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Tip vortex cavitation consequences 

Visualization of TVC in an axial turbine Erosion of the blade tip in a propeller

• TVC may occur in axial hydraulic machines

 Risk of severe erosion in stationary and rotating parts 
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TVC Mitigation techniques

• Passive or active injections

Water or viscoelastic polymer solutions

• Adding artificial roughness to the tip

• Bulbous tips

• …
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Suppressing Tip Vortex Cavitation 
by Winglets

Ali Amini, Martino Reclari, Takeshi Sano, Masamichi Iino, and Mohamed Farhat. "Suppressing tip vortex
cavitation by winglets." Experiments in Fluids 60, no. 11 (2019): 159.
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Introduction

Tip vortices are a source of concern in aeronautics

 Lift-induced drag & flight hazards

A common remedy is appending winglets to wingtips

• Widely used in commercial airplanes

• A large variety of winglets design

• No unique solution exists

• Each winglet has to be carefully designed
based on the objectives and constraints.
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Introduction

Anti-cavitation lips already exist, but …

• A survey on 44 projects performed at LMH
during the last 15 years revealed that

 Only 27%  All on the suction side

• Usually have simple geometries

 A step towards real winglet designs

 Simple and generic geometries

 Physical aspects of the flow

source: www.andritz.com
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Experimental Setup

The winglets are realized by non-planar extensions
of the original section at various angles

• Design variables: 𝜃𝜃 & 𝐿𝐿𝐵𝐵𝐵𝐵
• Smooth transition of the geometry 

𝜽𝜽

𝑳𝑳𝑩𝑩𝑩𝑩

Dihedral angle:         𝜃𝜃 = 0°, ±45, ±90°

Bent section length:  𝐿𝐿𝐵𝐵𝐵𝐵 = 0.05𝑆𝑆 & 0.1𝑆𝑆

𝑺𝑺: span of the baseline hydrofoil (90 mm)
The affected area is max. 3.7% of 

the whole lifting surface.



Cavitation & Interface Phenomena: Chap 5.3 6th & 8th Semester Fall 2024 EPFL - LMH – A. Amini, M. FarhatPage 8

Experimental Setup

Manufactured hydrofoils from bronze

Upward & 
Downward winglets



Cavitation & Interface Phenomena: Chap 5.3 6th & 8th Semester Fall 2024 EPFL - LMH – A. Amini, M. FarhatPage 9

TVC inception results

Tests performed at 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏𝒎𝒎/𝒔𝒔 and fully saturated water for 10%-bent winglets.

The 90° winglet bent toward the pressure side shows an outstanding performance.
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TVC inception results

Tests performed at 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 m/s and fully saturated water for 10%-bent winglets.

The 5%-bent winglets are less effective in TVC mitigation.



Cavitation & Interface Phenomena: Chap 5.3 6th & 8th Semester Fall 2024 EPFL - LMH – A. Amini, M. FarhatPage 11

Baseline

45° DownwardDouble 45°

90° Upward

90° Downward

45° Upward

Flow visualizations

Test conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬 ,𝛂𝛂 = 𝟏𝟏𝟏𝟏𝟏,𝛔𝛔 = 𝟏𝟏.𝟐𝟐

Effect of various winglets on TVC (𝑅𝑅𝑅𝑅 = 600,000)
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Flow visualizations

Effect of various winglets on TVC (𝑅𝑅𝑅𝑅 = 900,000)

Test conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬 ,𝛂𝛂 = 𝟏𝟏𝟏𝟏𝟏,𝛔𝛔 = 𝟏𝟏.𝟐𝟐

Baseline

45° DownwardDouble 45°

90° Upward

90° Downward

45° Upward
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Lift & drag measurements 
Measurements performed at 10 m/s to avoid cavitation 

• Almost similar hydrodynamic performances are obtained for all the hydrofoils
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Stereo-PIV setup

 Double-pulsed laser (135 mJ/pulse)

 Seeding particles

• Hollow glass spheres

• Average diameter of 10 μm

 1000 image-pairs for each flow condition

 Vector-to-vector resolution of 0.35 mm

 Wandering motion correction

• Center detection by Graftieaux algorithm

• 2D cubic spline interpolation

 Vatistas vortex model curve-fit
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Velocimetry Results
Wandering effect and its correction

• Flow conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬 ,𝛂𝛂 = 𝟏𝟏𝟏𝟏𝟏
• 30 - 40% of variations between different hydrofoils 
• Higher for downward configurations
• Sub-grid fluctuations
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Contours of the tangential velocity 

• Flow conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬 ,𝛂𝛂 = 𝟏𝟏𝟏𝟏𝟏

Truncate
d

Stereo-PIV results 
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Comparison of the tangential velocity profiles:
• Flow conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬 ,𝛂𝛂 = 𝟏𝟏𝟏𝟏𝟏

• 90°-downward (10%)
 Outstanding suppression effects
 Increasing the viscous radius (𝒓𝒓𝒄𝒄) by 70 %
 Decreasing 𝒗𝒗𝜽𝜽𝒎𝒎𝒎𝒎𝒎𝒎 to almost 50 %

 𝜞𝜞 remains constant while 𝒓𝒓𝒄𝒄 increases

 Viscous core thickening is the dominant mechanism of TVC mitigation 

Velocimetry Results
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Comparison of the tangential velocity profiles
• Same flow conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬 ,𝛂𝛂 = 𝟏𝟏𝟏𝟏𝟏
• Azimuthally-averaged profiles

 𝚪𝚪 remains constant while 𝒓𝒓𝒄𝒄 increases

 Viscous core thickening is the dominant mechanism of TVC mitigation 

Velocimetry Results
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Contours of the axial velocity 

• Flow conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬 ,𝛂𝛂 = 𝟏𝟏𝟏𝟏𝟏

Velocimetry Results
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The higher effectiveness of the downward
configurations is due to the fact that:

1) A downward-facing winglet facilitates the
entrainment of the wake into the vortex
flow,

2) which, in turn, increases the momentum
diffusion rates, and thereby,

3) smooths down the velocity profiles.

90°-upward

90°-downward

Velocimetry Results: Discussion
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Effect of incidence angle on 𝛤𝛤 and 𝑟𝑟𝑐𝑐
• Flow conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬
• Similar trends are conserved

Velocimetry Results
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Conclusion
Effectiveness of nonplanar winglets in TVC suppression is investigated:

• Almost for all the flow conditions, the winglet-equipped hydrofoils perform better
than the baseline hydrofoil in terms of delaying TVC.

• The hydrodynamic performances of the hydrofoils are not degraded by the winglets.

• For 𝑳𝑳𝑩𝑩𝑩𝑩 = 𝟎𝟎.𝟏𝟏𝟏𝟏, 𝜽𝜽 = 𝟗𝟗𝟗𝟗° yielded much better results compared to 𝜽𝜽 = 𝟒𝟒𝟒𝟒°.

• The negative dihedral angles (downward) are superior to the positive ones
(upward), due to enhanced wake entrainment effects.

• Longer vertical sections outperform the shorter ones.

• Best configuration performance: 10%-bent 90°-downward
 Outstanding suppression (68% delay in inception)
 Increasing the viscous core radius by 70%
 Decreasing 𝒗𝒗𝜽𝜽𝒎𝒎𝒎𝒎𝒎𝒎 to almost 50%
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Mitigating Tip Vortex Cavitation
by a Flexible Trailing Thread

Ali Amini, Jeonghwa Seo, Shin Hyung Rhee, and Mohamed Farhat. "Mitigating tip vortex cavitation by a
flexible trailing thread." Physics of Fluids 31, no. 12 (2019): 127103.
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Interaction of a flexible trailing thread with the cavitating vortex flow

• Flow conditions: 𝛼𝛼 = 15°, 𝑈𝑈
∞

= 15 m/s, and 𝜎𝜎 = 1.8

• Effect of the thread length (𝑳𝑳𝒕𝒕) on TVC suppression (thread diameter: 𝑑𝑑𝑡𝑡 = 0.7 mm)

• 𝐶𝐶0 is the root chord length of the hydrofoil (𝐶𝐶0 = 60 𝑚𝑚𝑚𝑚)

𝑳𝑳𝒕𝒕 = 𝟎𝟎.𝟓𝟓 𝑪𝑪𝟎𝟎

𝑳𝑳𝒕𝒕
= 𝟏𝟏.𝟓𝟓 𝑪𝑪𝟎𝟎

𝑳𝑳𝒕𝒕
= 𝟏𝟏.𝟎𝟎 𝑪𝑪𝟎𝟎

Baseline

Flow

TVC Suppression Mechanisms  
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Analysis of the thread motion

• The most rigid thread tested under the following conditions Two stable states
 Test conditions: 𝛼𝛼 = 10°, 𝑈𝑈∞ = 10 m/s, 𝜎𝜎 = 1.2, 𝑑𝑑𝑡𝑡 = 0.7 mm and 𝐿𝐿𝑡𝑡 = 0.5 𝐶𝐶0

• Freestream velocity Acceleration vs Deceleration Static vs Dynamic response

• The thread should be flexible enough to align with the vortex and interact with it
dynamically.

Thread out, not moving Thread in, moving

But, what does flexible enough mean?
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Analysis of the thread motion

The lateral motion of a flexible beam retained straight in axial flow is analyzed. 

de Langre
et al. 

(2007)

𝑬𝑬𝑬𝑬
𝝏𝝏𝟒𝟒𝒚𝒚
𝝏𝝏𝒙𝒙𝟒𝟒

−
𝝏𝝏
𝝏𝝏𝝏𝝏

𝚯𝚯 𝒙𝒙
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝒎𝒎
𝝏𝝏𝟐𝟐𝒚𝒚
𝝏𝝏𝒕𝒕𝟐𝟐

= 𝑭𝑭𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

flexural 
rigidity

variation of local 
axial tension

fluid-induced 
forces

Acceleration term
m: mass per unit length

Non-dimensional 
velocity 

𝒖𝒖 =
𝝆𝝆𝝆𝝆
𝑬𝑬𝑬𝑬

⁄𝟏𝟏 𝟐𝟐

𝑼𝑼∞𝑳𝑳𝒕𝒕
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Superposition over 8 msThird-mode 
oscillation

 Analysis of the thread motion

• Test conditions: 𝑑𝑑𝑡𝑡 = 0.5 mm, 𝐿𝐿𝑡𝑡 = 1.5 𝐶𝐶0, 𝛼𝛼 = 10° and 𝑈𝑈∞ = 10 m/s 

 Harmonic waves are travelling along the thread.  

 The thread clearly encloses the vortex axis by rotating around it. 

TVC Suppression Mechanisms  
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Dynamic interaction of the trailing thread and the vortex flow

• Flow conditions: 𝜶𝜶 = 𝟏𝟏𝟏𝟏𝟏, 𝑼𝑼
∞

= 𝟏𝟏𝟏𝟏𝒎𝒎/𝒔𝒔, and 𝝈𝝈 = 𝟏𝟏.𝟒𝟒
• Thread configuration: 𝒅𝒅𝒕𝒕 = 𝟕𝟕𝐦𝐦𝐦𝐦 and 𝑳𝑳𝒕𝒕 = 𝟏𝟏.𝟓𝟓 𝑪𝑪𝟎𝟎
• A complex interaction is observed 

TVC Suppression Mechanisms  

Rotationa
l motion

Whipping 
motion
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Analysis of the Whipping Motion 

• A Lamb-Oseen vortex profile is considered:

• Calculating the attraction force (𝑭𝑭𝒓𝒓) in one-way coupling for
various thread diameters and eccentricities results in:

𝐹𝐹𝑟𝑟 = 2𝑟𝑟𝑡𝑡 �
0

𝜋𝜋
𝑝𝑝 𝛾𝛾 cos 𝛾𝛾 𝑑𝑑𝑑𝑑

• The radial force increases with the thread diameter,
however, this increase becomes more significant as the
thread gets closer and closer to the vortex axis.

• Away from the vortex axis, the relation is almost linear.

• Close to the axis  𝑭𝑭𝒓𝒓 ∝ 𝒅𝒅𝒕𝒕𝟐𝟐

𝑣𝑣𝜃𝜃 𝑟𝑟 = Γ
2𝜋𝜋𝜋𝜋

1 − 𝑒𝑒−1.256 ⁄𝑟𝑟 𝑟𝑟𝑐𝑐 2 and 𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟

= 𝜌𝜌 𝑣𝑣𝜃𝜃
2

𝑟𝑟

𝒓𝒓𝒄𝒄
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Analysis of the Whipping Motion 
Modeling of the coincidence phase:

• The coincidence phase is fast, which implies that the
integral parameters of the vortex should remain
constant. (𝛤𝛤1 = 𝛤𝛤2 = 𝛤𝛤)

• To find the new viscous core radius, we implement the
conservation of angular momentum principle:

𝐻𝐻1 = 𝜌𝜌𝜌𝜌𝜌𝜌�
0

∞
𝑟𝑟 1 − 𝑒𝑒−1.256 ⁄𝑟𝑟 𝑟𝑟𝑐𝑐 2 𝑑𝑑𝑑𝑑

𝐻𝐻2 = 𝜌𝜌𝜌𝜌𝜌𝜌�
0

∞ 𝑟𝑟2

𝑟𝑟 − 𝑟𝑟𝑡𝑡
1 − 𝑒𝑒−1.256 ⁄𝑟𝑟−𝑟𝑟𝑡𝑡 𝑟𝑟𝑐𝑐,2

2
𝑑𝑑𝑑𝑑

Arbitrary Lamb-Oseen vortex 
with 𝑟𝑟𝑐𝑐 = 1.5 mm

𝑼𝑼∞ =
𝟏𝟏𝟏𝟏 ⁄𝒎𝒎 𝒔𝒔
𝜶𝜶 = 𝟏𝟏𝟏𝟏𝟏

• The coincidence of the thread results in a
considerable rise in the minimum pressure induced
by the vortex.

• The pressure rise is almost proportional to 𝒓𝒓𝒕𝒕𝟎𝟎.𝟐𝟐
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Stereo-PIV setup

 Double-pulsed laser (135 mJ/pulse)

 Seeding particles

• Hollow glass spheres

• Average diameter of 10 μm

 1000 image-pairs for each flow condition

 Vector-to-vector resolution of 0.3 × 0.4 mm

 Wandering motion correction

• Center detection by Graftieaux algorithm

• 2D cubic spline interpolation

 Vatistas vortex model curve-fit
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Velocity measurements 

Contours of the tangential velocity:

• Flow conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝐦𝐦 𝐬𝐬 ,𝜶𝜶 = 𝟏𝟏𝟏𝟏𝟏

• Thread configuration: 𝒅𝒅𝒕𝒕 = 𝟎𝟎.𝟕𝟕𝐦𝐦𝐦𝐦

• A clear reduction is observed in the magnitude of the tangential velocity. 
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Azimuthally-averaged 𝒗𝒗𝜽𝜽 profiles

• Test conditions: 𝜶𝜶 = 𝟏𝟏𝟏𝟏𝟏, 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏 ⁄𝒎𝒎 𝒔𝒔 and 𝒅𝒅𝒕𝒕 = 𝟎𝟎.𝟕𝟕𝐦𝐦𝐦𝐦. 

• A clear reduction is observed in the magnitude of the tangential velocity. 

• In this test, 𝐿𝐿𝑡𝑡 = 0.5 𝐶𝐶0 is in non-flapping state. 

 The winglet effect for the rigid structures implies the augmented turbulent mixing.
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Effect of incidence angle on tip vortex parameters at various thread lengths.

• Flow conditions: 𝑼𝑼∞ = 𝟏𝟏𝟏𝟏𝒎𝒎/𝒔𝒔 and non-cavitating regime

• Vortex intensity is conserved and TVC suppression is due to a viscous core thickening. 

Velocity measurements 

Whipping 
mode 

activated
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Discussion:

Now, let’s put all the effective parameters together:

• The extent of thread-vortex interaction          𝒖𝒖 = 𝝆𝝆𝝆𝝆
𝑬𝑬𝑬𝑬

⁄𝟏𝟏 𝟐𝟐
𝑼𝑼∞𝑳𝑳𝒕𝒕

• The likelihood of whipping motion                   𝑭𝑭𝒓𝒓 ∝ 𝒅𝒅𝒕𝒕𝟐𝟐

• The pressure rise due to the whipping            ∆𝒑𝒑 ∝ 𝒅𝒅𝒕𝒕𝟎𝟎.𝟐𝟐

 If we multiply the three terms together and scale the thread diameter with
the viscous core radius, we get the following non-dimensional variable:

𝑳𝑳∗ =
𝟒𝟒
𝒓𝒓𝒄𝒄𝟐𝟐.𝟐𝟐

𝝆𝝆
𝑬𝑬
𝑼𝑼∞𝑳𝑳𝒕𝒕𝒅𝒅𝒕𝒕𝟏𝟏.𝟐𝟐
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Discussion:

Plotting TVC suppression against the non-dimensional variable:

• The suppression effect is saturated beyond 𝑳𝑳∗ ≅ 𝟐𝟐 for all the configurations.

𝑲𝑲 =
𝟒𝟒
𝒓𝒓𝒄𝒄𝟐𝟐.𝟐𝟐

𝝆𝝆
𝑬𝑬
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Conclusion

 A thread should be flexible enough to: 

• Get aligned with the vortex
• Interact with it dynamically

 Two interaction/mitigation regimes:

• Rotational motion
• Whipping motion

 Viscous core thickening

𝑳𝑳𝒕𝒕
= 𝟏𝟏.𝟎𝟎 𝑪𝑪𝟎𝟎

Baseline

Flow

Effectiveness of a flexible thread in TVC mitigation
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