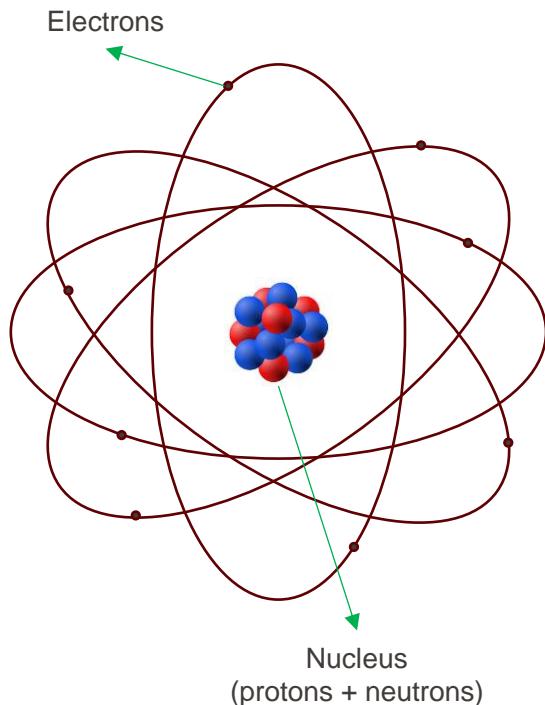


**Nuclear Physics I -
Atoms, Isotopes,
Radioactive Decay**



Basic atomic structure:

- **Electrons (e)**
 - negative charge ($q_e \sim -1.6 \cdot 10^{-19} \text{ C}$)
 - very light ($m_e \sim 9.11 \cdot 10^{-31} \text{ kg}$)
- **Protons (p)**
 - positive charge ($q_p = +|q_e|$)
 - $m_p \sim 1800$ times larger than m_e ($m_p \sim 1.67 \cdot 10^{-27} \text{ kg}$)
- **Neutrons (n)**
 - no charge
 - m_n slightly greater than m_p

Relative sizes – "Classical Dimensions":

- Nucleus ~ 1 femtometer ($1 \text{ fm} = 10^{-15} \text{ m}$ or 10^{-12} cm)
- Atom $\sim 0.1 \text{ nm}$ or 1 \AA ($1 \text{ \AA} = 10^{-10} \text{ meters}$ or 10^{-8} cm)

Z or Atomic Number:

- The number of protons in a nucleus, which also equals the number of electrons in a neutral atom.
- Determines the identity of the element and its position in the periodic table.
- Sometimes omitted when it is clear from the element symbol X.

A or Mass Number:

- The total number of nucleons (protons p + neutrons n) in a nucleus.
- Thus, a nucleus is made of Z protons and (A-Z) neutrons.

Reminder on Atomic and Molar Mass

From [Ptable](#)

19	2
K	8
Potassium	8
39.098	1

- **Mole:** amount of substance that contains the same number of entities (atoms, molecules) as there are atoms in 12 grams of $^{12}_6\text{C}$
- This number is the **Avogadro Number** $N_A = 6.023 \times 10^{23}$
- **Molar mass:** mass in g of 1 mole of an element $M(^A_Z\text{X})$.
By definition, $M(^{12}_6\text{C})$ is set to 12g.

- **Atomic mass unit (amu):** Defined as 1/12 of the weight of a $^{12}_6\text{C}$ atom:

$$1 \text{ amu} = \frac{M(^{12}_6\text{C})}{12 \cdot N_A} = 1.66 \times 10^{-27} \text{ kg}$$

- Thus, the **atomic mass** of one $^{12}_6\text{C}$ atom is exactly $m(^{12}_6\text{C}) = 12.00$ amu.
- It follows that $m(^A_Z\text{X}) = |M(^A_Z\text{X})|$ amu, i.e. **the atomic mass of any element is equal to the value of the molar mass expressed in amu.**

$$m_p = 1.007277 \text{ amu}$$

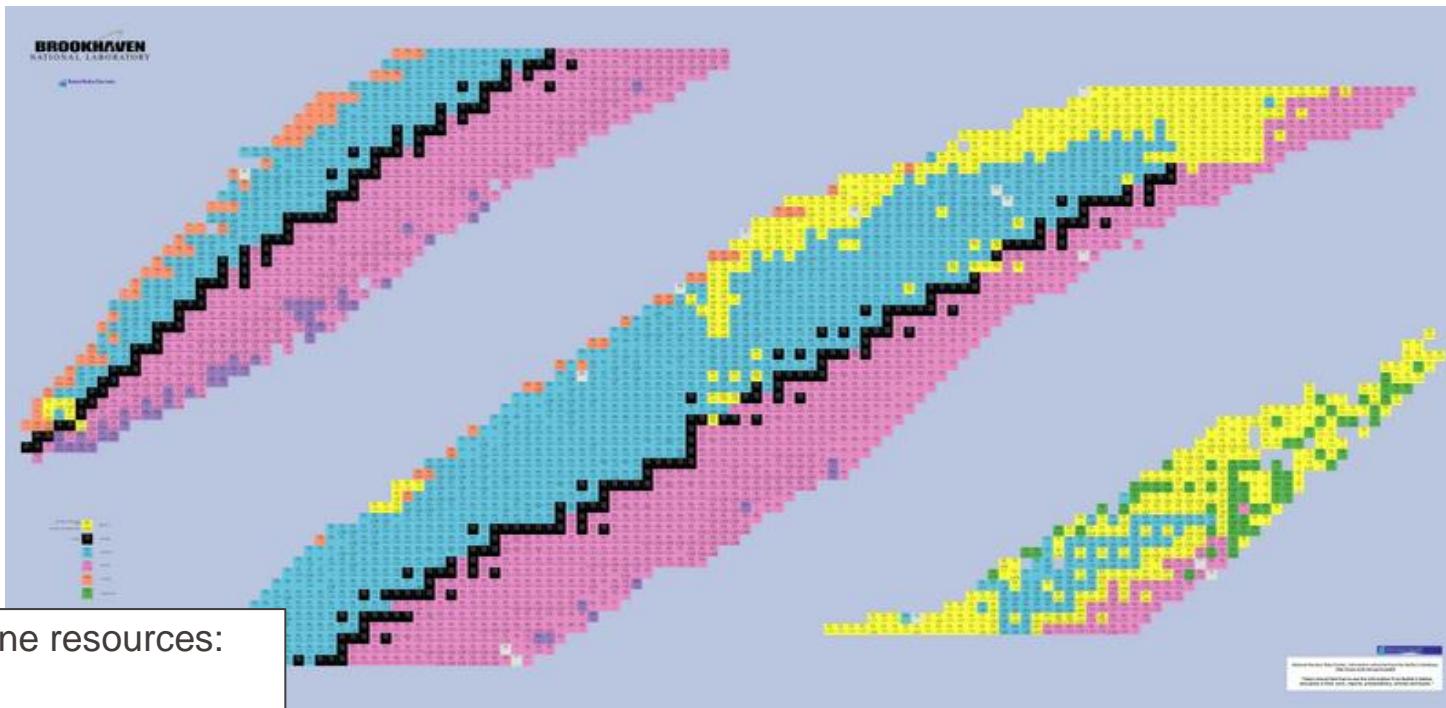
$$m_n = 1.008665 \text{ amu}$$

$$m_e = 0.0005486 \text{ amu}$$

Write-up	Potassium	Wikipedia
State at	0 °C	Solid
Weight	39.0983 u	
Energy levels	2, 8, 8, 1	
Electronegativity	0.82	
Melting point	63.380 °C	
Boiling point	758.9 °C	
Electron affinity	48.4 kJ/mol	
Ionization, 1st	418.8 kJ/mol	
Radius, calculated	243 pm	
	0.363 MPa	
	3.1 GPa	
	856 kg/m³	

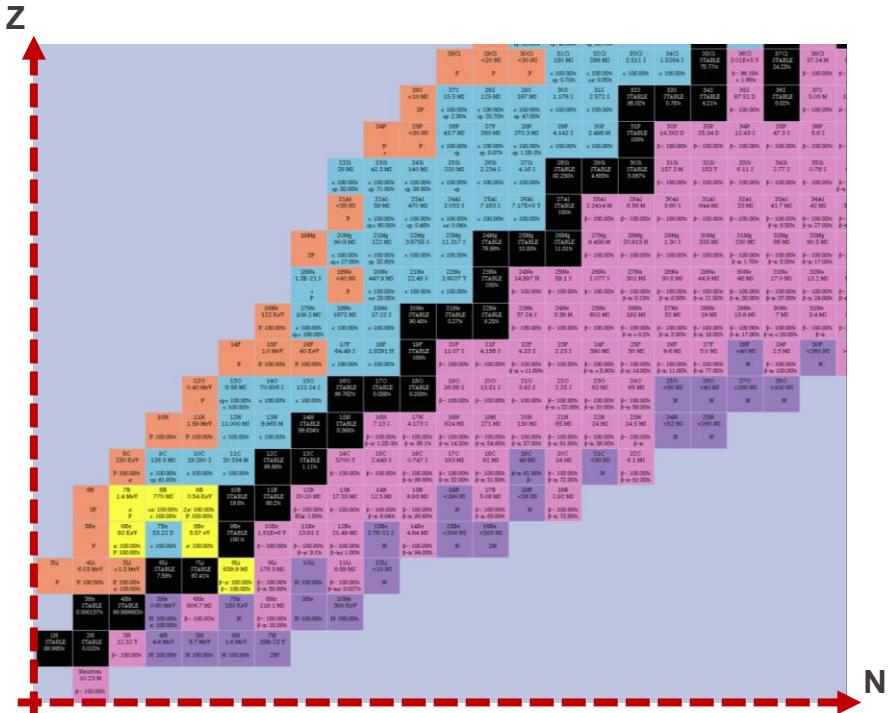
Wikipedia – [Creative Commons Attribution-Share Alike 4.0 International license](#).

Wikipedia – Public Domain



Some online resources:

- [IAEA](#)
- [KAERI](#)



- **Nuclides:** Nuclei with specific Z protons and A nucleons (protons + neutrons)
- **Isotopes:** Nuclides of the same element (same Z) but different number of neutrons (different A)
- Some isotopes occur naturally, others are produced in reactors or particle accelerators.

▪ Examples of isotopic abundance:

- ^1H (99.985%), ^2H (0.015%)
- ^{234}U (0.006%), ^{235}U (0.72%), ^{238}U (99.27%)
- ^6Li (7.6%), ^7Li (92.4%)

▪ NOTE - Hydrogen isotopes names:

- $^2\text{H} \rightarrow$ Deuterium or D
- ^3H (radioactive) \rightarrow Tritium or T

- Complete isotope name/symbol, then provide the number of protons and neutrons in each isotope:

1. 3_2 ?

2. 6_3 ? and 7_3 ?

3. ${}^{90}_{40}$?

4. ${}^{137}_{55}$?

5. ${}^{238}_{92}$? and ${}^{235}_{92}$?

- Complete isotope name/symbol, then provide the number of protons and neutrons in each isotope:

1. ${}_2^3 \text{He}$

2. ${}_3^6 \text{Li}$ and ${}_3^7 \text{Li}$

3. ${}_{40}^{90} \text{Zr}$

4. ${}_{55}^{137} \text{Cs}$

5. ${}_{92}^{238} \text{U}$ and ${}_{92}^{235} \text{U}$

- A UO_2 fuel pellet used in nuclear reactors is typically a cylinder with:
 - Diameter = 9 mm
 - Height = 10 mm
 - Density = 10.5 g/cm³
- **Questions:**
 - How many UO_2 moles are in one pellet?
How many U atoms?
 - Calculate the total mass of fuel in a reactor assuming 300 pellets per rod and 50k rod per reactor.

- Fuel pellet volume: $V = \pi \cdot 4.5^2 \cdot 10 = 636.17 \text{ mm}^3 = 0.636 \text{ cm}^3$
- Mass of pellet: $m = V \cdot \rho = 0.636 \cdot 10.5 = 6.678 \text{ g}$
- Molar mass of UO_2 : $M_{UO_2} = 238 + 2 \cdot 16 = 270 \frac{\text{g}}{\text{mol}}$
- Number of atoms: $N = \frac{6.678}{270} 6.02 \cdot 10^{23} = 1.49 \cdot 10^{22} \text{ atoms}$
- Fuel mass in the reactor: $m_{reactor} = 6.678 \cdot 300 \cdot 50000 \approx 100 \text{ tons}$

- 1 **electron volt (eV)** is the energy gained by an electron when accelerated through a potential difference of 1 volt.

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

- In chemistry & atomic physics, reactions involve the rearrangement of electrons in atomic shells.
- Typical scale: 1-100 eV (order of ionization energies).
- Example, combustion of methane: $\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} + \sim 8 \text{ eV}$
- In nuclear physics energy transitions involve changes within the nucleus (protons and neutrons).
- Much higher energies: keV to MeV (1,000 - 1,000,000 eV).
- Examples: nuclear fission (U-235): ~200 MeV

- **Goal:** Estimate the fuel mass required to power an individual's lifetime electricity consumption if the energy is extracted solely from: coal, natural gas, or fission (U-235)
- **Assumptions:**
 - Annual electricity consumption per household (4-persons): 5000 kWh
 - Average lifetime: 80 years
 - Efficiencies:
 - Coal power plant: 35%
 - Gas power plant: 50%
 - Nuclear reactor (U-235 fission): ~33% efficiency
 - Fuel Energy Content:
 - Coal: 24 MJ/kg
 - Natural gas (CH_4): 36 MJ/m³
 - U-235 (Fission Energy): 200 MeV/fission

- Annual electricity consumption per person: $5000/4 = 1250 \text{ kWh}$
- **Coal:**
 - Electricity produced per person: $1250/0.35 \approx 3571.4 \text{ kWh} \rightarrow 3571.4 * 3600 \approx 12857 \text{ MJ}$
 - Fuel per person: $12857 / 24 = 535.71 \text{ kg per year}$
 - Fuel per person for 80 years: 42.8 tons
- **Gas:**
 - Electricity produced per person: $1250/0.50 \approx 2500 \text{ kWh} \rightarrow 2500 * 3600 \approx 9000 \text{ MJ}$
 - Fuel per person: $9000 / 36 = 250 \text{ m}^3 \text{ per year}$
 - Fuel per person for 80 years: 20000 m^3
- **Uranium:**
 - Electricity produced per person: $1250/0.33 \approx 3787.88 \text{ kWh} \rightarrow 3787.88 * 3600 \approx 13636 \text{ MJ}$
 - Energy per fission: $200\text{E+}6 \text{ eV} * 1.6\text{E-}19 \text{ J/eV} = 320\text{E-}19 \text{ MJ/fission}$
 - Energy per kg: $(1 \text{ kg} / (0.235 \text{ kg/mol}) * 6.02\text{E+}23) * 320\text{E-}19 \text{ MJ/fission} = 81'974'468 \text{ MJ/kg}$
 - Fuel per person: $13636 / 81'974'468 = 0.166 \text{ g per year}$
 - Fuel per person for 80 years: 13.28 g

- **Goal:** Estimate the amount of fuel required to generate 1 GW-day (GWd), i.e. 1 gigawatt (GW) of electricity for one day (24h).

- **Assumptions:** Same as previous exercise.

- **Questions:**

- How much coal (tons) is burned per day?
 - How many coal train cars does this require?
(Assume 100 tons per train car)
- How much natural gas (m³) is burned per day?
- How much U-235 (kg) is needed per day?
How much U (238+235) if we consider a realistic typical **enrichment** of 5%?

- **Goal:** Estimate the amount of fuel required to generate 1 GW-day (GWd), i.e. 1 gigawatt (GW) of electricity for one day (24h).

- Energy per day in MJ: $1000 \text{ MW} * 24 * 3600 = 86'400'000 \text{ MJ}$

- **Coal (consider efficiency of plant):**

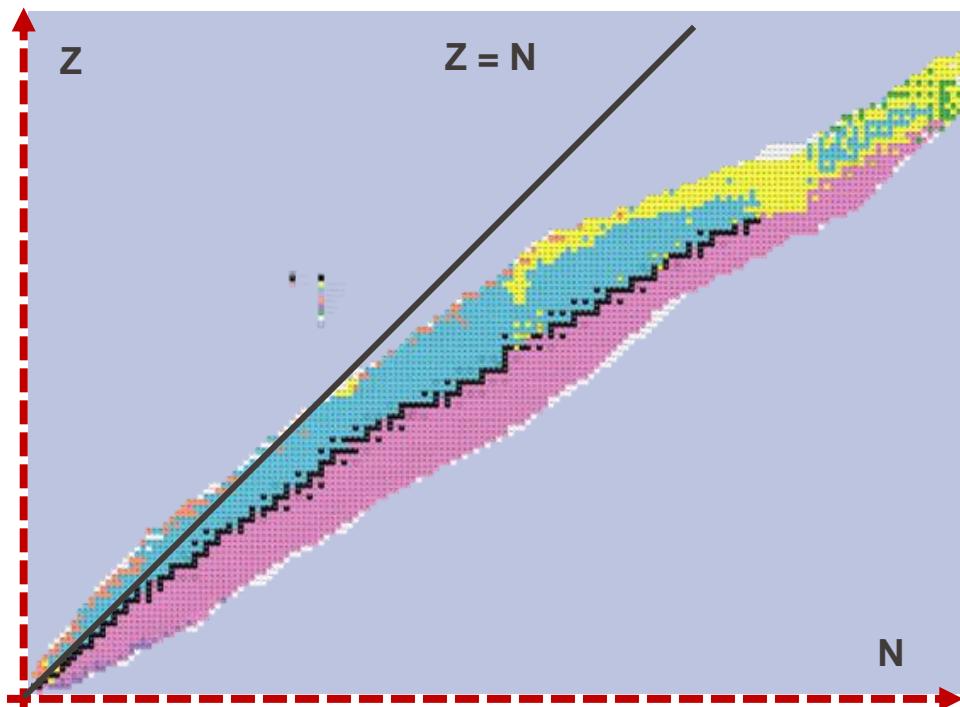
- Fuel mass: $(86'400'000 / 0.35) / 24 = 10'286 \text{ tons} \rightarrow 102 \text{ train cars}$

- **Gas (consider efficiency of plant):**

- Fuel volume: $(86'400'000 / 0.5) / 36 = 4'800'000 \text{ m}^3$

- **U235 (consider efficiency of plant):**

- U235 mass: $(86'400'000 / 0.33) / 81'974'468 = 3.18 \text{ kg}$
 - U238 mass: $3.18 / 0.05 = 63.6 \text{ kg}$



Some nuclides are unstable and undergo **radioactive decay**:

- Spontaneous process
- Release of energy to become more stable and emission of particles/radiation (e.g. α , β , or γ).

“Stability line” in Z vs. N plot (black squares):

- **Light elements ($Z < 20$):** Stability occurs when $N \approx Z$ (equal protons and neutrons).
- **Heavy elements ($Z > 20$):** Stability requires $N > Z$ to compensate for increasing Coulomb repulsion between protons (more neutrons strengthen the strong nuclear force, balancing repulsive forces).

Radioactivity Decay – Fundamental Law

- The probability of decay per unit time λ is constant: $-\frac{dN(t)}{N(t) \cdot dt} = \lambda \rightarrow -\frac{dN(t)}{dt} = \lambda N(t) = A(t)$
- Activity $A(t)$** measured in Becquerel (1 Bq = 1 decay/s)

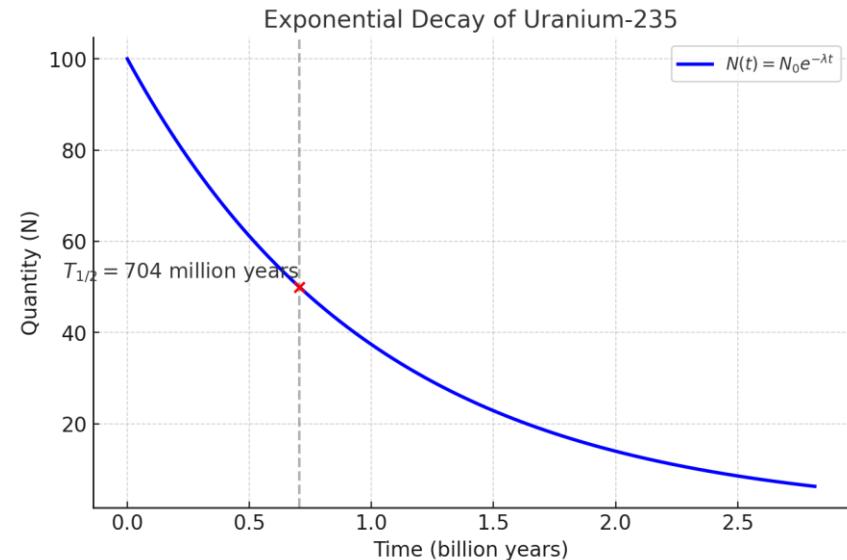
- Integrating the equation gives:

$$N(t) = N(0) \cdot e^{-\lambda t}$$

$$A(t) = A(0) \cdot e^{-\lambda t}$$

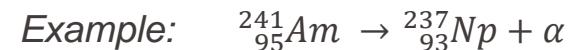
- Half-Life $T_{1/2}$** - Time for the activity or number of nuclei to reduce by half:

$$\frac{N(T_{1/2})}{N(0)} = \frac{1}{2} = e^{-\lambda \cdot T_{1/2}} \rightarrow T_{1/2} = \frac{\ln 2}{\lambda} \cong \frac{0.693}{\lambda}$$



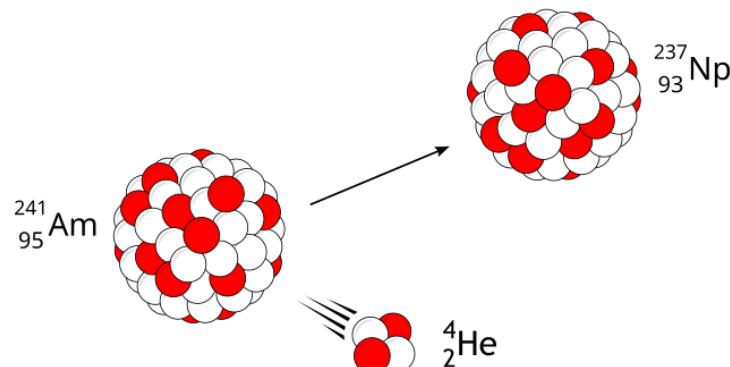
- Emission of a stable ${}^4_2\text{He}$ nucleus also called **alpha particle** → as a result, **Z decreases by 2, A decreases by 4**.
- Occurs in **heavy, unstable nuclei** to reduce Coulomb repulsion (too many protons)

- **Energy release:** high, typically in the MeV range (~4-9 MeV).



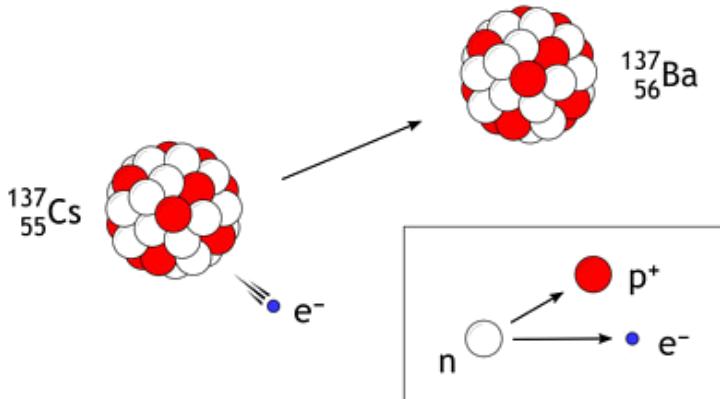
- **Penetration:** it can be stopped by paper or skin...

- **Safety:** very harmful if inhaled or ingested!



- Occurs in **neutron-rich nuclei**, converting a neutron into a proton + electron or β^- particle (emitted together with an antineutrino $\bar{\nu}_e$)
- Atomic number Z **increases by 1 (new element is formed)**; mass number A **remains unchanged**.

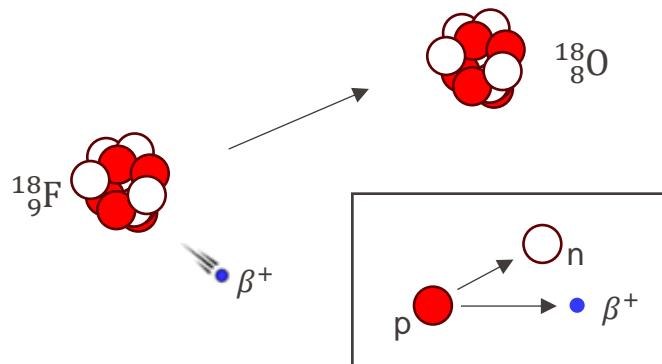
Example: $^{137}_{55}\text{Cs} \rightarrow ^{137}_{56}\text{Ba} + \beta^- + \bar{\nu}_e$



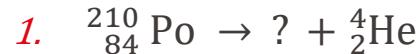
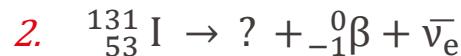
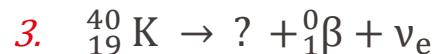
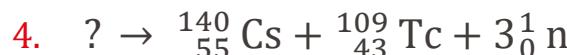
- **Energy release:** in the range of a few keV to ~ 1 MeV.
- **Penetration:** higher than α particles; stopped by a few mm of plastic or glass.
- **Safety:** can cause skin burns; internal exposure is dangerous!

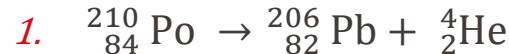
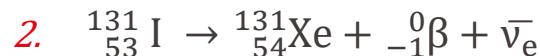
- Occurs in **proton-rich nuclei**, converting a proton into a neutron + positron or β^+ particle (emitted together with a neutrino ν_e).
- Atomic number Z **decreases by 1 (new element is formed)**; mass number A **remains unchanged**.

Example: ${}^{18}_9F \rightarrow {}^{18}_8O + \beta^+ + \nu_e$



- **Energy release:** in the range of a few keV to ~ 2 MeV
- **Penetration:** Similar to β^- particles, but annihilates with an electron upon contact
- **Safety:** positron annihilation produces gamma radiation (511 keV photons), which can penetrate further than β



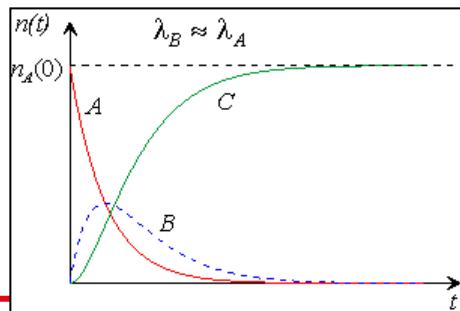
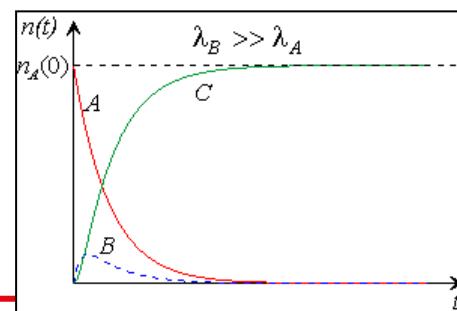
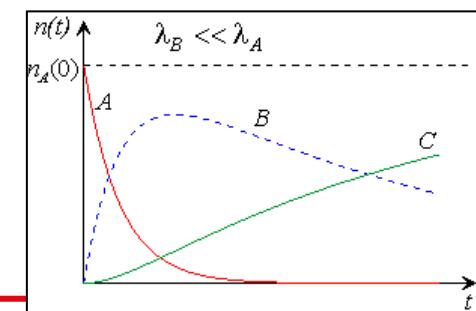


- The decay of a nucleus can lead to a nucleus that is also radioactive leading to a chain.
- It applies to natural radioactivity (e.g. $^{232}_{90}\text{Th}$) but also to fission products.

- In general, we can build a system

$$\begin{cases} \frac{dN_1(t)}{dt} = -\lambda_1 N_1(t) \\ \frac{dN_2(t)}{dt} = -\lambda_2 N_2(t) + \lambda_1 N_1(t) \\ \frac{dN_3(t)}{dt} = -\lambda_3 N_3(t) + \lambda_2 N_2(t) \\ \text{etc.} \end{cases}$$

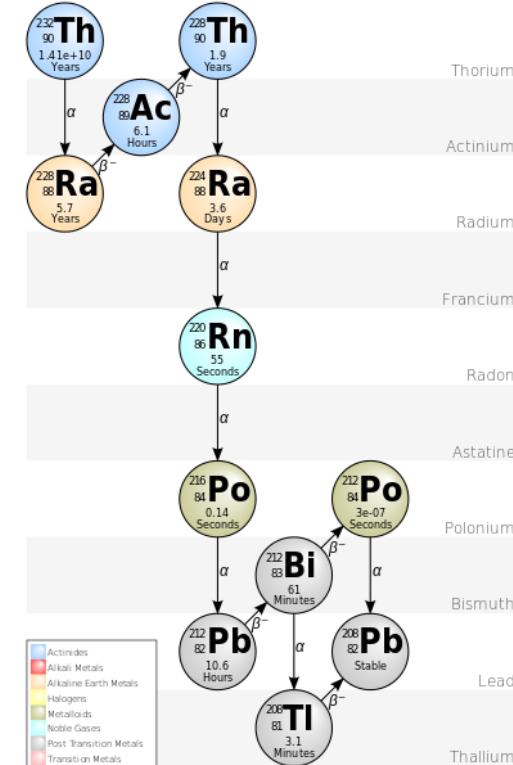
- For a simple case ($A \rightarrow B \rightarrow C$) with C stable, there are 3 main cases:



- Occurs when the half-life of the parent nucleus is significantly longer than that of all its daughter nuclides (or $\lambda_1 \ll \lambda_2$)
- Time to equilibrium will be short relative to the parent nucleus's half-life, but long compared to the half-lives of daughter nuclides.
- At equilibrium, the rate of decay of each nuclide (dN/dt) is \approx zero so: $\lambda_1 N_1 \approx \lambda_2 N_2 \approx \lambda_3 N_3$ etc.

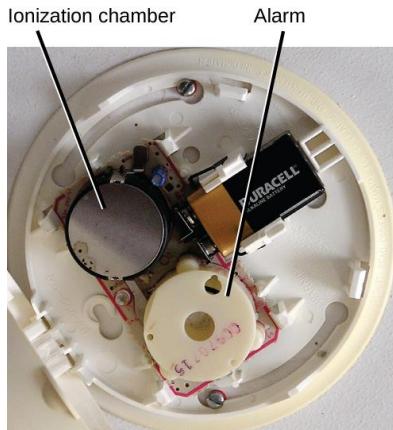
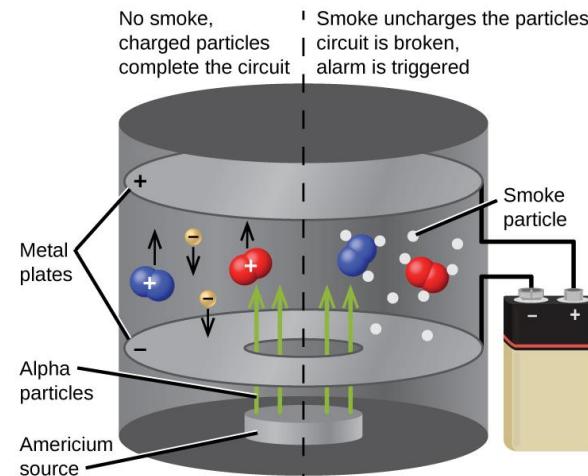
Consequences:

- Activities of all nuclides in the chain become equal at equilibrium...
- ...but the nuclide concentration is different $\frac{N_i}{N_1} = \frac{\lambda_1}{\lambda_i} = \frac{T_i}{T_1}$
- The shorter the half-life, the lower the concentration of the nuclide in the natural state.



Many household smoke detectors use ^{241}Am !

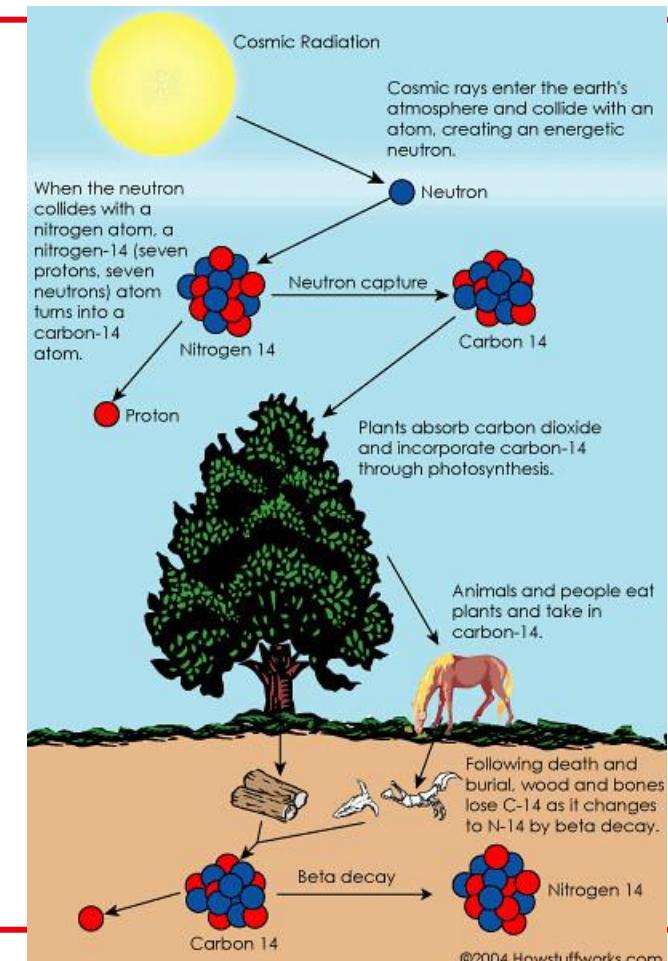
- A small ^{241}Am source is placed in a ionization chamber between two electrically charged plates.
- With no smoke: α particles ionize air molecules, creating a small electric current between plates.
- When smoke enters: smoke particles absorb ions, reducing the current, triggering the alarm.



No safety concerns:

- α particles have low penetration → cannot escape the detector casing.
- Very small amounts ($\sim 0.3 \mu\text{g}$ per detector) are used, posing no radiation risk in normal use.

- $^{14}_6\text{C}$ is naturally found in the atmosphere.
- Living organisms absorb $^{14}_6\text{C}$ through CO_2 exchange, maintaining a **constant ratio of $^{14}_6\text{C}$ to $^{12}_6\text{C}$** .
- When an organism dies, it stops absorbing carbon, and $^{14}_6\text{C}$ begins to decay with $T_{1/2}$ of 5'730 years:

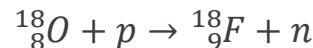


PET scans use β^+ decay to create detailed 3D images of metabolic processes inside the body.

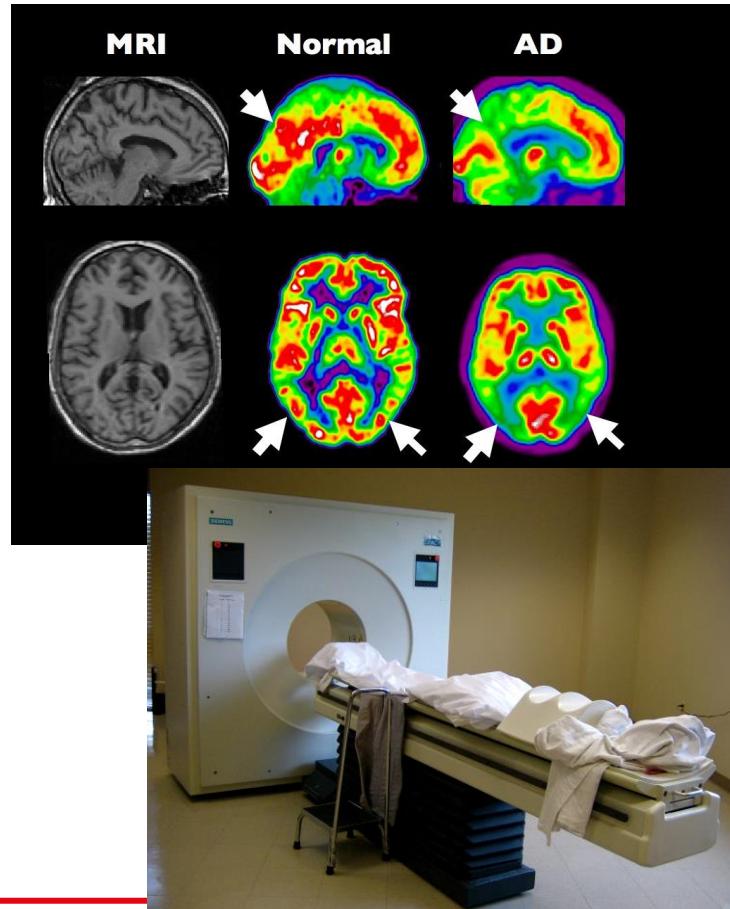
- A radioactive tracer (e.g., $^{18}_9F$) is injected into the patient.
- The tracer undergoes β^+ decay, emitting a positron.
- The positron annihilates with an electron, producing two 511 keV gamma photons.
- PET scanners detect these gamma rays to form an image.

Production of PET Tracers:

- PET tracers like $^{18}_9F$ are produced in a **cyclotron**, a particle accelerator that bombards a target material with protons to induce nuclear reactions



- PET tracers have short half-lives (e.g., $^{18}_9F$: 110 min) \rightarrow they must be produced close to hospitals.



1. Calculate the activity of a new smoke detector
 - Assume 0.3 μg of $^{241}_{95}\text{Am}$ at the start.
 - Consider half life of 432.6y
2. How much $^{241}_{95}\text{Am}$ is left after ten-years?
3. Archaeologists find a wooden artifact and want to determine its age using carbon-14 dating. The wood sample has 25% of the original $^{14}_6\text{C}$ activity remaining. Given that $T_{1/2} = 5730 \text{ y}$, estimate the age of the sample.

1. Calculate the activity of a new smoke detector

- Number of atoms in 0.3 µg of $^{241}_{95}\text{Am}$: $N_{Am} = \frac{0.3 \cdot 10^{-6}}{241} \cdot 6.02 \cdot 10^{23} = 749.3 \cdot 10^{12}$ atoms
- Decay constant: $\lambda_{Am} = \frac{\ln(2)}{432.6 \cdot 365 \cdot 24 \cdot 3600} = 5.08 \cdot 10^{-11} \text{ s}$
- **Activity:** $A = \lambda_{Am} \cdot N_{Am} = 38 \text{ kBq}$

2. How much $^{241}_{95}\text{Am}$ is left after ten-years?

- Mass of americium decays with half life of 432.6 years $\rightarrow m(10\text{y}) = m_0 e^{-\frac{\ln(2)}{432.6} \cdot 10} = 0.295 \mu\text{g}$

3. Archaeologists find a wooden artifact and want to determine its age using carbon-14 dating. The wood sample has 25% of the original $^{14}_6\text{C}$ activity remaining. Given that $T_{1/2} = 5730 \text{ y}$, estimate the age of the sample.

- $N_{C14}(t) = N_{C14,0} \cdot \exp\left(-\frac{\ln(2)}{5730} t\right) \rightarrow \frac{N_{C14}(t)}{N_{C14,0}} = 0.25 = \exp\left(-\frac{\ln(2)}{5730} t\right)$
- $\ln(0.25) = \ln\left(\frac{1}{4}\right) = -\ln(4) = \left(-\frac{\ln(2)}{5730} t\right) \rightarrow t = 5730 \frac{\ln(4)}{\ln(2)} = 11460 \text{ years}$

- A medical facility requires a daily supply of 5 GBq of $^{18}_9F$ at the time of delivery. The production process involves bombarding an enriched $^{18}_8O$ target with protons in a cyclotron that is 1hr away.
- Estimate how long the cyclotron must irradiate the target to produce the required activity.
- Assumptions:
 - The half-life of $^{18}_9F$ is 109.7 min.
 - The production rate in the cyclotron is constant and equal to 1E+10 atoms/sec
 - The decay loss during transport should be considered.

- The decay law with an additional constant production term R is:

$$\frac{dN}{dt} = R - \lambda N$$

- We integrate this equation by multiplying both sides with the integrating factor $e^{\lambda t}$

$$A(t) = R \cdot (1 - e^{-\lambda t})$$

- We need 5 GBq of $^{18}_9F$ after delivery. Thus, considering the decay that takes place during 1hr transport, the activity at the exit from the cyclotron should be:

$$A(1\text{hr}) = 5 \text{ GBq} = A_{\text{exit}} e^{-\frac{\ln(2)}{1.828 \text{ hr}} \cdot 1 \text{ hr}} \rightarrow A_{\text{exit}} = 7.305 \text{ GBq}$$

- Using the equation derived before to find the t_{irr} with a production rate of 1E+10 at/s:

$$A(t_{\text{irr}}) = A_{\text{exit}} = 7.305 \text{ GBq} = 1\text{E+10} \left(1 - e^{-\frac{\ln(2)}{1.828 \text{ hr}} \cdot t_{\text{irr}}} \right)$$

$$t_{\text{irr}} = 3.45 \text{ hr}$$