =

1

𝑃𝑁𝐿

We can rearrange the equation as:

𝑑𝑁(𝑡)

𝑑𝑡
= Σ𝑓 ҧ𝑣𝑁 − 1 + Γ Σ𝑎 ҧ𝑣𝑁 =

𝑃𝑁𝐿𝑘∞−1

𝑙∞𝑃𝑁𝐿
𝑁 𝑡 =

𝑘−1

𝑙
𝑁 𝑡

Where 𝑘 = 𝑃𝑁𝐿𝑘∞is the finite multiplication factor and 𝑙 = 𝑙∞𝑃𝑁𝐿 is the finite neutron lifetime

Point Kinetics (w/o Delayed Neutrons)



where

As before, the solution is an exponential with period 𝑇 (i.e. the time it takes for the population to 
increase by a factor equal to 𝑒)

Starting from initial condition 𝑁 0

The rate of change of 𝑁 depends on how large is 𝑘𝑒𝑓𝑓 − 1 but also on ℓ which is a property of 
the system → the period could be small even for small variations of keff if ℓ is very small…

Point Kinetics w/o Delayed Neutrons

𝑁 𝑡 = 𝑁 0 exp
𝑘𝑒𝑓𝑓 − 1

ℓ
𝑡 = 𝑁 0 exp

𝑡

𝑇

If  keff > 1… 𝑁 (supercritical system)

If  keff = 1… 𝑁 = 𝑁 0 (critical system)

If  keff < 1… 𝑁 (subcritical system)

𝑇 =
ℓ

𝑘𝑒𝑓𝑓 − 1



For a thermal reactor ℓ ≈ 𝑡𝑑 (diffusion time, average time as thermal neutron 
before absorption) and values of 𝑡𝑑 for different moderators are small, ranging 
from 10−2 to 10−4sec.

For example:

▪ Assume change in 𝑘𝑒𝑓𝑓 from 1.000 to 1.0015 (150 pcm)  and ℓ = 10−3

▪ The period 𝑇 =
ℓ

𝑘𝑒𝑓𝑓−1
=

2

3
sec. ⇒ 𝑁 𝑡 = 𝑁 0 exp

3

2
𝑡

▪ The neutron population will increase by a factor of 𝑒
3

2 = 4.5 in only 1 sec.!!
Reactors would be practically impossible to control…

Prompt Period of a Reactor
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In a real reactor (luckily!):

▪ Not all neutrons are prompt (i.e. emitted immediately 
with fission) 

▪ A small fraction is delayed (i.e. it is produced later by 
disintegration of some of the FP’s).

Even if the fraction of delayed neutrons is small, it turns 
out that it is necessary for the control of the chain reaction

▪ It makes the response of a reactor which becomes 
slightly supercritical much slower!

▪ For small changes in 𝑘𝑒𝑓𝑓, it makes the mean neutron 
lifetime significantly longer due to the long decay time of 
the precursors.

Control of the Chain Reaction - Delayed Neutrons
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▪ ~6-8 groups of precursors can be identified based on the half-life

▪ Average energy of delayed neutrons is smaller than prompt’s: Eavg ~ 0.4MeV

▪ β𝑖 depend on nuclide, e.g. 𝛽 = ∑β𝑖 = 0.21% for 94
239Pu or 𝛽 = 0.26% for 92

233U

Delayed Neutron Parameters (Reminder)

Group 

number

Precursor 

nuclei

Average half-

life (s)

Delayed neutron 

fraction – β𝑖 (%)

1 87Br, 142Cs 55.72 0.021

2 137I, 88Br 22.72 0.140

3 138I, 89Br, (93,94)Rb 6.22 0.126

4 139I, (93,94)Kr, 143Xe, (90,92)Br 2.30 0.252

5 140I, 145Cs 0.61 0.074

6 (Br, Rb, As etc.) 0.23 0.027

0.640

10



Fraction  of neutrons in reactor are delayed, so the total amount of neutrons produced per s:

𝑃 ⋅ 1 − 𝛽
𝑃𝑟𝑜𝑚𝑝𝑡 𝑆𝑜𝑢𝑟𝑐𝑒𝑠

+෍

𝑖=1

6

ณ𝜆𝑖
𝐷𝑒𝑐𝑎𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

× ถ𝐶𝑖 𝑡
𝑃𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝐷𝑒𝑙𝑎𝑦𝑒𝑑 𝑆𝑜𝑢𝑟𝑐𝑒𝑠

We can then rewrite neutron population balance: 

𝑑𝑁

𝑑𝑡
= 𝑃 𝑡 1 − 𝛽 − 𝐴 𝑡 + 𝐿 𝑡 +෍

𝑖=1

6

𝜆𝑖𝐶𝑖 𝑡

With the same substitutions done for the prompt case we obtain: 

𝑑𝑁

𝑑𝑡
=

1 − 𝛽 𝑘eff 𝑡 − 1

ℓ
× 𝑁 𝑡 +෍

𝑖=1

6

𝜆𝑖𝐶𝑖 𝑡

We need another set of equations to solve for 𝑪𝒊!

Point Kinetics with Delayed Neutrons



Precursor equations (recall radioactive decay with production term):

𝑑𝐶𝑖(𝑡)

𝑑𝑡
= 𝛽i𝑃 𝑡

Precursor Production

− 𝜆i𝐶𝑖(𝑡)

Precursor Decay

Point Kinetics with Delayed Neutrons (contd.)

𝑑𝐶𝑖(𝑡)

𝑑𝑡
+ 𝜆i𝐶𝑖(𝑡) = 𝛽𝑖𝑘eff ⋅ 𝐴 𝑡 + 𝐿 𝑡 = 𝛽𝑖

𝑘eff
ℓ

𝑁 𝑡

𝑑𝑁

𝑑𝑡
=

1 − 𝛽 𝑘eff 𝑡 − 1

ℓ
×𝑁 𝑡 +෍

𝑖=1

6

𝜆𝑖𝐶𝑖 𝑡



The effective multiplication factor gives a measure of the change in neutron population in two 

subsequent generations

𝑘
eff
=

Production

Absorption + Leakage

In kinetics it is often more convenient to express the reactivity (𝝆)

ρ =
𝑘

eff
− 1

𝑘
eff

ቐ

ρ > 0 i.e. super−critical

ρ = 0 i.e. critical

ρ < 0 i.e. sub−critical

which measures the relative change of 𝑘
eff

in terms of its deviation from criticality (𝑘
eff

=1)

→ 𝝆 (unitless) is expressed either in %, pcm (per cent mille = 𝟏𝟎−𝟓) or in dollars ($)

Reactivity or ρ



Substitutions:                                                     and  

Point Kinetics with Delayed Neutrons (contd.)

𝑘eff − 1

𝑘eff
= ณ𝜌

Reactivity

ℓ

𝑘eff
= ณΛ
Prompt Neutron
Generation Time

𝑑𝐶𝑖(𝑡)

𝑑𝑡
+ 𝜆i𝐶𝑖(𝑡) =

𝛽𝑖
Λ
𝑁 𝑡 , 𝑖 = 1, . . . 6

𝑑𝑁

𝑑𝑡
=
𝜌 𝑡 − 𝛽

Λ
𝑁 𝑡 +෍

𝑖=1

6

𝜆𝑖𝐶𝑖 𝑡

Point Kinetics Equations 

w/ delayed neutrons



Solution of point kinetics equations is complicated. An important application of point kinetics 
equations is the case of a step change in reactivity starting from a previously critical condition

▪ Constant   (±)  introduced at  t = 0 e.g. due to a very quick movement of a control rod

▪ Illustrative case, analytical solution possible with method of Laplace transforms (but we 
will not deal with the derivations)

In this case the solution is a sum of seven exponential (for 6 precursor groups):

𝑁 𝑡 =෍

𝑖=1

7

𝐴𝑗 exp 𝜔𝑗𝑡

Where the exponents 𝜔𝑗 are the 7 roots of the reactivity equation

Step Change in Reactivity - The Roots  j



One may study the Reactivity Eqn. graphically and 
obtain already quite a lot of information:

▪ For positive  (supercritical reactor), one value of 
𝜔 is positive, the others are negative and the 
corresponding exponentials disappear in time.

▪ For negative  (subcritical reactor),
all 7 roots  are negative, but the first root is 
smaller so the other 6 exponentials decay faster in 
time.

Step Change in Reactivity –Graphical Solution

NB: in the chart, the reactivity is expressed as fraction of Beta ( equal to 1 corresponds to  equal to Beta)



One can obtain a simplified solution if one considers a single precursor group with average half 
life of 9s (from previous table).

In this case then the solution for neutron and precursor population are:

𝐶 𝑡 = 𝑁0
𝛽

Λ𝜆
exp

𝜆𝜌

𝛽 − 𝜌
𝑡 +

𝜌𝛽

𝛽 − 𝜌 2
exp −

𝛽 − 𝜌

Λ
𝑡

𝑁 𝑡 = 𝑁0
𝛽

𝛽 − 𝜌
exp

𝜆𝜌

𝛽 − 𝜌
𝑡 −

𝜌

𝛽 − 𝜌
exp −

𝛽 − 𝜌

Λ
𝑡

Point Kinetics with Delayed Neutrons (contd.)

First root 𝜔1
Second root 𝜔2



Assume β=0.0065, Λ = 10−4 and 𝜆 = 0.076 𝑠−1. Let ρ = -0.05. We obtain:

𝐶 𝑡 = 𝑁0 855exp −0.067𝑡 + 0.1 exp −565𝑡

𝑁 𝑡 = 𝑁0 0.12 exp −0.067𝑡 + 0.88 exp −565𝑡

88% of the neutron population is gone almost
immediately (0.01 s) while the precursor population is 
virtually unchanged. 

Both the remaining neutrons and the precursors will 
die off at a 15 s period (T = 1/0.067). 

Point Kinetics with Delayed Neutrons (contd.) - Shutdown



Let ρ = +0.0015 (same value we used for case without delayed neutrons). We obtain:
𝐶 𝑡 = 𝑁0 855exp 0.02𝑡 + 0.39 exp −20𝑡
𝑁 𝑡 = 𝑁0 1.3 exp 0.02𝑡 −0.3 exp −20𝑡

The result is very similar in shape to the one given in the previous slide. The initial rapid rise of the 
prompt neutrons is called the “prompt jump.” 

It is the start of a neutron runaway but it can’t continue because ρ<<β and the delayed neutrons are 
needed in order to sustain the chain reaction.  

Both the remaining neutrons and the precursors will 
grow at a 50 s period (T = 1/0.02)! 

Much larger preriod than what we saw for case without 
delayed neutrons! This is why for ρ<<β reactors can be 
controlled.

Point Kinetics with Delayed Neutrons (contd.) –Supercritical



▪ Indeed, for very small values of << 𝛽, the roots and periods are

▪ Thus, for small reactivities the reactor period (~ 𝑇1) is governed almost completely by the 
delayed neutrons!

▪ This might seem surprising as delayed neutrons are a small fraction…

▪ … but their weighted average lifetime (dominated by the long decay of the precursors) is 
much larger than the prompt neutron lifetime.

▪ In a sense one can think about the mean neutron generation time as: 

ഥ𝑙𝑑 = 1 − 𝛽 𝑙𝑑 +෍

𝑖

6
𝛽𝑖
𝜆𝑖
≈෍

𝑖

6
𝛽𝑖
𝜆𝑖

Point Kinetics with Delayed Neutrons (contd.) –Supercritical



Let ρ = +0.0115. Recall that we assumed β=0.0065. We obtain:

𝐶 𝑡 = 𝑁0 855exp −0.17𝑡 + 2.9 exp 50𝑡

𝑁 𝑡 = 𝑁0 −1.3 exp −0.17𝑡 + 2.3 exp 50𝑡

The reactor power rises by a factor of 340 in the first tenth of a second!

Point Kinetics with Delayed Neutrons (contd.) –Super prompt-critical



When 𝜌 ≥ 𝛽 the reactor is said to be prompt critical. Indeed: 

𝜌 = 𝛽 → 1 − 𝛽 k𝑒𝑓𝑓 = 1,

i.e. the reactor is critical on prompt neutrons alone!

For 𝜌 ≥ 𝛽 thus the reactor period becomes small. The roots and periods tend to:

𝜔2 = −
𝛽 − 𝜌

Λ
≈
𝜌

Λ
=
𝑘 − 1

𝑙
𝑇2 =

1

|𝜔2|
=

𝑙

𝑘 − 1

𝜔1 =
𝜆𝜌

𝛽 − 𝜌
≈ −𝜆 = −0.076 𝑠−1 𝑇1 =

1

|𝜔1|
≈ 13.15 𝑠

The rise is dominated by the much shorter positive period 𝑇2, analogous to the one we get w/o 
delayed neutrons!

Point Kinetics with Delayed Neutrons (contd.) –Super prompt-critical



▪ Reactivity Equation can give, for a given set of fissile 
nuclides a value of  1 and thus T for each value of 

▪  needs to be << β  (for positive )

• Prompt criticality needs to be avoided at all costs!

• For small reactivities, Λ no longer important and the 
period is dominated by delayed neutrons lifetime

▪  = β  defines reactivity unit of 1 dollar ($)

•  usually few cents (¢)

▪ For large negative  (reactor shutdown), T ≈ 80s

• Period of 1st precursor group

Period as function of 𝝆



In reality, reactivity changes are not sudden and constant, i.e. not “step functions”

▪  changes continuously as function of time

▪ Various types of “feedbacks” with different “time constants” are involved 
(e.g. time for power change to affect temperature,…)

Short-term effects:

▪ Fuel temperature (Doppler effect),  < 1 sec 

▪ Moderator temperature, secs – mins

▪ Fraction of liquid moderator, secs (boiling, bubble formation, effect on density…)

Medium-term effects:

▪ Principal effect: Fission product  Xe135 in a thermal reactor, hours - days

Long-term effects:

▪ Fuel composition changes with irradiation (burnup),  days - months

▪ Important mostly for power reactors (the largest the power the more the fuel is changing)

Reactivity Variations



Resonances in cross-sections are not lines: distribution in energy 
due to the thermal agitation (statistical distribution) of the nuclei. 

When Tf  , U238 resonances broadened due to increased thermal agitation of nuclei and the 
effective resonance integral  (i.ie more difficult for the neutrons to surpass the resonances)

Fuel Temperature Coefficient of Reactivity (Doppler Coeff.)

• αc always negative → helps stability of power control!

• almost immediate, crucial for “inherent safety” 

Short-term Effects: Doppler (Fuel Temp.) Coeff

𝑝 ↓

𝛼𝑓 =
𝜕𝜌

𝜕𝑇𝑓
≈
𝜕𝑘eff
𝜕𝑇𝑓

𝑘∞ = 𝜂 𝑓𝑝 𝜀 ↓



Moderator Temp. Coefficient

▪ For a solid moderator, e.g. graphite, small effects mainly due to shift in neutron spectrum 
(i.e. the thermal equilibrium is at higher T)

▪ For a liquid moderator (coolant), a change in temperature is a change in density

• “Under-moderation” crucial for safety → reactors designed so that this effect is negative

Moderator Density or Void Coefficient 

• Density can change also due to boiling

• 𝛼𝑉 must be negative

• Strongly positive 𝛼𝑉 is very dangerous (Chernobyl!)   

Short-term Effects: Moderator Temp./Density Coeff. 

𝛼𝑚 =
𝜕𝜌

𝜕𝑇𝑚
≅
𝜕𝑘𝑒𝑓𝑓
𝜕𝑇𝑚

𝛼𝑉 =
𝜕𝜌

𝜕𝑉
≅
𝜕𝑘𝑒𝑓𝑓
𝜕𝑉



In 𝑘∞, only f and p are significantly affected by change 
of moderator density: two competing effects!

Reactors are operated in under-moderated region: 
when moderator density decreases, the multiplication 
factor decreases.
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Short-term Effects: Moderator Temperature Coeff. 



▪ One can use the reactivity coefficients as a first approximation, but this does not give the 
true “dynamic” behaviour.

▪ One needs proper time-dependent “modelling” of the power reactor (including the secondary 
cooling system), with  “coupling” between neutronics, thermal-hydraulics, mechanics, system

→ Safety studies: numerical simulation and analysis of hypothetical accident situations

▪ In general, if all the ’s  are negative, reactor “inherently” safe from viewpoint of automatic 
shutdown

▪ Calculation of  ’s  generally very delicate

▪ Compensation of individual effects, e.g.  sodium  v , or  m  in  HTR (graphite)

▪ Necessary to carry out “checks” on power reactor before start-up.

Comments



▪ Strongly negative ’s demand large reactivity reserve

• Complex control system (economics aspect)

• After reactor shut-down, one needs to be able to compensate the important  ’s   
corresponding to different reactor states:

(1)  “Hot full power”  (HFP)     → 𝑇𝑓 ↑, 𝑇𝑚 ↑

(2)  “Hot zero power”  (HZP)   → 𝑇𝑓 ↓, 𝑇𝑚 ↑

(3)  “Cold zero power”  (CZP) → 𝑇𝑓 ↓, 𝑇𝑚 ↓

▪ For such considerations, one may use: Δ𝜌 ≅ 𝛼´𝑐Δ𝑇𝑐 + 𝛼𝑀Δ𝑇𝑀 + 𝛼𝑉Δ𝑉+. . . . .

Consequences for Reactor Control




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