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Vortices are highly relevant for both Cavitation and Flow-induced Vibration
They are present in a variety of applications: 

Hurricanes

Vortex shedding from bluff body
Tip vortex from a plane wing

Vortex-induced vibration of
soft coral  improve nutrition

Part-load rope in a 
Francis Turbine Tip vortex cavitation

in a marine propeller
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What is a vortex ?

• A vortex may be seen as region of a flow in which the fluid rotates 
around a straight or curved axis line
• Free vortex (potential flow, incompressible): 

• Velocity field:    𝒖𝒖 = 𝒖𝒖𝒓𝒓,𝒖𝒖𝜽𝜽,𝒖𝒖𝒛𝒛 = 𝟎𝟎, 𝚪𝚪
𝟐𝟐𝟐𝟐𝟐𝟐
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𝒖𝒖𝜽𝜽 𝒓𝒓 𝒅𝒅𝒅𝒅 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ∀𝑪𝑪,𝒂𝒂 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝑶𝑶

𝛁𝛁 × 𝒖𝒖 =
𝟏𝟏
𝒓𝒓
𝝏𝝏𝒖𝒖𝒛𝒛
𝝏𝝏𝝏𝝏 −

𝝏𝝏𝒖𝒖𝜽𝜽
𝝏𝝏𝒛𝒛 ,
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𝝏𝝏𝒓𝒓 −
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𝝏𝝏𝒓𝒓 ,

𝟏𝟏
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𝝏𝝏 𝒓𝒓𝒖𝒖𝜽𝜽
𝝏𝝏𝝏𝝏 −

𝝏𝝏𝒖𝒖𝒓𝒓
𝝏𝝏𝝏𝝏 = 𝟎𝟎,𝟎𝟎,𝟎𝟎 ∀𝒓𝒓 > 𝟎𝟎

𝛁𝛁.𝒖𝒖 =
𝟏𝟏
𝒓𝒓
𝝏𝝏 𝒓𝒓𝒖𝒖𝒓𝒓
𝝏𝝏𝒓𝒓 +

𝟏𝟏
𝒓𝒓
𝝏𝝏𝒖𝒖𝜽𝜽
𝝏𝝏𝝏𝝏 +

𝝏𝝏𝒖𝒖𝒛𝒛
𝝏𝝏𝒛𝒛 = 𝟎𝟎

We may verify that the flow is incompressible 𝛁𝛁.𝒖𝒖 = 𝟎𝟎 and irrotational 𝛁𝛁 × 𝒖𝒖 = 𝟎𝟎



Vortices – Source of cavitation and vibration

Aeroelasticity & FSI Chap 7.1          Cavitation: Chap 5.1 Fall 2024 EPFL - SGM - M. FarhatPage 4

• Free vortex (potential flow): 

• Pressure field : 
• Navier-Stokes in cylindrical coordinates (radial equilibrium): 

Integration 

• Alternate method - Bernoulli equation:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜌𝜌

𝑢𝑢𝜃𝜃2

𝑟𝑟 = 𝜌𝜌
Γ2

4𝜋𝜋2𝑟𝑟3

𝑝𝑝 𝑟𝑟 = 𝑝𝑝∞ −
𝜌𝜌Γ2

8𝜋𝜋2𝑟𝑟2

Since the flow is irrotational and steady, Bernoulli equation reads: 

∀𝑟𝑟 > 0, 𝑝𝑝 𝑟𝑟 + 𝜌𝜌
𝑢𝑢𝜃𝜃2

2
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

⟹ ∀𝑟𝑟 > 0, 𝑝𝑝 𝑟𝑟 = 𝑝𝑝∞ − 𝜌𝜌
𝑢𝑢𝜃𝜃2

2
= 𝑝𝑝∞ −

𝜌𝜌Γ2

8𝜋𝜋2𝑟𝑟2
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• Free vortex (potential flow): 

• Pressure field : ∀𝑟𝑟 > 0, 𝑝𝑝 𝑟𝑟 = 𝑝𝑝∞ − 𝜌𝜌
𝑢𝑢𝜃𝜃2

2 = 𝑝𝑝∞ −
𝜌𝜌Γ2

8𝜋𝜋2𝑟𝑟2

Limitations: lim
r→0

uθ r = +∞ and lim
r→0

p r = −∞
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• Observation of vortices in real life leads to the following: 
• Far from the vortex axis, the flow is irrotational
• As we approach the axis, the flow becomes rotational and its velocity
decreases gradualy to vanish on the axis. 
• The maximum velocity is reached at the border between rotational and 
irrotational domains
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• Rankine model: 
• Close to the axis, the viscous forces 
limits the velocity
• Velocity field:

where 𝜞𝜞 is the circulation: 

• Continuity of the velocity at 𝒓𝒓 = 𝒂𝒂 ∶ 𝝎𝝎𝝎𝝎 = 𝜞𝜞
𝟐𝟐𝝅𝝅𝝅𝝅

⇒ 𝜞𝜞 = 𝟐𝟐𝝅𝝅𝝅𝝅𝒂𝒂𝟐𝟐

𝒓𝒓 ≥ 𝒂𝒂, 𝒖𝒖𝜽𝜽 =
𝜞𝜞
𝟐𝟐𝟐𝟐𝟐𝟐

𝒓𝒓 ≤ 𝒂𝒂, 𝒖𝒖𝜽𝜽 = 𝝎𝝎𝝎𝝎

𝚪𝚪 = �
𝟎𝟎

𝟐𝟐𝟐𝟐
𝒖𝒖𝜽𝜽 𝒓𝒓𝒓𝒓𝒓𝒓

a: Viscous core

𝐶𝐶𝑝𝑝 𝑟𝑟 =
𝑝𝑝 𝑟𝑟 − 𝑝𝑝∞
1
2𝜌𝜌

Γ
2𝜋𝜋𝜋𝜋

2

𝐶𝐶𝐶𝐶

𝑢𝑢𝜃𝜃
Γ/2𝜋𝜋𝜋𝜋
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• Rankine model: 
• Pressure field (Navier Stokes)

• Integration:  

• Limitation: Discontinuity of the velocity derivative at 𝒓𝒓 = 𝒂𝒂
• About Bernoulli equation: In the viscous core, the flow is rotational 
and Bernoulli equation is only valid along a streamline (useless)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜌𝜌

𝑢𝑢𝜃𝜃2

𝑟𝑟

𝑟𝑟 ≥ 𝑎𝑎, 𝑝𝑝 𝑟𝑟 = 𝑝𝑝∞ −
𝜌𝜌Γ2

8𝜋𝜋2𝑟𝑟2

𝑟𝑟 ≤ 𝑎𝑎, 𝑝𝑝 𝑟𝑟 = 𝑝𝑝∞ −
𝜌𝜌Γ2

8𝜋𝜋2𝑎𝑎2
2 −

𝑟𝑟2

𝑎𝑎2

𝐶𝐶𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 = −2

a: Viscous core

𝐶𝐶𝐶𝐶

𝑢𝑢𝜃𝜃
Γ/2𝜋𝜋𝜋𝜋

𝐶𝐶𝑝𝑝 𝑟𝑟 =
𝑝𝑝 𝑟𝑟 − 𝑝𝑝∞
1
2𝜌𝜌

Γ
2𝜋𝜋𝜋𝜋

2
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• Lamb-Oseen model: 
• Velocity field: 

∀𝑟𝑟 > 0, 𝑢𝑢𝜃𝜃 =
Γ
2𝜋𝜋𝜋𝜋 1 − 𝑒𝑒−𝜆𝜆𝑟𝑟2/𝑎𝑎2

Where 𝜆𝜆 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝜆𝜆 ≈ 1.256)

𝑟𝑟/𝑎𝑎[−]

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑟𝑟/𝑎𝑎[−]

 Smooth transition from rotational to irrotational flow 

𝑢𝑢𝜃𝜃,𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 0.715
Γ
2𝜋𝜋𝜋𝜋

More realistic models for vortex flows 

𝑢𝑢𝜃𝜃
Γ/2𝜋𝜋𝜋𝜋

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑟𝑟𝑟𝑟𝑟𝑟(𝑢𝑢)
Γ

2𝜋𝜋𝑎𝑎2
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• Lamb-Oseen model:  

• Pressure field: integration of  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜌𝜌 𝑢𝑢𝜃𝜃
2

𝑟𝑟

𝑝𝑝 𝑟𝑟 = 𝑝𝑝∞ − �
𝑟𝑟

+∞

𝜌𝜌
𝑢𝑢𝜃𝜃2

𝑟𝑟
𝑑𝑑𝑑𝑑 = 𝑝𝑝∞ − 𝜌𝜌

Γ
2𝜋𝜋𝑎𝑎

2

�
𝑟𝑟/𝑎𝑎

+∞ 1 − 𝑒𝑒−𝜆𝜆𝑠𝑠2/𝑎𝑎2
2

𝑠𝑠3/𝑎𝑎3
𝑑𝑑𝑠𝑠

… 𝐶𝐶𝐶𝐶 𝑟𝑟∗ =
𝑝𝑝 𝑟𝑟∗ − 𝑝𝑝∞
1
2𝜌𝜌

Γ
2𝜋𝜋𝑎𝑎

2 = 2𝜆𝜆𝐸𝐸𝐸𝐸 −𝜆𝜆𝑟𝑟∗2 − 2𝜆𝜆𝜆𝜆𝜆𝜆 −2𝜆𝜆𝑟𝑟∗2 +
2𝑒𝑒−𝜆𝜆𝑟𝑟∗

2
− 𝑒𝑒−2𝜆𝜆𝑟𝑟∗

2
− 1

𝑟𝑟∗2

𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ≈ −1.7412

Where 𝐸𝐸𝑖𝑖 stands for the Exponential Integral, defined by: 𝐸𝐸𝐸𝐸 𝑥𝑥 = ∫−∞
𝑥𝑥 𝑒𝑒𝑠𝑠

𝑠𝑠
𝑑𝑑𝑑𝑑 and  𝑟𝑟∗ = 𝑟𝑟/𝑎𝑎

𝑟𝑟/𝑎𝑎[−]

𝐶𝐶𝐶𝐶
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• Vatistas Model 
• Velocity field: 

• Key parameters of the vortex
• a: Viscous core radius
• Γ: Circulation

• Other models are available (e.g. Batchelor, VM2, …)

∀𝑟𝑟 ≥ 0, 𝑢𝑢𝜃𝜃 =
Γ
2𝜋𝜋

𝑟𝑟
𝑎𝑎2𝑛𝑛 +𝑟𝑟2𝑛𝑛 1/𝑛𝑛

Where n 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟/𝑎𝑎[−]

𝑢𝑢𝜃𝜃
Γ/2πa

[-]
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•The motion of stars in a galaxy looks like a vortex
• It is possible to fit a vortex model to describe the motion of stars ?  

Similarity with astrophysics

Milky way Sink (Lavabo)
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Tip vortex cavitation (TVC) on an elliptic hydrofoil

Upstream velocity (𝑈𝑈∞): 13.5 m/s, Incidence: 10°

Where σ is the cavitation number, defined as:
With 𝑝𝑝𝑣𝑣 is the vapor pressure 

σ = 2 σ = 1.5 σ = 1.3 σ = 1 σ = 0.8

Example: Tip Vortex Cavitation

80 mm

Fl
ow

𝜎𝜎 =
𝑝𝑝∞ − 𝑝𝑝𝑣𝑣
1
2𝜌𝜌𝑈𝑈∞

2
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Velocity profiles downstream an elliptic foil, measured with LDV
Lamb-Oseen model is used to fit the experimental data

Example: Tip Vortex Cavitation

Γ

Γ

Γ
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Example: Super Typhoon Haiyan, Philippines, November 2013

• Maximum wind speed ~ 360 km/h
• Pressure in the vortex axis ?

• Assumptions: 
• Air density ρ = 1 kg/m3

• Atm. pressure = 1000 ℎ𝑃𝑃𝑃𝑃
• 2D flow 

• Rankine model:  

𝑝𝑝 𝑟𝑟 = 0 = 𝑝𝑝∞ −
𝜌𝜌Γ2

4𝜋𝜋2𝑎𝑎2 = 𝑝𝑝∞ − 𝜌𝜌𝑢𝑢𝜃𝜃,𝑚𝑚𝑚𝑚𝑚𝑚
2 ≈ 900 ℎ𝑃𝑃𝑃𝑃

250 𝑘𝑘𝑘𝑘

Hainan
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Example: Super Typhoon Haiyan, Philippines, November 2013
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• Placed in a fluid stream, bodies generate separated flow that extends to 
their wake with a possible formation of alternate vortices (Kàrman vortices)
 Fluctuating lift  Vibration

• Example of Karman vortices in the wake of a stainless steel Naca0009 
hydrofoil with a blunt trailing edge
Velocity: 13 m/s; 0° incidence angle; resonance (first torsional mode)

U = 13 m/s, α = 0°

5 mm

Wake dynamics: 
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U = 9.5 m/s, α = 0°

5 mm

• Placed in a fluid stream, bodies generate separated flow that extends to 
their wake with a possible formation of alternate vortices (Kàrman vortices)
 Fluctuating lift  Vibration

• Example of Karman vortices in the wake of a POM Naca0009 hydrofoil with
a blunt trailing edge
Velocity: 9.5 m/s; 0° incidence angle; resonance (second torsional mode)

Wake dynamics: 
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• Placed in a fluid stream, bodies generate separated flow that extends to 
their wake with a possible formation of alternate vortices (Kàrman vortices)
 Fluctuating lift  Vibration

• Example: Karman vortices in the wake of a Kaplan turbine blades
The vortices are visible because of cavitation occurrence

Wake dynamics: 
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U = 13 m/s, α = 0°

Wake dynamics: 
• Placed in a fluid stream, bodies generate separated flow that extends to 

their wake with a possible formation of alternate vortices (Kàrman vortices)
 Fluctuating lift  Vibration

• Example: Karman vortices in the wake of Madeira and Canary islands
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• Shedding Frequency fs ?
• Dimensional analysis  𝑭𝑭

𝒇𝒇𝒔𝒔𝑫𝑫
𝑼𝑼∞

,
𝝆𝝆𝑼𝑼∞𝑫𝑫
𝝁𝝁

= 𝟎𝟎

St
Strouhal Number

Re
Reynolds Number

Wake dynamics: The case of a flow over a cylinder
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𝑹𝑹𝒆𝒆 < 𝟓𝟓: Laminar flow with 2 stagnation points. The flow
moves smoothly around the obstacle without separation.

𝟓𝟓 𝒕𝒕𝒕𝒕 𝟏𝟏𝟏𝟏 < 𝑹𝑹𝒆𝒆 < 𝟒𝟒𝟒𝟒: Laminar flow with the formation of 
fixed pair  of vortices in the wake

𝟒𝟒𝟒𝟒 < 𝑹𝑹𝒆𝒆 < 𝟗𝟗𝟗𝟗 𝑨𝑨𝑨𝑨𝑨𝑨 𝟗𝟗𝟗𝟗 < 𝑹𝑹𝒆𝒆 < 𝟏𝟏𝟏𝟏𝟎𝟎: 
Two regimes in which vortex street is laminar

𝟏𝟏𝟏𝟏𝟏𝟏 < 𝑹𝑹𝒆𝒆 < 𝟑𝟑𝟑𝟑𝟑𝟑: Transition range to turbulent shedding

𝟑𝟑𝟑𝟑𝟑𝟑 < 𝑹𝑹𝒆𝒆 < 𝟑𝟑 𝟏𝟏𝟏𝟏𝟓𝟓: Vortex street is fully turbulent

𝟑𝟑 𝟏𝟏𝟏𝟏𝟓𝟓 < 𝑹𝑹𝒆𝒆 < 𝟑𝟑.𝟓𝟓 𝟏𝟏𝟏𝟏𝟔𝟔: Laminar boundary layer has 
undergone turbulent transition and wake is narrower and 
disorganized. This coincides with the so-called drag crisis

𝑹𝑹𝒆𝒆 > 𝟑𝟑.𝟓𝟓 𝟏𝟏𝟏𝟏𝟔𝟔: Re-establishment of turbulent vortex street

Wake dynamics: The case of a flow over a cylinder
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• The mutual interaction between the two separating shear layers leads 
to the formation of a vortes, which continues to grow, fed by circulation 
from its connected shear layer, until it is strong enough to draw the 
opposing shear layer across the wake. 

• The alternate shedding of vortices is the result of a complex interaction 
between 3 shear layers: (i) The boundary layer, (ii) the formation region 
and (iii) the wake. 

Vortex-formation model, Gerrard (1966)

𝑼𝑼∞
D

Wake dynamics: The case of a flow over a cylinder
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Wake dynamics: The case of a flow over a cylinder

• Shedding frequency (f): 
• Function of Reynolds and Strouhal numbers: 

• Empirical relation : 

𝑺𝑺𝑺𝑺 =
𝒇𝒇𝒔𝒔𝑫𝑫
𝑼𝑼∞

,𝑹𝑹𝒆𝒆 =
𝝆𝝆𝑼𝑼∞𝑫𝑫
𝝁𝝁

St(Re)

𝑹𝑹𝒆𝒆

𝑺𝑺𝑺𝑺
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• Vortex shedding, Initial Theory by Von Karman, 1911

From Aerodynamics, By Theodor Von Karman,Oxford Univ. Press,  1963

…

…
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• Initial Theory, by Von Karman, 1911
• Stability conditions: 

• Alternate shedding

• Constant ratio between streamwise and spanwise vortex spacings

𝑩𝑩
𝑨𝑨

= 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐

• Relationship between advection velocity, vortex intensity and spacing

𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂 = −
𝚪𝚪
𝟐𝟐𝟐𝟐

tanh
𝝅𝝅𝝅𝝅
𝑨𝑨

A
B

Wake dynamics: The case of a flow over a cylinder
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• Case f a cylinder in EPFL Cavitation Tunnel (semester project 2021)
• Stainless steel, made from one bloc of metal

• Several cylinders made of assembly of 2 parts were destroyed because
of too much vibration !!

• 25 mm diameter, 150 mm span
• Measurement of vibration, Lift&Drag, High-speed visulization

Vortex Induced Vibration
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• Case f a cylinder in EPFL Cavitation Tunnel (semester project 2021)
• Evidence of drag crisis (Cavitation free) 

• Upstream velocity vs Rotation speed of the pump
• Constant acceleration of the pump during 3 minutes

• Sudden increase around Re=250’000
• Due to a sudden drop of the cylinder drag

Vortex Induced Vibration
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• Case f a cylinder in EPFL Cavitation Tunnel (semester project 2021)
• Evidence of drag crisis

• Drag force and drag coefficient vs Reynolds number
• Significant decrease of the drag force around Re=250’000

• Due to a delay in boundary layer separation
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Vortex Induced Vibration
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Time [s]

• Case f a cylinder in EPFL Cavitation Tunnel (semester project 2021)
• Flow induced vibration (upstream velocity 3.6  13 m/s)

• No significant increase of vibration at onset or beyond drag crisis
• Strouhal frequency dominant before drag crisis (St~0.2)
• Wake less organized beyond drag crisis

Vortex Induced Vibration
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• Case f a cylinder in EPFL Cavitation Tunnel (semester project 2021)
• Effect of cavitation on fluid-structure vibration: 

• Cavitation occurrence in the wake
 the vortices are more coherent
 A tremendous increase of vibration

• Supercavitation:
 No vortex shedding
Minimum vibration
Minimum drag

• Further research is underway to 
understand these peculiar effects

Vortex Induced Vibration
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• Case f a cylinder in EPFL Cavitation Tunnel (semester project 2021)
• Effect of cavitation on fluid-structure interaction: 

Drag induced instability : Drag Crisis
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• Wake structure (similar to the Cylinder case)
• Vortex formation region 𝒍𝒍𝒇𝒇 :

• bound by X-Position of maximum streamwise velocity fluctuation 
• Wake width (𝒚𝒚𝒇𝒇) : 

• Distance between the streamwise velocity fluctuations maxima
• 𝒚𝒚𝒇𝒇 = 𝟒𝟒𝟒𝟒, where a is the viscous core of karman vortices

Trailing edge

Hydrofoil

The case of a flow over a hydrofoil
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• Experimental investigations

• 2D NACA0009 hydrofoil in the EPFL high speed cavitation tunnel

• Blunt trailing edge 

• Smooth and rough leading edge

Test section

The case of a flow over a hydrofoil
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• Surface roughness – Definition
• Ra: Arithmetic Mean Roughness

Ra is the average value of all absolute distances of the roughness profile from 
the center line within the measuring length

• Rz: Average Maximum Peak to Valley
Rz is the average maximum peak-to-valley of five consecutive sampling lengths 
within the measuring length

1 2 3 4 51 5( ) 1.5 mRz Z Z Z Z Z µ= + + + + =

• Boundary layer tripping through leading edge roughness

The case of a flow over a hydrofoil
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• Boundary layer tripping through leading edge roughness

• Natural transition to turbulence
Polished surface (RZ~2 µm)
Foil hydraulically smooth (H. Schlichting)

• Tripped transition to turbulence
Glue + 125 µm diameter sand
Transition to turbulence (H.L. Dryden: ) :

 transition to turbulence occurs for upstream velocity above 6 m/s

𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓𝑹𝑹𝒛𝒛
𝝊𝝊

< 𝟏𝟏𝟏𝟏𝟏𝟏
⟹ 𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓 < 𝟓𝟓𝟓𝟓𝒎𝒎/𝒔𝒔

k is the mean of roughness height ~ 150 µm 
𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓𝒌𝒌
𝝊𝝊

> 𝟗𝟗𝟗𝟗𝟗𝟗

The case of a flow over a hydrofoil
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• Laser Doppler Velocimetry (LDV)
• Seeding: 10 µm diameter hollow glass spheres
• Laser light: 10 W argon-ions source
• Ellipsoidal measurement volume:

diameter: 0.074 mm;  length: 1.3 mm

• Velocity profiles: 

0.9
x/L
0.1 0.2 0.3 0.4 0.7

0.95
0.99 

2h
lf

Boundary layer Wake

y/h
0.33

3h

1h
lf: Length of vortex 

formation region

0.6

4h
5h 10h

0.75 0.85
0.8

Formation
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1.307
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z

mm

mm

δ δ

δ
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The case of a flow over a hydrofoil
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• Vibration measurements: 
• Piezoelectric accelerometer fitted on the hydrofoil support
• Non intrusive Laser Doppler Vibrometer (Polytec PDV100)

• Hydrofoil eigen mode identification: 
• Accelerometer: Fixed position 

• Reference signal  
• Laser vibrometer: 

• Multiple measurement points

The case of a flow over a hydrofoil
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 99% boundary layer thickness:

𝜹𝜹 = |𝒚𝒚 𝑪𝑪𝒙𝒙=𝟎𝟎.𝟗𝟗𝟗𝟗𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓

 Displacement thickness:

 Momentum thickness:

 Form (or Shape) factor:  
Provides an indication of the boundary layer state (laminar or turbulent)

Boundary layer properties

𝜹𝜹𝟏𝟏 = �
𝟎𝟎

𝜹𝜹
𝟏𝟏 −

𝑪𝑪𝒙𝒙
𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓

𝒅𝒅𝒅𝒅

𝜹𝜹𝟐𝟐 = �
𝟎𝟎

𝜹𝜹
𝟏𝟏 −

𝑪𝑪𝒙𝒙
𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓

𝑪𝑪𝒙𝒙
𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓

𝒅𝒅𝒅𝒅

𝑯𝑯𝟏𝟏𝟏𝟏 =
𝜹𝜹𝟏𝟏
𝜹𝜹𝟐𝟐

𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓

𝑥𝑥

Definition: “A thin layer of the fluid close to a boundary surface where the 
viscous forces are dominant”
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Boundary layer on a flat plate

𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓

Symbol Laminar flow1 Turbulent flow2

Boundary layer thickness 𝜹𝜹(𝒙𝒙) 𝟓𝟓.𝟎𝟎 𝒙𝒙 𝑹𝑹𝑹𝑹𝒙𝒙−𝟏𝟏/𝟐𝟐 𝟎𝟎.𝟑𝟑𝟑𝟑 𝒙𝒙 𝑹𝑹𝑹𝑹𝒙𝒙−𝟏𝟏/𝟓𝟓

Boundary layer displacement thickness 𝜹𝜹𝟏𝟏(𝒙𝒙) 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑 𝜹𝜹(𝒙𝒙) 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏 𝜹𝜹(𝒙𝒙)
Boundary layer momentum thickness 𝜹𝜹𝟐𝟐(𝒙𝒙) 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏 𝜹𝜹(𝒙𝒙) 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝜹𝜹(𝒙𝒙)
Form factor 𝑯𝑯𝟏𝟏,𝟐𝟐 𝟐𝟐.𝟓𝟓𝟓𝟓 𝟏𝟏.𝟑𝟑 − 𝟏𝟏.𝟒𝟒
Skin friction coefficient 𝒄𝒄𝒇𝒇 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔 𝑹𝑹𝑹𝑹𝒙𝒙−𝟏𝟏/𝟐𝟐 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝑹𝑹𝑹𝑹𝒙𝒙−𝟏𝟏/𝟓𝟓

1 Blasius Theory;    2 Empirical 

Where 𝑹𝑹𝑹𝑹𝒙𝒙 is defined by: 𝑹𝑹𝑹𝑹𝒙𝒙=
𝜌𝜌𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓𝑥𝑥
𝜇𝜇

Boundary layer properties
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 Tripped transition: δ significantly increases

 Reynolds effects: For increasing Cref
- Natural transition: δ increases (transition point moves upstream)
- Tripped transition: δ decreases

• Boundary layer vs Reynolds number
• Time-averaged velocity profiles: Trailing edge

Velocity profiles: shifted on the horizontal axis for clarity

Effect of the boundary layer on vortex shedding
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Form factor (H12)

Laminar BL: 2.6

Turbulent BL: 1.5

Boundary layer thickness (δ)

 Natural transition: up to 14 m/s , H12 transitional boundary layer
then, H12 tends to turbulent value A natural transition occurs along the chord
 Tripped transition: Turbulent BL at the leading edge for all tested velocities 

• Boundary layer flow
• Time-averaged velocity profiles: Trailing edge

Effect of the boundary layer on vortex shedding
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Boundary layer flow
• Natural transition (Location of the transition point ?)

• Measurement of 𝜹𝜹𝑻𝑻.𝑬𝑬. Evaluation of 𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

• Benchmark condition: Cref = 20 m/s, transition at 0.85L
• Extrapolation Natural transition at leading edge for Cref = 40 m/s

• Tripped transition: Fully turbulent flow at leading edge

Flat plate boundary layer, Schlichting (1979)

𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 : Location of BL transition to turbulence
𝜹𝜹𝑻𝑻.𝑬𝑬.: Boundary layer thickness at the trailing edge

L: Chord length

Effect of the boundary layer on vortex shedding

𝑹𝑹𝑹𝑹𝒙𝒙=
𝜌𝜌𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓𝑥𝑥
𝜇𝜇

Laminar flow Turbulent flow

𝜹𝜹(𝒙𝒙) 𝟓𝟓.𝟎𝟎 𝒙𝒙 𝑹𝑹𝑹𝑹𝒙𝒙−𝟏𝟏/𝟐𝟐 𝟎𝟎.𝟑𝟑𝟑𝟑 𝒙𝒙 𝑹𝑹𝑹𝑹𝒙𝒙−𝟏𝟏/𝟓𝟓
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 Natural transition: δ increases with increasing distance from leading edge

 Tripped transition: Larger growth of the BL thickness compared to natural case

• Boundary layer flow
• Development along the hydrofoil chord
• Time-averaged velocity profiles (Cref=20 m/s)

 Velocity profiles: shifted on the horizontal axis for clarity

Effect of the boundary layer on vortex shedding
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 Natural transition:
 Form factor decreases from 2.5 (Laminar BL) to 1.6 (Turbulent BL)

Natural turbulent boundary layer transition @ 0.8 L
 Tripped transition: Mean H12 ~ 1.46 : Turbulent BL develops along the entire chord

• Boundary layer flow
• Development along the hydrofoil chord
• Natural and tripped transitions (Cref=20 m/s)

Turbulent BL: 1.5

Laminar BL: 2.6

Effect of the boundary layer on vortex shedding
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• Vortex-induced vibration and vortex shedding frequency
• Vibration spectra at different Reynolds numbers (natural and tripped transition)

Tripped vs. Natural transition

- Decrease of shedding frequency (22%)

- Increase of the vortex-induced vibration

 Strouhal behavior
fs evolves linearly with Cref

 Resonance
 Lock-in

Effect of the boundary layer on vortex shedding
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• Vortex shedding frequency and Strouhal number

Lock-in

0.24SmoothSt = 0.18RoughSt =

Effect of the boundary layer on vortex shedding
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• Smooth leading edge – Lock-in 

• 1st torsional mode : Large vibration amplitude

Lock-in 

Effect of the boundary layer on vortex shedding
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Vibration amplitude correlates 
well with vortex patterns: 

• 3D pattern  lower vibration
• Loss of coherence

• 2D pattern  Higher vibration 
• More coherent structures

• Wake structure – Natural transition – Lock-off

Effect of the boundary layer on vortex shedding



Vortices – Source of cavitation and vibration

Aeroelasticity & FSI Chap 7.1          Cavitation: Chap 5.1 Fall 2024 EPFL - SGM - M. FarhatPage 50

Tripped transition: 

 Larger vibration amplitude

 Enhance vortex spanwise
organization

 Promotes parallel vortex 
shedding

• Wake structure – Tripped transition – Lock-off

Effect of the boundary layer on vortex shedding
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• Wake structure – Lock-in - Natural vs. Tripped transition:
• Vibration signal almost sinusoidal and parallel vortex shedding for both BL transitions
• Vibration amplitude larger for tripped transition

Effect of the boundary layer on vortex shedding
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• Vortex strength:
• Using Rankine model for vortex velocity distribution

• Tripped transition: Vortices have more strength because of the 
enhanced spanwise organization  increased vibration

Effect of the boundary layer on vortex shedding
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• Universal scaling law (Griffin Number):
• Based on vortex formation length: 

• For natural and tripped transitions:
• Constant Griffin number: 

𝑺𝑺𝑺𝑺𝒚𝒚𝒚𝒚 =
𝒇𝒇𝒔𝒔𝒚𝒚𝒇𝒇
𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓

𝑺𝑺𝑺𝑺𝒚𝒚𝒚𝒚 ≈ 𝟎𝟎.𝟏𝟏𝟏𝟏

Effect of the boundary layer on vortex shedding
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• Universal scaling law (Roshko Number):
• Replace the inertia time (h/Cref) by diffusion time (h2/ν)

 Natural and tripped transitions: Single linear law when d1 is taken into account
 Rosko number more appropriate for the scaling than Strouhal number

But not straightforward (boundary layer thickness is not always known)

Effect of the boundary layer on vortex shedding
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• A variety of trailing edge (T.E.) 
geometries have been tested

• Relative vibration amplitude is 
reported in comparison with 
baseline hydrofoil with blunt T.E.

• Some of the shapes cut the 
vibration amplitude by 2 orders 
of magnitude

Effect of trailing edge shape on vortex induced vibration

Ref.: Donaldson, J. of Eng. for Power, 1956
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2. Oblique T.E.

• Experimental Setup – Case study

• 3 NACA0009 hydrofoils with:
1. Blunt (truncated) trailing edge
2. Oblique trailing edge
3. Rounded (Donaldson) trailing edge

• Natural and tripped boundary layer transition

Effect of trailing edge shape on vortex induced vibration

1. Blunt T.E. 3. DonaldsonT.E.

3rd degree 
polynomial

1.8 T

T
M
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• Maximum vibration with the truncated trailing edge

• Minimum vibration with Donaldson Trailing Edge

• No lock-in (Hydro-elastic coupling) with Donaldson trailing edge

Truncated Trailing Edge Oblique Trailing Edge Donaldson Trailing Edge

Effect of trailing edge shape on vortex induced vibration
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• Linear relationship between shedding frequency and upstream velocity, 
except under Lock-in condition for truncated and oblique T. E.

• Lock-in (shedding frequency locked on the torsion mode of the hydrofoil) :

• Truncated TE: 11- 14 m/s

• Oblique TE : 12-15 m/s

• Donaldson TE: No lock-in  

Effect of trailing edge shape on flow shedding frequency
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For all trailing edges: 
• Decrease of velocity deficit along the wake

more pronounced with Donaldson TE
Truncated TE: Symmetric wake
Oblique and Donaldson TE: Asymmetric wake

Velocity Profiles along the wake (Lock-in)

Effect of trailing edge shape on wake dynamics
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High speed visualization of cavitating vortices (Truncated TE., Lock-in)

• Alternate shedding with lower and upper vortices of the same size.

Cref=12 m/s, σ = 0.87

Effect of trailing edge shape on wake dynamics
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High speed visualization of cavitating vortices (Oblique T. E., Lock-in)

• Upper vortex coincides with the passage of lower vortex during the rolling up
Spatial shift  collision between upper and lower vortices (cancellation)

• The vorticity less concentrated within the core of Karman vortices. 

 Decrease of induced vibration level

Effect of trailing edge shape on wake dynamics

Oblique trailing edge

Flow 1 mm

Velocity=13 m/s (Lock-in), σ=0.6
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• Instantaneous velocity profiles (LDV)

Truncated TE: Similarity of upper and lower vortices

Oblique trailing edge:
Larger vortex core diameter in comparison with truncated T. E.
Larger vortex core of lower vortices compared to upper vortices

Effect of trailing edge shape on wake dynamics
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High speed visualization of the wake dynamic for Donaldson TE
• Strong collision between upper and lower vortices 
• Most part of the lower vortex is destroyed by upper vortex 
• Less vorticity concentration within the core of vortices
• Very efficient in reducing flow induced vibration

Effect of trailing edge shape on wake dynamics

Flow 

Donaldson 
trailing edge

Velocity=14.5 m/s (Resonance), σ=0.8
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