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Dynamics of a Cavitation Bubble

Rayleigh Model

Historical Facts:
Published by Lord Rayleigh in 1917 (available in Moodle):

“On the pressure developed in a liquid during the collapse of a spherical bubble”,
Philosophical Magazine Series 6, 1917

Rayleigh cited the work previously published by W. H. Besant:
“A Treatise on Hydrostatics and Hydrodynamics”, 1859

W. H. Besant cited the Senate-House Problems, Friday January 8th, 1847

Senate house problems is a distinctive written examination of undergraduate
students of the University of Cambridge. It consisted of 16 papers spread over 8
days, totaling 44.5 hours. The total number of questions was 211. The actual marks
for the exams were never published, but there is reference to an exam in the 1860s
where, out of a total possible mark of 17,000, the best student achieved 7634, the
second 4123, the lowest around 1500.
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Senate-House Problems, Cambridge, 1847
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THE SENATE-HOUSE EXAMINATION

FOR

DEGREES IN HONORS,
1847.

EXAMINERS FOR HONORS:

S¥oberators;
ADAMS, JOHN COUCH, M.A., (B.a. 1843) St. John's college.
STOKES, Rev. GEORGE GABRIEL, M.A,, (B.A. 1841) Pembroke college.

Examiners.
MATHISON, Rev. WILLIAM COLLINGS, M.A. (8.a. 1839) Trinity college.
SYKES, JOIN, M.A,, (8.a. 1841) Pembroke college.

Wepnespay, January 6, 1847.
Nine o’clock to half-past Eleven.

1. The opposite sides of a parallelogram are equal to one another, as are
also the opposite angles, and the parallelogram itself is bisected by its
diagonal.

lbf the four sides of a quadrilateral figure are equal to one another, the
diagonals bisect each other at right angles.

a. The angles in the same segment of a circle are equal to one another.

B. If gold can be beaten out so thin that a grain will form a leaf of 56
square inches, how many of these leaves will make an inch thick, the weight
of a cubic foot of gold being 10 cwt. 95 Ibs.?

4. Solve the equations,

1 z 8 z-1
O ‘
2 8z-2=8y-4z-=1.

. Find the sum of » terms of an arithmetic series.

The sum of » terms of an arithmetic series is pn + gn® whatever. be the
value of n ; find the st term. :

3. Find the number of variations which can be formed out of £ things
taken all together, when p are of one sort, ¢ of another, &c.

There are n of each of the m letters @, b, c...; find the whole number of
vat}ilations which can be made of them without taking more than 7 letters to-
gether.

4

«. Find the present value of a given half-yearly payment to continue for
any number of years, at a given rate per annum, compound interest.
8. Define a logarithm, and prove that

logzy =log z+logy, logz*=nloguz, lig;{:lo b=

log,z
Given log, 2 = *3010300, find log, 3 (-0125).
9. Express sin 4 + sin B and cos A4 + cos Bin products involving the sines
or cosines of 4 (4 + B) and } (4 - B).

Find all the solutions of the equation cos 8z + sin 8z =

A-B a-b C
2

log,a*

1
"k

=— cot -, and apply it to solve a

a+b 2’
triangle when two sides and the included angle are given.

Point out an objection to the use of this formula in the case in which @ and
b are nearly equal, and give another method of solntion to which this objec-
tion does not apply.

§. Find the length of the perpendicular let fall from the point (a, 4) upon
the straight line whose equation referred to rectangular axes is

Leosa+ysina=c

#. The tangents at the extremities of any chord of a parabola intersect in
the diameter which bisects the chord.

6. Find the locus of a point the sum of whose distances from two fixed
points is constant.

Shew how an ellipse whose semi-axes are 4 and 5 inches may be described
mechanically.

_d14. Express the cosine of an angle of a spherical triangle in terms of the
sides.

15. Given the base and vertical angle of an isosceles spherical triangle, find
the equal sides. .

A cube is turned round one of its diagonals through 180°: find the incli-
nation of the plane of one of the faces to the plane with which that face coin-
cided in its original position. )

16. If f(z) is any rational and integral function of z, prove that the highest
common factor of f(z) and f” (z) consists of the product of the simple factors
which occur more than once in f(z), each raised to a power one less than that
with which it occurs in f(z).

Find all the roots of the following equation, which contains equal roots,

82 +42° - 1822+ 112 -2 = 0.

10. Prove the formula tan

One o'clock to Four.

1. Assuming the parallelogram of forces for the direction, prove it for the
magnitude of the resultant. If the angle between two’ equal forces acting on
a point be 120°, what is their resultant?

2. Find the relation between the power and the weight on the Inclined
Pl]zlme, (1) when the power acts parallel to the plane, (2) when it acts horizon-
tally.

3).’ Find the centre of gravity of a triangle. Find also that of five equal
heavy particles placed at five of the angular points of a regular hexagon.
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«. Explain the two modes of measuring force in dynamics. What is the
ratid of the accelerating forces when equal pressures act on different bodies ?
If the numerical value of the accelerating force of gravity be g when a second
is taken for the unit of time, what is its numerical value when half a second is
taken for the unit?

B. A body is projected vertically downwards with a given velocity ; shew
that the space described in any time is equal to that which would be described
in the same time with a uniform velocity equal to half the sum of the veloci-
ties at the beginning and end of the time. ~Also find the velocity of the body
in terms of the space described.

. Prove that a body projected in any direction inclined to the vertical, and
acted on by gravity, will describe a parabola, and shew that the velocity at
any point 1s that which would be acquired in falling from the directrix.

If any number of bodies be projected in different directions from the same
point with equal velocities, shew that the foci of the parabolas described will
lie in the surface of a sphere.

3. State and prove Newton, Lemma X. How will the figure and the re-
sult be modified, if the force be a uniform one ?

e. If abody move in any orbit about a fixed centre of force, the areas de-
scribed by lines drawn from the centre to the body lie in one plane, and are
proportional to the times of describing them. Prove this, and shew that the
reasoning applies whether the force be attractive or repulsive.

¢. Find the velocity at any point of an ellipse described about a centre of
force in the focus. At what point is this velocity equal to that in a circle at
the same distance ?

10. Find the conditions which must be satisfied when a solid floats at rest
in a fluid.

11. Define specific gravity; and find the weight of a cubic inch of gla;§

whose specific gravity is 3.456, the weight of a cubic foot of water being a
thousand ounces.

12. Explain how a thermometer is graduated, and shew how to compare
the scales of two differently graduated thermometers. What is 20° centigrade
in Fahrenheit’s scale ?

13. Find the deviation of a ray after two successive reflections at plane
mirrors inclined to each other, the course of the ray lying in a plane perpen-
dicular to their line of intersection. What must be the first angle of inci-
dence, that at a third reflection the course of the ray may be exactly reversed ?

14. Find the relative index of refraction between two media, having given
the refractive index between each of them and a third. Does the demonstra-

tion hold for all angles of incidence and refraction at the common suface of the

two media ? .
15. Describe the simple astronomical telescope ; and shew that its magnify-

ing power is measured, (1) by the ratio of the focal length of the object glass-

to that of the eye glass, (2) by the ratio of the diameter of the object glass to
that of the emergent pencil.

7. Explain the reason why navigators in sailing round the world gain or
lose a day in their reckoning, according as they sail eastwards or westwards.

6. Explain the different modes of measuring time in use among astronomers.
Find the mean time at which a known star crosses the meridian.

«. Find the length of the day at any given place. What is the lowest lati-
tude at which the Sun does not set for 24 hours ?

6

Tuurspay, January 7, 1847.
Nine o'clock to half-past Eleven.

1. Prove the parallelogram of couples, shewing how the directions in which
the couples act in their own planes are taken into account.

2. Shew that the surface generated by the revolution of a plane curve about
an axis in its plane is equal to the rectangle of which the sides are the length
of the curve and the length of the path of its centre of gravity.

How must the enunciation be altered if the curve lie on both sides of the
axis ? -

a. Find the differential equation between « and 0 to the path of a body
under the action of a central force; and shew how the constants which occur
in its complete integral may be determined, when the velocity, distance, and
direction of projection are given.

4. When a heavy particle moves on a curve in a vertical plane, find the
pressure upon any point of the curve. i

If the particle move on the interior of a circle, find the pressure at the
lowest point when the velocity is just sufficient to carry the particle entirely
round.

B. State Kepler’s Laws. What information does each of them afford respect-
ing the force which retains the planets in their orbits ?

. A hollow cylinder closed at both ends is partly filled with a homogene-
ous liquid, not acted on by gravity, which revolves uniformly about the axis
of the cylinder ; find the force which tends to separate the two portions into
which tie cylinder is divided by an imaginary plane passing through its
axis.

7. When a mass of fluid is in equilibrium, prove that if the portion com-
prised between the free surface and any other surface of equal pressure be
removed, the equilibrium of the rest will not be affected, provided the forces
acting on the fluid do not depend on the mutual attraction of its parts.

Prove that such a portion can also be removed, if the surfaces of equal
pressure are similar and concentric ellipsoids, and the particles of the fluid
attract each other according to the law of gravitatiou.

3. When a ray of light passes through a prism denser than the surround-
ing medium, in a plane perpendicular to the edge of the prism, the devia-
tion is from the edge.

Ifa ray will not pass through when the prism is in the position of mini-
mum deviation, it will not pass through when the prism is in any other
position.

¢. When is a single lens said to be equivalent to a system of lenses through
which an excentrical pencil passes, the axis of the pencil before incidence be-

“ing nearly parallel to the axis of the lenses? Find the single lens equivalent

to two lenses separated by a given interval, and apply the result to Ramsd.: n’s
eye-piece when used with an object-glass of great focal length.

¢ The law of force in an orbit nearly circular being given, find an apprc «i-
mate value of the apsidal angle. Newton, Sect. 1x.

11. Shew that in consequence of the eccentricity of the Earth’s orbit, the ex-
cess of the Moon’s true longitude over the mean is greatest about three
months after the Earth has passed its aphelion, and greatest negatively about
three months after it has passed its perihelion.

n. When the vertical plane in wﬁich a transit instrument moves nearly
coincides with the meridian, find the deviation by observing the time of transit
of two known stars.
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‘What stars are the most eligible for the purpose ?

13. Shew how to determine the nadir point of a mural circle by observing
the cross wires directly, and by reflection in a trough of mercury.

14. Shew how to determine the latitude and the time by observing the
altitudes of two known stars.

One o’clock to Four.

1. Prove that
(a’rl’ + szl Wt cyli) (az,’-«- szm'/ at Oy:) - {azlzi +b (zxyz +zy l) + cylyz)’
= (ac - bz) (xlyi -y, 1)"

2. If all the odd numbers be arranged in order of magnitude, and then se-
parated into groups, so that the first group contains one number, the second
two, and so on, prove that the sum of the numbers in any group is equal to
the cube of the natural number which marks the order of the group.

3. A straight line and two circles are given ; find the point in the straight
line from which two tangents drawn to the circles shall be equal.

4. If r be the radius of the circle inscribed in a triangle, and 7,, 1,, r, the
radii of the circles inscribed between this circle and the sides containing the
angles 4, B, C respectively, prove that

Vg, + Vr, + Vi, = 1.

5. Find the locus of a point, such that if fromit a pair of tangents be drawn
to an ellipse, the product of the perpendiculars dropped from the foci upon
the line joining the points of contact shall be constant.

Also (feterm.me the curve to which the chord of contact is always a tangent.

6. A circular ring without weight, and having a heavy particle attached to
a point in its circumference, rolls without sliding on the concave side of a semi-
circle the plane of which is vertical, and the radius equal to the diameter of
the ring. Shew that every position of the ring, consistent with the condition
that the particle is initially somewhere in the horizontal diameter of the semi-
circle, is a position of statical equilibrium.

7. If v, v', ¢' be the velocities at three points P, @, R of the path of a pro-

jectile, where the inclinations to the horizon are «,« - 8, « — 28, and if ¢, # be

the times of describing PQ, QR respectively, shew that

o't-vt’,and—+—l;-2mss
o 0

——

8. Ifthree heavy particles be projected simultaneously from the same point
in any directions and with any velocities, prove that the plane passing through
them will always remain parallel to itself.

9. A particle is constrained to move in a circle, and is acted on by a force
tending to a fixed point and varying inversely as the distance ; prove that the
sumof the squares of the velocities of the particle at the extremities of any
cherd drawn through the centre of force is constant.

1). An elastic string, not acted on by gravity, is made to whirl with a given
angular velocity round one end which is fixed ; find the length to which.the
string will be stretched, and explain why the length becomes infinite for a
finite angular velocity.

11. A particle is describing an ellipse about a centre of force in the focus ;
when the particle is at a given point, the absolute force is slightly diminished,
find the consequent alterations of the semi-axis major, eccentricity, and posi-
tion of the apse.

8

If at the same time the square of the velocity had been diminished in the
same proportion as the absolute force, shew that the position and dimensions
of the orbit would have been unaffected.

12. Prove that the number of ways in which any number z can be com-
posed of » numbers (not necessarily different from each other), is equal to the
number of ways in which z can be composed of 7 and numbers not exceeding
n, the order in which the numbers occur not being considered.

\*

13. When z is any prime number, prove that the integral part of (cot 8)

— 2 is divisible by 4z, and that of (cot 112-). ~ 2% 4 1 is divisible by 62.
Also; when z and y are any odd numbers, prove that the integral part of
(v8y (cot —17;—2) is divisible by 6 as long as y is less than z; and if z be given

find the least value of y which makes the integral part of (v3) (cot %) not
divisible by 6. )

14. If the two pairs of opposite sides of a quadrilateral inscribed in a Conic
Section be produced to meet, and likewise the two pairs of tangents to the
curve drawn from the opposite angles of the quadrilateral, prove that the four
points of intersection will be in the same straight line,

Also if fromany pointinthe Conic Section perpendiculars be drawn to the sides
of the quadrilateral, prove that the product of the perpendiculars on one pair of
opposite sides is to the product of the perpendiculars on the other pair of
sides in a constant ratio.

15. In any Conic Sections if PQ, PR make equal angles with a fixed
chord PK, and QR be joined, prove that QR will pass through a fixed point
for all positions of PQ, PR. '

Apply this property to prove that if PQ, PR be any two chords of an
ellipsoid, in the same plane with, and inclined at the same angle to a fixed
chord PK, then the locus of all the possible intersections of PQ, P'Q’, &c.
will be the line PK and a plane curve.

16. If an ellipse be projected on a plané, prove that the projections of
any pair of conjugate diameters of the ellipse will be a pair of conjugate
diameters of its projection.

Also, having given the ratio of the axes of the original ellipse, and the

ratio of their projections on the given plane, together with the angles which

those projections make with a fixed line in that plane, determine the inclina-
tion of the plane of the ellipse to the fixed plane, and the angle which their
line of intersection makes with the fixed line.

17. At the point in which the surface

x? 2 yz 2

=-1)+ ( i 1) =
meets the axis of z, an elliptic paraboloid may be found, which has, at its
vertex, a complete contact of the third order with the surface.

18. If through any point P, within a spherical triangle ABC, great circles
be drawn from the angular points 4, B, C, to meet the opposite sides in
a, b, ¢ respectively, prove that

sin Pa.cos P4 sin Pb.cos PB sin Pc.cos PC _ 1
sin da * sin Bb sin Cc !
and thence deduce the corresponding property of a plane triangle.

2
prs

+1
C
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19. ABC, A'B'C' are two equal spherical triangles, the equal angles be-
ing placed in the same order; if the vertices of the equal angles be joined
by arcs of great circles 44, BB, CC', prove that the great circles
which bisect these arcs at right angles meet in a point, and that 44, BB',
CC’ subtend equal angles at that point.

20. Supposing the orbits of comets to be equably distributed through
space, prove that their mean inclination to the plane of the ecliptic is the
angle subtended by an arc equal to the radius.

21. Having given the ratio which the daily arc of retrogradation of a planet
when in opposition hears to the Sun’s daily motion, determine the distance
of the planet from the Sun, supposing the orbits of the Earth and planet to
be circular and in the same plane.

If the orbit of the planet be really an ellipse, find at what point of it the
planet must be at the time of observation, in order that the distance fonnd en
the above hypothesis may coincide with the true distance.

22. A tube of small bore, in the form of a circle, revolves about one of its
diameters as a fixed vertical axis, and contains a smooth particle ; the angu-
lar velocity with which the tube is set in motion is known, and the particle
starts from its highest position with a given velocity. Determine the an-
gular velocity of the tube, and that of the particle relatively to the tube, for
any given Fosition of the particle, and shew that there are three other
positions of the particle in the tube for which the angular velocity of the.
tube, and one other for which that of the particle is the same as for the
given position. :

23. If R be the radius of absolute curvature at any point of a curve defined
by the intersection of two surfaces v, = 0, u, =0, and 7,, r, be the radii of
curvature of the sections of % =0, %, =0 made by the tangent planes to
u, =0, u, = 0 respectively at that point, prove that R, r,, r, will be connected
by the relation

1 1 2cost

Ry o
1 lr’

¢ being the angle between the tangent planes.

1
e

Fripay, January 8, 1847.
Nine o'clock to half-past Eleven.

1. Similar triangles are to each other in the duplicate ratio of their homo-
logous sides. ‘
«. Draw a straight line perpendicular to a plane from a given point above
it. )
3. Find the positive integral values of zand y, which satisfy the equation
99z + 19y = 1900 ; and shew that the number of positive integral solutions
of the equation @z + by = ¢ cannot differ by more than unity from the greatest

. . €
integer contained in 3"
a

4. Find the two middle terms of the expansion of (2 + 2)*; and expand
a+z\. . .. .
a_—i‘) in ascending powers cf z, writing down the 2" term both when 2 is
odd and when it is even.

B. If the coefficients of an equation be rational, surd roots of the form
a + Vb enter by pairs, ani if va + V5 be one root, where va and V5 do not
B

[ tote.

10

involve the same surd part, the three other values obtained by changing the -
signs of va and vb will also be roots of the equation.

«v. Investigate the exponential expressions for sin 0, cos § and tan 0. State
what is taken for the unit of angular measure in these expressions, and apply
them to prove that
% sin 20 . 2’ sin 30

1.2 1.2.3

8. If from the several points of any straight line, the equation to which is
given, pairs of tangents be drawn to an ellipse, prove that the corresponding
¢hords of contact will all pass through a fixed point, and determine the co-
ordinates of that point.

What does this proposition become when the givenline passes through
the centre of the ellipse? .

«. Prove that the semi-conjugate axis of a hygerbolic section of a right
one is a mean proportional between the perpendiculars dropped from the
vertices of the hyperbola upon the axis of the cone.

§. Find the length of the perpendicular dropped from a given point apon
a given plane, and the projections of this perpendicular upon the co-ordinate
‘axes. N
10. Differentiate the following functions :

zsind+ + ...= €0 sin (2 sin §).

N e s
log, ﬂailf 'l n6+6,  and (’f)".

11. Shew how the differential calculus may be applied to determine the
limiting value of a fraction % which, for a particular value of 2, assumes
the form g Prove that the same rule applies if the fraction assume the
form &, and find by means of it the limiting values of sz when

o z - } sin 2z

a:-O,andl-o—i-fwhenz=w.

12. Find the expression for the radius of curvature in terms of p and r;
and shew that when the angle between the perpendicular and the radius

vector is a maximum or a minimum, the radius of curvature = _I; .
1 1 .

———, —————, and ¢™ sin mz; and find the value of

7-6 Fig v -

j #"e*dz, n being a positive integer.

o
n. Trace the curve y* = 2* . ‘aii:’ and shew that the whole area of the

18. Integrate

eurve = 4a*, the area being supposed to be bounded on one side by the asymp-

One o’clock to Four.

1. A boat’s crew row 3} miles downJa river and back again in 1>. 40™.;
supposing the river to have a current of 2 miles per hour, find the rate at
which the crew would row in still water.
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1-a >z R
1-a" 7™ : ‘

8. In the figure of Euclid, Book 1. Prop. 85, (Parallelograms on the same
base and between the same parallels are equal,) if two diagonals be drawn to
the two parallelograms respectively, one from each extremity of the base,
and the intersection of the diagonals be joined with the intersection of the
sides (or sides produced) in the figure, prove that the joining line will bisect
the base.

4. A piece of paper a mile long is rolled into a solid cylinder; find ap-
proximately the diameter of the cylinder, supposing 240 leaves of such papes
to have a thickness of one inch. .

5. PT, QT are two equal tangents to a parabola, P and Q being the points
of contact ; if PT, QT be both cut by a third tangent, prove that their al-
ternate segments will be equal.

6. Two concentric ellipses which have their axes in the same directions
intersect, and four common tangents are drawn so as to form a rhombus, and
the points of intersection of the ellipses are joined so as to form a rectangle ;
prove that the product of the areas of the rhombus and rectangle is equﬁ to
half the caontinued product of the four axes.

7. If ¢f (z)= 9F (z) for all values of z from a to b, and if ¢ be a quantity
not less than a nor greater than 4 such that f(c) = F(c), and f' (c), F'(c)
have opposite signs, prove that ¢ (y) is necessarily a maximum or minimum
when y = £(c).

8. An imperfectly elastic ball is projected with a given velocity from a

given paint in 2 smooth inclined plane; find the direction of projection in
order that the ball may cease to hop justas it returns to the poiat of pro-
jection.
! 9. A small plane touches a self-] paraboloid of revolution at its
vertex, and is then moved parallel to itself along the axis produced ; prove
that the illumination of the plane varies inversely as its distance from the
focus.

10. Three plane mirrors 4, B, C are parallel to the same straight line ;
find the position of a luminous point, which is so distant that parallax may
be neglected, in order that the rays reflected from 4 may be parallel to
those which are reflected from B and Cin succession.

11. Two heavy particles are connected by a light string, and immersed in
a fluid whose specific gravity is intermediate between thuse of the particles,
and which revolves uniformly about a fixed axis, and is not acted on by
gravity ; find the position of equilibrium of the particles relatively to the fluid,
and shew that when the equilibrium is possible it is stable.

12. A ray of light passes from air into a transparent prism of either single
or double refraction, and emerges after any number oF internal reflections ;
apply the principle of quickest propagation to prove that the emergent ray
3r rays are inclined to the edges of the prism at the same angle as the inci-

ent ray.

13. A system of ellipses is described such that each ellipse touches two
rectangular axes, to which its axes are parallel, and that the rectangle under
the axes of the ellipses is constant ; prove that each ellipse is touched by two
rectangular hyperbolas, the rectangle under the transverse axes of which is
equal to the rectapgle under:the axes of any one of the ellipses.

" 2. If a and z both lie between 0 and 1, prove that

12

34, There are two systems of curves which cut each other everywhere at
right angles; OM, NP are two curves of one system, ON, MP, are two of
the other, and the arc OM =2, ON=y, NP =%, MP =1, and p, ¢’ are the
radii of curvature of PN, PM at the point P; prove that

‘aE _ A _dEdy
Pdedy ° dedy ™ dzdy’
the differential coefficients being taken on the supposition that O remains
fixed while P alters.

15. The radius vector of any point in the surface of a solid differs from a
constant by a small quantity of the order «, and the angle which it makes
with the normal is of the same order; prove that if small quantities of the
order o' are neglected the sphere which has the same volume as the given
solid is also that which has the same surface.
~16. A "uniform flexible and inextensible heavy string 4B is laid in the
form of a circular arc on a smooth horizontal plane ; a given impulsive force
being applied at A4 in the direction of the tangent, find the impuYsiv'e tension
‘at any point, and shew that the direction of the initial motion of 4 makes
¢ — .

with the direction of the force an angle whose tangent =

angle which 4B subtends at the centre.
_. 17, Tangent planes to ’the surface whose equation, referred to rectangular

co-ordinates,-is z-: + % ‘*"Es =l pass ‘through @ point P ; prove that a sphere

o :* » « being the

-can be'described through the curve of contact provided P lie in a certain
right line passing through the origin. .

18. The equations to a system of right lines in space contain two arbi-
trary parameters ; prove that when the roots of a certain quadratic are real
and unequal, there are two planes passing through a given line of the system
which contain consecutive lines.

19. Find the value o'ff {"('"‘" N G d) '} ‘f: , where aand b are
[

positive, but « and B positive or negative; and shew thatitis wholly real

(-3
when;—-z,

20. Supposing the luminiferous ether to gravitate to the Sun, and to be in-
compressible and at rest, and supposing the velocity of light to vary by a
small quantity proportional to the pressure of the ether, shew that the obser-
ved times of the eclipses of Jupiter’s satellites will be affected by an inequality
expressed by ¢ log tan § (E + 8) cot } E, where ¢ is a constant, and E, §, are
two angles of the triangle ESJ.

21. A heavy particle is attached to a light string which passes over a hori-
zontal cylinder ; supposing the particle to perform smali finite oscillations in
a plane perpendicular to the axis of the cylinder, find approximately the cor-
rection to the time of oscillation due to the finite arc of oscillation, and shew
that it vanishes when the radius of the cylinder is to the length of string
hanging down as ¥8 to 2.

22. The refractive index () of a transparent medium varies continuously
from point to point; prove by means of the principle of quickest propagation,

Cavitation & Interface Phenomena: Chap 2.2
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THE SENATE-HOUSE EXAMINATION

13

or otherwise, that the differential equations to a ray of light within the me-
dium are

whete the differential coefficients of p are partial.

23. An infinite mass of homogeneous incompressible fluid acted on by fiv
forces is at rest, and a spherical portion of the fluid is suddenly annihilated ;
find the instantaneous alteration of pressure at any point of the mass, and

s . . [Bp\t [ A'dA
prove that the cavity will be filled up in the time(— ) @ —
C oVl - A’
is tire-initial radius of the sphere, and ® the pressure at an infinite-distance,
which is supposed mai astan

24. A narrow hoop is rolled along a rough horizontal plane in such a man-
ner as to move nearly in a vertical plane, but make small oacillations on each
side of it ; find the time of oscillation, and shew that oscillations of this sort
are not possible unless the velocity of the centre of the hoop be greater than
that due to one third of the radius.

, where a

SatTurpay, Januvary 9, 1847.
Nine o’clock to half-past Eleven.

. 1. 4B is a common chord of the segments 4CB, ADEB of two circles,
and through C, any point in 4ACB, are drawn the straight lines 4CE, BCD;
prove that the arc DE is invariable. .

2. If CP, CD be any conjugate diameters of an ellipse APBDA', and
BP, BD be joined, and also AD, A'P, these latter intersecting in O, shew
that BDOP is a parallelogram, and that its greatest areais ab (V2 - 1).

8. Find the limiting value of s | ¢’dx whenz=0.

o

4. A regular octahedron is inscribed in a cube, so that the corners of the
octahedron are in the centres of the faces of the cube; prove that the volume
of the cube is six times that of the octahedron.

5. A bucket partly filled with water is attached to a weight by a string
which passes over a fixed pully ; supposing the water to revolve with a given
angular velocity as the bucket is ascending or descending, find the form of the
free surface.

6. A body acted on by a central force P is moving in a medium whose re-
sistance = ¢ (velocity) ; prove that

d’r
-
where % is an arbitrary constant.

7. A plane drawn through a given point is illuminated by two self-luminous
spheres; find the position of the plane when the illumination at the given
_point is a maximum.

8. 044, is a spherical triangle, right-angled at 4,; the arc 4, 4, ofa
great circle is drawn perpendicular to 04, 4, 4, is drawn perpendicular to
0A,, and so on; prove that 4, 4,, vanishes when n becomes infinite, and
find the value of cos 4.4,.cos 4, 4,.cos 4, 4,... lo infinity.

9. Having given the times by a sidereal clock at which three known stars
are observed to have the same zenith distance, the absolute zenith distance

et dr
+P—;;e9‘+ca=0,

14

beingl gr;(known, find the latitude of the place of observation and the error of
the clock.

10. A circular disc is suspended by a fine wire attached to the centre, and
immersed horizontally in a fluid ; the wire being suddenly turned through a
given angle, determine the motion of the disc, supposing each element of the
surface acted on by a friction varying as the velocity, and shew that the suc-
cessive arcs described from rest to rest are in geometric progression. Shew
also that if the friction exceed a certain quantity the disc will not come to
rest at all.

11. A sphere touches each of two right lines which are inclined to each
other at a right angle, but do not intersect; prove that the locus of its centre
is a hyperbolic paraboloid. :

12. A slender rod suspended horizontally by two equal parallel strings
attached to two points equidistant from its ends oscillates round a vertical
line ; find the time of a small oscillation.

If in the position of equilibrium the strings are inclined at equal angles
to the vertical, shew that the time of oscillation is the same as it would be if
the strings were parallel, of a length equal ta the projection of either of them
on a vertical line, and at a distance equal to a mean proportional between
their distances at'the points of suspension and attachment respectively.

13. A given quantity of incompressible fluid is contained in an elastic sphe-
rical envelope, and just fills the space inclosed without stretching the enve-
lope ; if the particles of the fluid be acted on by a repulsive force varying in-
versely as the square of the distance from the centre, find the absolute force
when the space originally occupied by the fluid is left a vacuum.

14. A circle always touches the axis of z at the origin, and passes through
a fixed straight line in the plane of zy; find the equation to the surface gene-
rated. Shew that the origin is a singular point, and that in its immediate
neighbourhood the surface may be conceived to be generated by a circle
having its plane parallel to that of 2y, and its radius proportional to z*.

15. Pis a point in the base of a tetrahedron VABC, of which V is the
vertex, so taken that the volume of the parallelepiped constructed on VP as
diagonal, and having three of its edges coincident with ¥4, VB, VC,isa
maximum; supposing the base of the tetrahedron to turn in all directions
round a given point, while the edges adjacent to 7 remain fixed in position,
find the locus of P.

16. A sphere touches an elliptic paraboloid at the vertex, and has its dia-
meter a mean proportional between the parameters of the principal sections
of the paraboloid; supposing the curve of intersection of the sphere and para-
boloid to be projected on the tangent plane at the vertex, find the area of the
curve of projection.

17. A tube of small bore, in the form of a logarithmic spiral, revolves with
a uniform angular velocity about an axis passing through its pole and perpen-
dicular to its plane, which is horizontal, and contains a particle which moves
freely in it ; supposing the initial velocity of the particle relatively to the tube
to be equal to the velocity of the point of the tube in contact with the particle,
shew that the path of the particle is another logarithmic spiral.

18. Shew that there cannot be any curve such that if tangents PT, QT be
drawn at any points P and Q to meet in 7, the angle which P T subtends at
a fixed point 8 may always bear a constant ratio’ to - that subtended by Q7
except when that ratio is one of equality, and prove thatin this case the curve
is a conic section having § for its focus.
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Bubble Dynamics

Cavity collapse limited by liquid inertia
Origin: Senate-House Problems, Friday, Jan. 8t" 1847. By G. C. Stokes

23, An infinite mass of homogeneous incompressible fluid acted on by no
. forces is at rest, and a spherical portion of the fluid is suddenly annihilated ;
p’" find the instantaneous alteration of pressure at any point of the mass, and prove
g : . _ . 6o\% 1 Nd\ _

~ that the cavity will be filled up in the time (}B) a fo I where a is the

initial radius of the sphere, and w the pressure at an infinite distance, which
. is supposed to remain constant. |

Challenge:

Stop reading here and try to solve this 23" question (and only this)
using the knowledge of the 19*" century ...

TO BE CONTINUED ...

E P F L Cavitation & Interface Phenomena: Chap 2.2 6t & 8th Semester Fall 2024 Page 10 EPFL - LMH - M. Farhat



ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
SECTION DE GENIE MECANIQUE
6th & 8t Semester, Fall 2024

CAVITATION AND INTERFACE PHENOMENA
Chapter 2: Stability and Dynamics of a Cavitation Bubble
2.2: Dynamics of a Spherical Bubble

Part (2/4)
r » > . > . . > > . "
00000000 0 -

Dr Mohamed FARHAT Assistants: A. Sache, Th. Berger

EPFL — Cavitation Research Group
Avenue de Cour 33 bis, 1007 Lausanne

E P F L Cavitation & Interface Phenomena: Chap 2.2 6th & 8t Semester Fall 2024 Page 11 EPFL - LMH - M. Farhat



Bubble Dynamics

Cavity collapse limited by liquid inertia (a 174 years old problem !)
Origin: Senate-House Problems, Friday, Jan. 8t 1847. By G. C. Stokes

© 23 An infinite mass of homogeneous incompressible fluid acted on by no
. forces is at rest, and a spherical portion of the fluid is suddenly annihilated ;
* find the instantaneous alteration of pressure at any I;Oint of; Cizche mass, and prove
Be : 1 Nax-

. that the cavity will be filled up in the time (%_—P) a l I where @ is the
. initial radius of the sphere, and = the pressure at an infinite distance, which
. is supposed to remain constant. '
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

F v . . & w . & v . 4 w w "
Ll
00000000 0 -
 Hypotheses
* Bubble of initial radius R, placed in infinite volume of a liquid at rest (p = p..)

The bubble may be empty (p,,,,p1. = 0) as in Stokes problem
or filled with vapour only (p,,.pp1e = P, (T) = Constant)

The bubble remains spherical all the time

- The velocity of the liquid phase: U= (U, ug =0,u, =0)

* Theliquid is supposed Newtonian and the flow incompressible

 We neglect the mass transfer across the bubble interface

* Phase transition is not taken into account (No vaporization/condensation)
* No surface tension

* No gravity
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

* Mass conservation in the liquid phase (Continuity):
* Incompressible = VU =0

In spherical coordinates, the divergence reads:

v .
U= = ar(r ur)+rsin9 69(u951n0)+

rsinf d¢

« U= (u,0,0)

d(r’u .
= (—'")=0 = r?u, = R’R
ar
R?R
=>ur=? VTZR
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

* Mass conservation in the liquid phase (Continuity):

« Alternate method (more intuitive):

Incompressibility = The flowrates across the spheres of radii r and R, are equal

4mR*R = 4nr*u,, Vr >R

R*R
=>ur=r—2 Vr 2 R
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

Momentum conservation in liquid phase (Navier-Stokes equation):

* In spherical coordinates (Newtonian fluid):

_ du, du, Uy Oy 7ﬁﬂ ug $u; dp
" p(ﬁt et i rsu;?@jdqb a r _+£g/+/
2
’ iﬁ 31::, 1 9 u,_. 1 i 5111(5'} dur ol —I—%E —|— ug e6t(f) 2 E}Fu,p
r2 gr g 519@2 da‘,bz r2sin(f) ¢  r2gin(f) ¢
Uy dt% Ug Ug Qm,, Uty + }V ug cot(f) Jp
¢ p(/ i dr ?‘bllm do +/? 83  rsi 8qb+ i
" du¢ f}2u¢ 1 8u¢ 251“ G + 2g0s( )— = Uy
L sua’(/ dg* T sin(#) 66’ vz/m( 7)?
_ 3u dW u¢ Oupg Ug Qg U Up — wt } 10
O Pl g T T a0 00 TF 00 _/4%“/‘”?“"‘4
JLo oy 1 w1 " 290wt 2 cos(0) et
2 ar r2 sin(P)? 3(;52 P sn’f(ﬁ') O‘E' 8 2 sin(f)2 '
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

Momentum conservation in liquid phase (Navier-Stokes equation):

* In spherical coordinates (Newtonian fluid):

+u =————1 V|5 5= —2—| Vr=R
ar

ou, ou, 1dp 1 0 2 ou, U,
at " or p or rZ or r2

* Incompressible and irrotational flow = Viscosity term = 0

Au = div(gradu) = grad(divu) — rot(rotu)

au,.+u au,.__la_p

~ ot "or  por
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

Momentum conservation in liquid phase (Navier-Stokes equation):

* Continuity equation yields:

(u, . R? ., R
urzr_zR = < o, g2
\ or - F

* The equation of momentum conservation reads:

ou,. ou,. 1dp .. R? ., R . R* 1dp
= S R +2R*— —2R*—=-———
at " ar p or — Rz r2 r> p or

* Integrating in space (r = R to r = o), we obtain:

RR + ;RZ — Poo ; Py Rayleigh equation
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

* Alternate method to obtain Rayleigh equation with Energy conservation

* Potential Energy:
4
EP = (poo T pv)V = (poo T pv)gnRS
* Kinetic Energy:
2
©° (1 *f1 (R?
_ 2 2 _ 2
E; —jR (Epur> (41tr )dr —f Ep<ﬁR> (41tr )dr

R

., ([ dr .
E;, = 2mpR*R? j — = 2mpR3R?
R T
- The conservation of the total energy (E » T Ey) leads to Rayleigh equation:

d . 3. Poo — P
:a(Ep+Ek)=O = RR+ER2=— .
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

1t integration or Rayleigh equation = Velocity of bubble interface

RR + > R? = —Po " Pv
2 p
[RR + ;RZI (2R?k) = - B2 =P (2p21)
d .. Po — Py : Po — Py dR
L rp2zp3l — _ 2p) — _ 2
dt[RR] p (2R%R) = -2 p R*—
d[R%R3] = —2 pw;p” R%dR

Integration from Ry to R

S Zpoo_pv<R03 )
= R = \/3 . R3 1
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

2"d integration = Time of the bubble collapse, T, (Rayleigh Time):

. 2poo—pv(Ro3 ) ~dR ~
R = \/3 p R3 1] = =dt

Integration from R = Ry to R=0:

1 1
- Tp=—|o—L [ (22 _1) ar= F—F | (22 -1) dr
3 Jme—pv Ry \ R3 2P, —Pvly \R3
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

2"d integration = Time of the bubble collapse, T, (Rayleigh Time)

Using a substitute variable A, defined as: >Ry = R @ 2RyAdA = dR,
Leads to the expression of collapse time as requested in the Stokes problem, R,

6p 1 1%dAa 6'P 3 / 1 NdM
- 1o [ [ ()
P — Pv o V1 — A6 () 0 1—-A
The integral may be determined, using Gamma functions or by a numerical computation

11 1

I'N—|I'l 5

6p (6> (2)
TR:\/poo RO

)

P
Po — Pv

~ 0.91468 R, J

T'(z) = /OOO t“letdt, T(z+1)=2I(2)

Gamma function is the extension of the factorial function to complex numbers P(n) = (n — 1)! .
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

Note: We may also use other subsitute variables, such as:

2
+ 1=R3/Ry* = dR = RyA3d:

1
3 p R0<R03 )2 1 p
= |—— — -1 R= —R
= Tr JZpoo—pJo R3 d V6 Do — Py

p
Po — Dv

1
— Tp=—R ~ 0.91468 R
ST "\/poo—pv OJ

1 r
Beta function: B(z,y) = / 1=ty tde =
0

Rayleigh Time Ty, is the time it takes to a spherical bubble, of initial radius R,, empty or
filled with vapor only, to collapse in a liquid of density p and a pressure p,, > p,,
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Rayleigh Model
Collapse of empty bubble or bubble filled with vapour only

 Now that we have established the collapse time, what about the
evolution of the bubbe radius during the collapse event (R(t)) ?

 We may follow a similar approach by integrating the interface velocity
from R, to an arbitrary value of R:

. 2p. —p, (Ry® 3 R(R,3 2
e frn(w ) L e P ),
3 p \R3 2P, — Py Jg, \ X3

* Itis not possible to derive R(t) from this integral

= Alternative: Rayleigh equation may be solved numerically (See exercise)

. 3, o —
RR+-R2 = P Pv

2
P TO BE CONTINUED ...
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Properties of Rayleigh Equation

* Interface velocity:

D Zpoo R03 . . )
R = J3 ; (R3 1) lim (R) = +oo
* The interface velocity is a function of the ratio (Ry/R), noton R !

* Inthe liquid domain:

2 Po — Dy 3
Vr > R ur(r, t) — T_Z = 2

Vr > R Il{in})(ur) =0and u,.(r,0)=0

- The liquid, initially at rest, is first accelerated to a maximum
velocity then decelerated to zero at the end of the bubble collapse.
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Properties of Rayleigh Equation

* Inthe liguid domain:

2 P — D 3
R%R \/i 5~ (RRo” — R%)
Vr=R u,.(rt) = 7= 2

* There must be a maximum value of liquid velocity:

— We may easilly show that everywhere in the liquid, the
velocity reaches a maximum value when the bubble volume

shrinks by a factor of 4
0ur 3 R03 RO
Vr = R =0 &R =—R=5==0.63R
at 4 V4
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Properties of Rayleigh Equation

* Evolution of potential and kinetic energies during a bubble collapse
* As a function of non-dimensional time

1.2

Non-dimensional quantities

0.8

Bubble Radius R( )

L

Tr
—— Potential Ener:

0.6 ol

—— Kinetic Energy

04

Total Energy

0.2

0 0.2 0.4 0.6 0.8 Tx -1 1
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Properties of Rayleigh Equation

* Evolution of potential and kinetic energies during a bubble collapse
* As a function of bubble radius

1.2
Non-dimensional quantities
1
0.8 Velocity in an arbitrary
— u,(r)/ max(u,) fixed point in liquid phase
0. 6 r>R
—— Potential Energy
0.4 — Kinetic Energy
—— Total Energy
0.2
0 R
0 0.2 0.4 0.6 0.8 R (-] 1
0
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Properties of Rayleigh Equation

* Evolution of potential and kinetic energies during a bubble collapse
* As a function of bubble Volume

1.2

Non-dimensional quantities

0.8

Velocity in an arbitrary

— up(r)/ max(u,) fixed point in liquid phase

0.6 _
—— Potential Energy

— Kinetic Ener
0.4 ol
— Total Energy

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 F 1
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Properties of Rayleigh Equation

Evolution of interface radius and velocity during the bubble collapse:

Ry=1cm
Poo = 10° Pa ; » T = 0.93 ms " j
R| =

p, = 2400 Pa
1 2000

0.9 [R| [m/s] /
0.8 1500
1000 /

0.7
500

0.6
0.5

t/Tg [-] — -]
0 _

0.4
0 0.2 0.4 0.6 0.8 1 1.2 0 10 20 30 40

0.3
0.2
0.1

0

Ro/R =20 = R=730m/s - Compressibility hypothesis questionable ?
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Rayleigh Model: Analytical solutions
 Non-dimensional form of Rayleigh equation :

* Surface tension and viscosity terms neglected
 Constant driving pressure (Poo)

d’R 3 /dR o —
TR 3 ( ) _ Po— Py
dt

dt? p

* Initial Conditions: t=0 = R=Ryand R =0

* Non-dimensional variable : bubble radius r and time t

:
p
Tp =&R
r=£ t=i where A ’ fo\/poo—pv
~ Ry - Tg
E \/_f ~ 0.915
V1 — A6
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Bubble Collapse due to a sudden increase of pressure

Non-dimensional form of Rayleigh equation :
.o 3 o 2 2 o
:Zf+§£ +& =0 t=0 =r=1andr=0

 We may show (see exercise) that:

* Non-dimensional form of the interface velocity:

r= J §* ——1
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Bubble Collapse due to a sudden increase of pressure

* Analytical solution of Rayleigh equation : : .

* First “fair” approximation®:

ro(®) =~ (1- Ez)é

Normalized radius

0 01 02 03 04 05 06 07 08 09 1

Normalized time ¢

'Reference: "Analytical approximation for the collapse of an empty spherical bubble”, Obreschkow et. al, Phys. Rev. E, 2012
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Bubble Collapse due to a sudden increase of pressure

(c) *0.01 ———
* Analytical solution of Rayleigh equation: +0.003 Yo

§ ,‘L.(; r}/}_\

I +0.002 / y
i i & // ' I'|

* A better approximation’: = ooor / geeratd 71 |
s 2 ST )
é //-:’-J/.\L} -f"f-j/ : ,a-*“//‘t"“ultsa

R e e

"‘.J \:".\"ﬁ'i Fohs

2
t*(t) ~ (1 — Ez)g[l + alLiZ.Zl(EZ)] 0.001

() +0.05
§ +0.01 .n/
where Lig(x) = Y021 g x " is the ;i \‘\;\ /
polylogarithm (Jonquiére’s functions) r e e TS I W S0 7/
and a4 is a constant (a; = -0.01832099) : e R :
:f —0.01 _:I,_ /
P e s !

T T I I I I | I I
60 01 02 03 04 05 06 07 08 05 1

Normalized time 7
'Reference: "Analytical approximation for the collapse of an empty spherical bubble”, Obreschkow et. al, Phys. Rev. E, 2012
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Bubble Collapse due to a sudden increase of pressure
Exact solution of Rayleigh equation (Kudryashov et al. 2014)*:

1 4.3_1 1
1312) E?’

F is the hypergeometric function defined, for all |z| < 1 by:

F(a,b;c,z) = z (@)n (D) 2"

(€)n n!

(a)p,=a(a+1)..(a+n—-1)
(a)o= (b)o= (c)p=1and forn>0< (b),=bb+1)..(b+n—-1)
()p=clc+1)..(c+n—-1)

n=0

Nevertheless, since this exact solution is made of an infinite sum, it presents a limited
advantage over a numerical solution (e.g. Runge-Kutta)

IN. A Kudryashov, D. . Sinelshchikov, “Analytical solutions of the Rayleigh equation for empty and gas-filled bubble”,
Journal of Physics A: Mathematical & Theoretical, 2014
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Bubble Collapse due to a sudden increase of pressure

. 23, An infinite mass of homogeneous incompressible fluid acted on 'by no
. forces is at rest, and a spherical portion of the fluid is suddenly annihilated ;

o
A

¢ find the instantaneous alteration of pressure at any point of the mass, and prove
- A : : : . 6o\ 1 Ndh :
bt that the cavity will be filled up in the time (-—;) a fo 1o where a is the

initial radius of the sphere, and w the pressure at an infinite distance, which
. is supposed to remain constant. '

e So far, we have only solved the problem of the collapse time.

« We still need to find the instantaneous alteration of the
pressure in the liquid phase during the bubble collapse ?

TO BE CONTINUED ...
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Rayleigh Model: Pressure in the liquid phase

2

: - . R
* Mass conservation (divu = 0) = u, = Rr—2 Vr = R

«  Momentum conservation in the liquid phase:

ou, ou, 10dp 1 0 [ ,0u, u,
__9r — _2-r >
at " or p6r+v r2 ar(r or 2r2 vr=R

ou, ou, 10p

= —+ = ———

at | T or p Or
R* . .R* R _. R* 10p
ur=—2R = R—2+2R _Z_ZR 5~ T T a.
r r r r p or
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Pressure in the liquid phase during the bubble collapse

Since we are interested on the pressure in the liquid, the momentum

conservation equation is now integrated between r and + oo uk
, . 7 Liqui
—p(r,t .. R . R R
p r 4r r

We suppose the bubble filled with vapor only and we neglect the surface
tension and viscosity = We can use the following relations, found earlier
for the interface velocity and acceleration:

: 2P0 — Py Rg . —1(Pew—DPy, 3.
2 == -1 R = — R?
= K 3 p <R3 R p +2
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Pressure in the liquid phase during the bubble collapse

After replacing R and R, the pressure everywhere in the liquid reads:

p(r,t) —p. _ R R3_4 R R_?,_l
P — Py 3r\R3

We verify that: p(R,t) =p, and limp(r,t) =p,for 0 <t <Tp
T— 00

How does the pressure evolve in space at a given bubble radius R ?

R (R} 4 R* (R}
AV AT AV

ap(r,t) _ 3 _ 4pn(R0 /R?)
=0 or=4R( 5-1) /(234

3
WY — 0 has a solution (r > 0) onlyif (% ~ 4)>O

ap(r,t)
ar

— (poo — pv)

or
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Pressure in the liquid phase during the bubble collapse

* The pressure field evolves in 2 steps:
3

« 1ststep: \/%<R<R0 & %SR3SR3

ap(r)

In this case, —— > 0 Vr > R, the pressure is a monotonic function, increasing

fromp,atr = Rtop, forr - o«
d Rg 3 R(s;
e 2 step'O<R<? & 0L R <-—

ap(r)

In this case, —— vanishes at r = r,,,;,, and the pressure is maximum (P,,4x)

d
" 3 1 4/3
| RO _3 [_ - 1]
. _p|lR” Pmax — P |4R?
max — R(g) Do — Py R(S) 1/3
4R3 F — 1]

—> Interestingly, the pressure field starts exhibiting a maximum value at r = r,,,4,
when the bubble volume shrinks by a factor 4. This corresponds exactly to the
start of the decrease of the velocity everywhere in the liquid, as shown earlier.
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Pressure in the liquid phase during the bubble collapse

For % >> 1 , we obtain the following approximations for the pressure field:

f

3
pmax_pOON 1 RO
= 9 P — Pv 443 | R
| T'max ~ VAR ~1.58 R

— As the bubble shrinks, the maximum pressure tends to occur on a sphere, which
is concentric with the bubble and has a volume 4 times larger than the bubble.
—> The maximum pressure tends to infinity when R — 0 :

lim = +oo |l
R—>0 pmax

E P F L Cavitation & Interface Phenomena: Chap 2.2 6th & 8t Semester Fall 2024 Page 43 EPFL - LMH - M. Farhat



Pressure in the liquid phase during the bubble collapse

P~ P [ i — I
L e 1m == oo .
Peo — Py F Rop Pmax T
8 [ Pressure increase hardly measurable because of (i) the fast
- character of the collapse and (ii) the lack on non-intrusive
- instrumentation
6
In reality, the increase of maximum pressure is limited by
A b viscosity and surface tension as well as by the presence of
n non-condensable gas.
2 |
N R/Ro = 0.25
- R/Ro = 0.33
= R/Ro=0.5
° = R/Ro =1
N\
-1 y -
_2: |/||||||||||||||||||||||||||||||||||||||||||||||

0::://////1 2 3 4 r/Ro

E P F L Cavitation & Interface Phenomena: Chap 2.2 6t & 8th Semester Fall 2024 Page 44 EPFL - LMH - M. Farhat



Pressure in the liquid phase during the bubble collapse

The pressure field at the end of the bubble collapse:

p(r)_poo=£ R_?)_4 _R4 Rg—l
P — Py 37T \R3 3r4 \ R3

= 1 = |i —
Vr > R tl_l)rTr}R p(r) }el_r)rz) p(r) =+

— Once the bubble has completely collapsed, the pressure everywhere in the
liquid is infinite ! This is not true (hopefully). It is due to the singularity at
the center of the bubble.
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Rayleigh-Plesset Model
Case of a bubble filled with vapour and non-condensable gas

* Hypotheses
* Bubble of initial radius RO, placed in infinite volume of a liquid at rest
* The bubble is filled with gas and vapour (p,,,.=P,#P,)
* Only spherical deformation of the bubble is allowed
= The velocity of the liquid phase: U = (u,,ug = 0,u, = 0)
* The liquid is supposed Newtonian and incompressible
 We neglect the mass transfer across the bubble interface
* Phase transition is not taken into account

* No gravity
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Rayleigh-Plesset Model
Case of a bubble filled with vapour and non-condensable gas

* Mass conservation in liquid phase (as for Rayleigh model):
* Incompressible = VU = 0
In spherical coordinates, the divergence reads:

u, VU = - —(1? in @
‘ --------- r? ar (r ur) * rsin6 00 (ugsin ) + rsin@ d¢
R a(rzur)
Liquid = = Vr = R
or
;: R?R
: — U, = 7 Vr > R
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Rayleigh-Plesset Model
Case of a bubble filled with vapour and non-condensable gas

As for Rayleigh model, the momentum conservation reads:

ou, ou, 1dp
= ___ >
at Ty T par TR

Integrating in space (fromr = R to r = ), we obtain:

. 3. R) — Po
:>RR+—R2:p() P
2 p

p(R) ? Here, we can relate the pressure in the liquid to the pressure
in the bubble, using the equilibrium of normal stresses.
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Rayleigh-Plesset Model
Case of a bubble filled with vapour and non-condensable gas

Balance of normal stresses at the bubble interface:

Stress Tensor for a Newtonian
and incompressible fluid:

v,
=P+ 2 ;
Ty P i or
et [ 2O B
e SRl 1 R
Interface L 1  Ov, v cot B vy
Tev Bl (r snfdp ' 1 ”
1ov, Ovg v
2S5 28 0ur Orop = Opr = 4 (!_ j T ﬁ - :_B) J
Pr— 5+ 0 =0=pp,—— =p(R) —2pu
R R ar . .
. 5 ( 1 Ov, { v, 'c_-';)
rg — Opr = H . P P - >
. . v v rsinf dp  Or r
R2R 2S R i
Ur =723 = | Pp~ F - p(R) + 4”E _ _ 1 Ovug g 10v, cotbu,
r %00 = %6 =H\ 7 sng dp r 08 r ’

Note: The balance of normal stresses was not considered in the Rayleigh model (neglected)
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Rayleigh-Plesset Model
Case of a bubble filled with vapour and non-condensable gas

* Initial conditions:
* Partial pressure of the non-condensable gas p, = Pg,

* Pressure in the liquid : p,,,
* Initial bubble radius: R

* Polytropic transformation of the gas:

k k
4 4
%ER}:%ERJ

: 25 25
with Dy, = p(R,)—p, +R_:pr - D, +F
0 0

E P F L Cavitation & Interface Phenomena: Chap 2.2 6t & 8th Semester Fall 2024 Page 50 EPFL - LMH - M. Farhat



Rayleigh-Plesset Model
Case of a bubble filled with vapour and non-condensable gas

* The momentum conservation leads to the Rayleigh-Plesset equation:

. 3k
pRR+ER2 +4”B: Poy, — D +ZS RO _poo+p _E
2 R o P T R,J\R "R

* This is a more general equation, which takes into account the non-
condensable gas, the surface tension and the liquid viscosity.

* Small temporal variations and isothermal transformation of the gas (k=1)
—> Static equilibrium (Blake Equation)

* The Rayleigh-Plesset equation may be solved numerically to compute the
evolution of the bubble radius with time.
* Using Runge-Kutta method (for example)
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Keller-Miksis Model
Taking into account the effects of liquid compressibility

Adiabatic hypothesis:

Rmax i
pg:pgo R

Keller-Miksis model (beyond the scope of the course):

(p, +p,—P)1+V)+Rp, /c—B-V)R’p/2
(1—7)pR
and c is the speed of sound in the liquid

R =
R

where v =
C

c —>© = Rayleigh equation

Reference: J. B. Keller and M. Miksis, Journal of the Acoustical Society of America 68, 628 (1980).
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SUMMARY of Chapter 2.2

In this Chapter (2.2), we have addressed the following models to
investigate the dynamics of a spherical bubble in a still liquid:

1. Rayleigh model:
Spherical bubble (empty of filled with vapor only)
— Collapse time and pressure field
- Approximation and exact solutions

2. Rayleigh-Plesset model:
Spherical bubble (filled with vapor and non condensable gas)

3. Keller-Miksis model: Compressibility effect
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Exercise: Case of 2D bubble

Solve the Rayleigh problem for the case of a cylindrical bubble:

A cylindrical bubble of radius R and length L (L=1), filled with vapor
only, is placed in an infinite volume of a liquid (density p, pressure p,)

Follow a similar method used for a spherical bubble to derive the
collapse time.
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