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Tip vortex cavitation consequences

 TVC may occur in axial hydraulic machines

» Risk of severe erosion in stationary and rotating parts

(»]

Visualization of TVC in an axial turbine  Erosion of the blade tip in a propeller
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TVC Mitigation techniques

Passive or active injections

» Water or viscoelastic polymer solutions

Adding artificial roughness to the tip

Bulbous tips
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Suppressing Tip Vortex Cavitation
by Winglets

Ali Amini, Martino Reclari, Takeshi Sano, Masamichi lino, and Mohamed Farhat. "Suppressing tip vortex
cavitation by winglets." Experiments in Fluids 60, no. 11 (2019): 159.
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Conventional winghip:

Introduction Large vortex,higher drag

Blended winglef:
Smaller vortex, less drag.

Tip vortices are a source of concern in aeronautics .

ﬂ,;n-.m
> Lift-induced drag & flight hazards K

v'A common remedy is appending winglets to wingtips

NOW

Widely used in commercial airplanes

A large variety of winglets design

No unique solution exists

Each winglet has to be carefully designed
based on the objectives and constraints.
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Introduction

source: www.andritz.com
DN AN AL | E!ﬂﬂﬂﬂl’ll"mlﬁ‘

Anti-cavitation lips already exist, but ...

* A survey on 44 projects performed at LMH
during the last 15 years revealed that

> Only27% —> All on the suction side

e Usually have simple geometries

v’ A step towards real winglet designs

» Simple and generic geometries

» Physical aspects of the flow
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Experimental Setup

The winglets are realized by non-planar extensions —5
of the original section at various angles
WINGLET
e Design variables: 6 & Lgg
" Lgs c1
* Smooth transition of the geometry p-
" WING
}

0\\\3 5

Dihedral angle: 6 = 0° 145, +90°
Bent section length: Lgs = 0.05S & 0.1S

S: span of the baseline hydrofoil (90 mm)

The affected area is max. 3.7% of
the whole lifting surface.
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Experimental Setup

Manufactured hydrofoils from bronze

Upward &
Downward winglets
1
S S 2 3 5
[ 4257 cmil [ - || [ 4216cm? | [ ] .|| a1.25cm? | [ ] | [ 42.08em? | [ [ | ||. 40.97 cm‘Z I ]
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TVC inception results

Tests performed at U,, = 15 m/s and fully saturated water for 10%-bent winglets.

» The 90° winglet bent toward the pressure side shows an outstanding performance.
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TVC inception results

Tests performed at U,, = 15 m/s and fully saturated water for 10%-bent winglets.

»The 5%-bent winglets are less effective in TVC mitigation.

5 T

w
o

w

Cavitation number (o)
N
N

-
(2]
T

-
T

+ Baseline TVC inception at 15 m/s
4.57 <7 Downward (10%) ]
Upward (10%)
W Downward (5%)
-\ upward (5%) ]
- % m
L ﬁ ¥ .
L 7 s
A Vo
S
6 v v ¥
0.5~ @ ﬁ ]
0 : ‘ '
2 4 6 8 10 12 14 16 18

Incidence angle [°]

6th & 8th Semester Fall 2024  Page 10 EPFL - LMH — A. Amini, M. Farhat



Flow visualizations

Effect of various winglets on TVC (Re = 600,000)

Test conditions: U, = 10 m/s,a = 12°,0 = 1.2

Baseline 45° Upward 90° Upward

e o e am e T e e

90° Downward

Double 45° 45° Downward
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Flow visualizations

Effect of various winglets on TVC (Re = 900,000)

Test conditions: U, = 15 m/s,a = 12°,0 = 1.2

Baseline 45° Upward 90° Upward

e

90° Downward

Double 45°
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Lift & drag measurements

Measurements performed at 10 m/s to avoid cavitation

* Almost similar hydrodynamic performances are obtained for all the hydrofoils
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Stereo-PlV setup

» Double-pulsed laser (135 mJ/pulse)
» Seeding particles

* Hollow glass spheres

S

e Average diameter of 10 um

laser sheet -

» 1000 image-pairs for each flow condition tip vortex 7

trajectory

» Vector-to-vector resolution of 0.35 mm

» Wandering motion correction
* Center detection by Graftieaux algorithm
e 2D cubic spline interpolation

» Vatistas vortex model curve-fit
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Velocimetry Results

Wandering effect and its correction

Flow conditions: U, = 10 m/s,a = 12°

30 - 40% of variations between different hydrofoils
Higher for downward configurations
Sub-grid fluctuations
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Stereo-PIV results

Contours of the tangential velocity

* Flow conditions: U, = 10 m/s,a = 12°
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Velocimetry Results

Comparison of the tangential velocity profiles:
* Flow conditions: U, = 10 m/s,a = 12°

—Baseline
==00°- upward (10%)
==90°- downward (10%)|

o
L

o
o

@ Baseline

* 90°-downward (10%)
» Outstanding suppression effects S
> Increasing the viscous radius (r.) by 70% =

max

7}
o
»

0.2

» Decreasing v to almost 50 %

1 2 3 4 5 6 7 8
r“'c:@Baseline
v T remains constant while 7, increases

v’ Viscous core thickening is the dominant mechanism of TVC mitigation
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Velocimetry Results

Comparison of the tangential velocity profiles

* Same flow conditions: U, = 10 m/s,a = 12°

e Azimuthally-averaged profiles

» T’ remains constant while 1. increases

» Viscous core thickening is the dominant mechanism of TVC mitigation
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Velocimetry Results

Contours of the axial velocity

10 m/s,a = 12°
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Velocimetry Results: Discussion

The higher effectiveness of the downward ,.-"7| .
configurations is due to the fact that: PF AW - P
1) A downward-facing winglet facilitates the vFlF +
entrainment of the wake into the vortex AN B p
flow, 90°-upward
2) which, in turn, increases the momentum
diffusion rates, and thereby, _
- N
/ .
3) smooths down the velocity profiles. - W rW \ - P
! _aEEae |
\
W | F.r ¥
-~ P

90°-downward
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Velocimetry Results

Effect of incidence angle on I' and 7.

* Flow conditions: U, = 10 m/s

* Similar trends are conserved
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Conclusion

Effectiveness of nonplanar winglets in TVC suppression is investigated:

* Almost for all the flow conditions, the winglet-equipped hydrofoils perform better
than the baseline hydrofoil in terms of delaying TVC.

* The hydrodynamic performances of the hydrofoils are not degraded by the winglets.
* For Lgg = 0.1S, 8 = 90° yielded much better results compared to 8 = 45°.

* The negative dihedral angles (downward) are superior to the positive ones
(upward), due to enhanced wake entrainment effects.

* Longer vertical sections outperform the shorter ones.

* Best configuration performance: 10%-bent 90°-downward
» Outstanding suppression (68% delay in inception)
» Increasing the viscous core radius by 70%
» Decreasing vg___to almost 50%
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Mitigating Tip Vortex Cavitation
by a Flexible Trailing Thread

Ali Amini, Jeonghwa Seo, Shin Hyung Rhee, and Mohamed Farhat. "Mitigating tip vortex cavitation by a
flexible trailing thread." Physics of Fluids 31, no. 12 (2019): 127103.
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TVC Suppression Mechanisms

Interaction of a flexible trailing thread with the cavitating vortex flow
* Flow conditions: a = 15°, U = 15m/s,ando = 1.8

 Effect of the thread length (L;) on TVC suppression (thread diameter: d; = 0.7 mm)

* (yis the root chord length of the hydrofoil (C, = 60 mm)
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Analysis of the thread motion

* The most rigid thread tested under the following conditions = Two stable states
= Test conditions: « =10°, U, =10m/s,0 =1.2,d; = 0.7 mmand L; = 0.5 C,

* Freestream velocity = Acceleration vs Deceleration = Static vs Dynamic response

* The thread should be flexible enough to align with the vortex and interact with it
dynamically.

But, what does flexible enough mean?

Thread out, not moving Thread in, moving
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Analysis of the thread motion

The lateral motion of a flexible beam retained straight in axial flow is analyzed.

de Langre X Non-dimensional
et al. .
(2007) velocity
. _[pA 1/2
flexural fluid-induced u=\{gr] Usle
rigidity \ / forces
dy a9y
EI— —— | O(x) =— =F
ax* ox ( f( )ax> gz T Stuid
variation of local Acceleration term
axial tension m: mass per unit length
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TVC Suppression Mechanisms
» Analysis of the thread motion
« Test conditions: d; =0.5mm, L; = 1.5 Cy, « =10° and U, = 10 m/s
» Harmonic waves are travelling along the thread.

» The thread clearly encloses the vortex axis by rotating around it.

Third-mode Superposition over 8 ms
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TVC Suppression Mechanisms
Dynamic interaction of the trailing thread and the vortex flow
* Flow conditions: a& = 12°, UOo =10m/s,ando = 1.4

* Thread configuration: d; = 7mmand L; = 1.5 C

* A complexinteraction is observed

Rotationa
| motion

Whipping
motion
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Analysis of the Whipping Motion

* A Lamb-Oseen vortex profile is considered:

op vé

r _ 2
vo(r) = — (1 — e~1:256(r/7c) and =p-L Low High
6 21T ar T
Pressure Pressure

* Calculating the attraction force (F,.) in one-way coupling for
various thread diameters and eccentricities results in:

1.2 1
T -'-erc=0.50
1/ |-0-R/r_=1.00 A
k= Zrtj p(y) cos(y) dy o @ Rir =150
0 108" |.g R/r =200 P
T A-R/r =500 e
* The radial force increases with the thread diameter, o 08 -1
. . . .o c' /::-"’. e
however, this increase becomes more significant as the = o04f -4 ¥
thread gets closer and closer to the vortex axis. - ozl - ‘,~' -
. ,,’:E:_ -® : o - -0~ "
. . . . TR W TR A A A
* Away from the vortex axis, the relation is almost linear. 0¥ 0.1 0.2 0.3 0.4

* Close tothe axis > F, « d?
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Analysis of the Whipping Motion

Modeling of the coincidence phase:

vglve

The coincidence phase is fast, which implies that the
integral parameters of the vortex should remain

Arbitrary Lamb-Oseen vortex
with 7, = 1.5 mm

O L § :
constant. (I; =1, =1T) = 054 § —Baseline |
o P —d =0.7 mm|
(&} Y t [
1.0 Vi Compound | |
. . . . " 1 L s L L L L
* To find the new viscous core radius, we implement the i 2 3 4 5 6 7 8 9 10
conservation of angular momentum principle: r/T; @Baseline
co 1.0 -
_ 2 O i OO S i S
H, = pLI"f r(l — e~1256(r/7c) )dr ool e
0 g | &
0 2 o (]
2 O 06[]
Hy = pr | (1= em2seerorme)) ar S
o '~ Tt . 04
. . . 02
* The coincidence of the thread results in a i
considerable rise in the minimum pressure induced 0.00 o ; T .
by the vortex. /T,
* The pressure rise is almost proportional to r;
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Stereo-PIV setup

» Double-pulsed laser (135 mJ/pulse)

laser sheet -

25¢,

» Seeding particles G el

trajectory

* Hollow glass spheres

e Average diameter of 10 um
» 1000 image-pairs for each flow condition
» Vector-to-vector resolution of 0.3 X 0.4 mm
» Wandering motion correction

e Center detection by Graftieaux algorithm

e 2D cubic spline interpolation

> Vatistas vortex model curve-fit
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Velocity measurements

Contours of the tangential velocity:

* Flow conditions: U, = 10 m/s,a = 12°

* Thread configuration: d; = 0.7 mm

* A clear reduction is observed in the magnitude of the tangential velocity.
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Azimuthally-averaged vy profiles

* Test conditions: & = 12°, U, = 10 m/s and d; = 0.7 mm.
A clear reduction is observed in the magnitude of the tangential velocity.

* In this test, L = 0.5 C, is in non-flapping state.

» The winglet effect for the rigid structures implies the augmented turbulent mixing.

L == Baseline
o _Lt= 0.15 Co
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Velocity measurements

Effect of incidence angle on tip vortex parameters at various thread lengths.

* Flow conditions: U, = 10 m/s and non-cavitating regime

* Vortex intensity is conserved and TVC suppression is due to a viscous core thickening.
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E P F L Cavitation & Interface Phenomena: Chap 5.3 6th & 8t Semester Fall 2024

Page 34 EPFL - LMH — A. Amini, M. Farhat



Discussion:

Now, let’s put all the effective parameters together:

. . PA 1/2
* The extent of thread-vortex interaction > u= (E) UoL;
* The likelihood of whipping motion > F, x d%
* The pressure rise due to the whipping > Ap « d?'z

> If we multiply the three terms together and scale the thread diameter with
the viscous core radius, we get the following non-dimensional variable:

4 1p
L = — UL d}?
r%_z E t*“t
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Discussion:

Plotting TVC suppression against the non-dimensional variable:

* The suppression effect is saturated beyond L™ = 2 for all the configurations.

_dt =0.3 mm —dt =0.5mm —dt =0.7 mm

_dt= 0.3 mm —dt = 0.5 mm —dt= 0.7 mm

1* UC;)= 10 (open) & 1I5 (filled)‘mls 1‘V u = ‘Ilo (open) & 15 (fille;:l) m/s
AV
; a=10° (V) & 15° (A) v a=10° (V) & 15° (A)
.08 08
> A &
<0 0.6 - <" 0.6 a
> >
S04 2 o 304r A
o A A 4 A\ ey
0.2 v g K=—5 F 0.2 v% 2,
* Y : e Tper & &
v 0 | A4 | A4
0 1 1 1 LB
0 05 1 15 2 25 3 35 0 1 2 3 s 4 5 6
Lt / C0 KU Lt dt
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Conclusion
Effectiveness of a flexible thread in TVC mitigation

» A thread should be flexible enough to:

* Get aligned with the vortex
* Interact with it dynamically ‘ Baseline

» Two interaction/mitigation regimes:

* Rotational motion
* Whipping motion

» Viscous core thickening
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