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On the shockwaves induced by a collapsing bubble

• Experimental methods to investigate shockwaves induced by cavitation: 

• Visualization: High speed camera (specific optical setup)
• Shock pressure: Fast sensors

• Requirements: 
• Pressure front travels at the sound speed and beyond
• The wave front is always thin 

• In the case of cavitation induced shockwaves in water: 
• Shock over pressure: ~ GPa
• Wave speed > 1500 m/s
• Thickness of the pressure front < 1 mm
 Large frequency band (>> 1 MHz)
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• Experimental methods to investigate shock waves induced by cavitation: 
• Optical methods - A way of seeing the invisible: 
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Refraction index vs pressure (water) Simulation of light deviation by a shockwave front

On the shockwaves induced by a collapsing bubble

• Principle: 
• Shockwaves are revealed by a parallel illumination, which is

deviated by the density (i.e pressure) gradient across the shock front
• Significant change of density  alteration of refraction index  



Cavitation & Interface Phenomena: Chap 3.3 6th & 8th Semester Fall 2024 EPFL - LMH - M. FarhatPage 4

• Optical methods to visualize density gradients: 
• Shadowgraphy

On the shockwaves induced by a collapsing bubble

Principle of Schlieren technique

Schlieren imaging to demonstrate 
the benefit of wearing face masks 

Principle of shadowgraphy

• Schlieren (invented in 19th century) 
• More sophisticated technique, which

uses a knife edge and convergent lenses
• Better filtering of deviated beams
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• Optical methods to visualize density gradients: 
• Background Oriented Schlieren (BOS)

• Uses a background image, viewed with and without density gradient. 
• Image processing  derive the spatial gradient of the refractive index 

integrated along the optical path

On the shockwaves induced by a collapsing bubble

Principle of Background Oriented Schlieren

• Example: BOS technique to reveal supersonic shockwaves generated by a NASA 
F-18, viewed from a 2nd plane flying above the subject and using natural desert 
vegetation as the speckled background pattern 
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• Needle hydrophones (miniature piezoelectric sensors)
• Needle diameter ~ 10-100 µm 
• Frequency range: ~50 MHz
Suitable for shockwave measurement

• Conventional piezoelectric pressure sensors: 
• Frequency band  ~ 10 to 100 KHz
• Sensing area: 1 to 10 mm
 Conventional sensors inappropriate 

• Experimental methods to investigate shock waves induced by cavitation: 
• Pressure sensing: 

On the shockwaves induced by a collapsing bubble
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• Transient pressure measured by needle hydrophones 
• Case study: Laser induced bubble in variable pressure gradients
• Experimental Setup

On the shockwaves induced by a collapsing bubble
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• Transient pressure measured by needle hydrophones 
• Case study: Laser induced bubble in variable pressure gradient

• Typical hydrophone signal of the shockwave emitted at the bubble generation 
• t = 0 μs : bubble generation
• t ~ 29.8 μs : the shockwave reaches the hydrophone, located 44.5 mm 

away from the bubble center (0.0445/0.0000298 = 1490 m/s)

On the shockwaves induced by a collapsing bubble
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• Transient pressure measured by needle hydrophones 
• Case study: Laser induced bubble in variable gravity

Primary shockwave
(Bubble generation)

Collapse induced
shockwave

On the shockwaves induced by a collapsing bubble
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• Effect of bubble deformation on the collapse induced shockwaves energy

Bubble energy: 𝐸𝐸0= 4𝜋𝜋
3
𝑅𝑅03∆𝑝𝑝

On the shockwaves induced by a collapsing bubble

Primary shockwave Collapse shockwave 

Shockwave energy (ES) : 
(spherical propagation)

U: hydrophone voltage, d: distance from the bubble center, a and b: calibration constants

• Calibration (find a and b such as the following conditions are satisfied) : 
1. 𝑬𝑬𝑺𝑺,𝒈𝒈𝒈𝒈𝒈𝒈 scales linearly with 𝑬𝑬𝟎𝟎
2. 𝑬𝑬𝑺𝑺,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 is bounded by 𝑬𝑬𝟎𝟎− 𝑬𝑬𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

For 𝜻𝜻 < 𝟏𝟏𝟏𝟏−𝟑𝟑 (spherical collapse), we assume 𝑬𝑬𝑺𝑺,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ≈ 𝑬𝑬𝟎𝟎 − 𝑬𝑬𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

𝐸𝐸𝑆𝑆 =
4𝜋𝜋 𝑑𝑑2

𝜌𝜌𝑐𝑐
�𝑝𝑝(𝑡𝑡)2d𝑡𝑡
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• Shadowgraph visualization of the last stage of bubble collapse
• Highly spherical bubble (𝝃𝝃 < 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎)
• 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟑𝟑.𝟖𝟖𝒎𝒎𝒎𝒎
• 10 million frames/second
 Single spherical shockwave 

On the shockwaves induced by a collapsing bubble
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• Bubble deformation, in the case of a neighboring free surface

• Shape of a bubble collapsing near a free surface
• Potential flow computation (Boundary Integral Method)

• Source of shockwave emission: 
• Jet impact
• Toroidal bubble collapse
• Tip bubble collapse

On the shockwaves induced by a collapsing bubble
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• Shock waves from a bubble collapsing near a free surface:

• Shock waves from a bubble collapsing near a free surface:
• Weakly deformed bubble 𝝃𝝃 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 (𝜸𝜸 = 𝟕𝟕.𝟐𝟐)
• 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟑𝟑.𝟖𝟖𝒎𝒎𝒎𝒎
• 10 million frames/second

On the shockwaves induced by a collapsing bubble

𝟏𝟏 𝒎𝒎𝒎𝒎

𝟎𝟎 𝒏𝒏𝒏𝒏 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏𝒏𝒏 𝟐𝟐𝟐𝟐𝟐𝟐 𝒏𝒏𝒏𝒏 …
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Hydrophone Signal

1) jet impact, 2) torus collapse, 3) tip bubble collapse, 4) second torus collapse, 5) 2nd tip bubble collapse

On the shockwaves induced by a collapsing bubble
• Shock waves from a bubble collapsing near a free surface:

• More deformed bubble (increasing ζ)
𝝃𝝃

=
𝟎𝟎.
𝟎𝟎𝟎𝟎
𝟎𝟎

𝝃𝝃
=
𝟎𝟎.
𝟎𝟎𝟎𝟎
𝟎𝟎
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1) jet impact, 2) torus collapse, 3) tip bubble collapse, 4) second torus collapse, 5) 2nd tip bubble collapse

On the shockwaves induced by a collapsing bubble
• Shock waves from a bubble collapsing near a free surface:

• More deformed bubble (increasing ζ)
𝝃𝝃

=
𝟎𝟎.
𝟏𝟏𝟏𝟏

𝝃𝝃
=
𝟎𝟎.
𝟑𝟑𝟑𝟑
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On the shockwaves induced by a collapsing bubble

Weak jet limit

• Comparison of bubbles deformed by gravity, free and rigid surfaces
• Similar trend: shockwave energy increases with decreasing ζ
• Slight dependence on the source of deformation

• Shockwave energy higher with free surface than gravity at a given ζ
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• Evidence of pressure build-up during the collapse of a cavitation bubble

On the shockwaves induced by a collapsing bubble

We have seen in Chapter 2.2 that owing to Rayleigh model , 
the pressure everywhere in the liquid is given by: 

𝒑𝒑 𝒓𝒓 − 𝒑𝒑∞
𝒑𝒑∞ − 𝒑𝒑𝒗𝒗

=
𝑹𝑹
𝟑𝟑𝟑𝟑

𝑹𝑹𝟎𝟎𝟑𝟑

𝑹𝑹𝟑𝟑 − 𝟒𝟒 −
𝑹𝑹𝟒𝟒

𝟑𝟑𝒓𝒓𝟒𝟒
𝑹𝑹𝟎𝟎𝟑𝟑

𝑹𝑹𝟑𝟑 − 𝟏𝟏

Max (p(r)) = pmax for r=rmax : 

𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑹𝑹 𝟒𝟒
𝟏𝟏 − 𝑹𝑹𝟑𝟑

𝑹𝑹𝟎𝟎𝟑𝟑

𝟏𝟏 − 𝟒𝟒𝑹𝑹
𝟑𝟑

𝑹𝑹𝟎𝟎𝟑𝟑

𝟏𝟏
𝟑𝟑

𝒑𝒑𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒑𝒑∞
𝒑𝒑∞ − 𝒑𝒑𝒗𝒗

=
𝟏𝟏

𝟒𝟒𝟒𝟒/𝟑𝟑

𝟏𝟏 − 𝟒𝟒𝑹𝑹
𝟑𝟑

𝑹𝑹𝟎𝟎𝟑𝟑
𝟒𝟒/𝟑𝟑

𝑹𝑹𝟑𝟑
𝑹𝑹𝟎𝟎𝟑𝟑

𝟏𝟏 − 𝑹𝑹𝟑𝟑
𝑹𝑹𝟎𝟎𝟑𝟑

𝟏𝟏/𝟑𝟑

Experimental validation: The pressure increase is hardly measurable because of 
(i) the fast character of the collapse and (ii) the lack on non-intrusive instrumentation

lim
𝑹𝑹→𝟎𝟎

𝒑𝒑𝒎𝒎𝒎𝒎𝒎𝒎 = +∞ ‼
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On the shockwaves induced by a collapsing bubble

• Evidence of pressure build-up during the collapse of a cavitation bubble
• High speed visualization (10 million frames/second), using shadowgraph technique

• Dark area is revealed around the bubble, well visible at the final stage of the collapse
• This light deviation is an indication of a strong density gradient

 Clear evidence of pressure build-up
• At the same time, pressure is also building up within the non condensable gas

-400 ns -300 ns -200 ns -100 ns

0 ns 100 ns 200 ns 300 ns

Bubble

Shock wave

1 mm

Rebound

Pressure build-up

Luminescence
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• Evidence of pressure build-up during the collapse of a cavitation bubble
• Image processing (Light intensity)  Estimation of pressure increase
• Qualitative data, in line with Rayleigh prediction

• Pressure field and location of maximum pressure

Supponen et al. , Proc. SPIE, 2020

On the shockwaves induced by a collapsing bubble
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On the shockwaves induced by a collapsing bubble

Supponen et al. , Proc. SPIE, 2020

• Evidence of pressure build-up during the collapse of a cavitation bubble
• High speed visualization, using Background Oriented Schlieren (BOS)
• Image distortion due to the change in the pressure induced gradient of refractive index 
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15 mm

Stainless steel sample
after 1 hour exposure

Standoff: 26 cm

• Case of high-speed cavitating jet (used to test material resistance to cavitation)
• High speed immersed water jet impinging on a solid surface (sample)
• Upstream Pressure : 300 bar
• Nozzle diameter: ~ 0.5 mm  Jet speed: ~ 200 m/s
• Downstream pressure is varied to adjust cavitation aggressiveness

Cavitation induced shockwaves in real life
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Cavitation induced shockwaves in real life

Shadowgraph visualisation of radiated shockwaves by a high speed cavitating jet 
(500’000 frames/second, 50 ns exposure time) 

Nozzle Cavity

Shockwave

Sa
m

pl
e

To be continued …

• Case of high-speed cavitating jet (used to test material resistance to cavitation)
• Unstable shear layer at the jet boundary  formation of toroidal vortices
• Discrete clouds of bubbles, impinging on the sample  shockwaves
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ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
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CAVITATION AND INTERFACE PHENOMENA
Chapter 3 : Dynamics of non-spherical cavitation bubbles

3.3 Shockwaves and Luminescence
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Definition: Sonoluminescence is a conversion from « sound to light » by  
collapsing gas bubbles trapped in an acoustic pressure field

Light emission by repeated collapses of cavitation bubble collapses
Cavitation & Interface Phenomena, Chap
3.3

Cavitation induced luminescence
Sonoluminescence

Brenner et. al (2002)
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Cavitation & Interface Phenomena, Chap
3.3

• 1933: Discovery of sonoluminescence by N. Marinesco and J. J. Trillat
• Developing of photographic films immersed in a liquid excited by 

ultrasound

• 1934: 1st visual observation of sonoluminescence
• (H.Frenzel Frenzel and H. Schultes)

• 1988: 1st theoretical model of acoustically excited bubbles (H. G. Flynn)

• 1989: F. Gaitan discovers a laboratory method to generate a periodic  
luminescence (Single Bubble Sonoluminescence, SBSL)

Cavitation induced luminescence
Sonoluminescence
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Brenner et. al (2002)• Water at ~20% of air saturation
• Air bubble (~20 μm) trapped in the center of the tank by acoustic levitation
• The bubble oscillates in the radial direction
• A permanent light point is visible in the  center of the tank

• Single Bubble Sonoluminescence, SBSL
• Moderate pressure standing waves in a spherical tank

𝒑𝒑 𝒕𝒕 = 𝒑𝒑𝒂𝒂(𝟏𝟏 + 𝜶𝜶 cos2𝜋𝜋𝜋𝜋𝜋𝜋)

𝜶𝜶~𝟏𝟏.𝟐𝟐 − 𝟏𝟏.𝟒𝟒;𝒇𝒇~𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟒𝟒𝟒𝟒 𝒌𝒌𝒌𝒌𝒌𝒌

Cavitation induced luminescence
Sonoluminescence
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•Origin of luminescence

• High energy concentration at the bubble collapse (compressed gas)
• Spherical converging shock wave (inside the bubble) ?
• Adiabatic heating of the bubble contents  light emission

• Generation of free radicals of which the recombination generates 
photon emission

• Governing parameters:
• Type and concentration of dissolved gas

• Luminescence may be dopped by replacing air with Argon or Xenon
• Amplitude of the acoustic pressure
• Liquid temperature
• Impurities

Cavitation induced luminescence
Sonoluminescence



Cavitation & Interface Phenomena: Chap 3.3 6th & 8th Semester Fall 2024 EPFL - LMH - M. FarhatPage 28

• Luminescence and nuclear fusion

• Spectacular increase in gas temperature
• First estimations based on spectral analysis of light: T ~ 100’000’000 K
 Potential for nuclear fusion reaction ?
 Booming research on luminescence in the 1990‘s

• 2002: Taleyarkhan et al. announced that they realized a nuclear fusion from
a sonoluminescening bubble in acetone and detected neutron and tritium.

• Since then, only one researcher (Yiban Xu, formed PhD studentof
Teleyarkhan), pretended in 2005 that he was able to reproduce this
experiment. 

Cavitation induced luminescence
Sonoluminescence
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• Luminescence and nuclear fusion

• Thanks to more accurate measurement techniques, the temperature  
estimation at the center of the bubble was brought down to 5’000 - 50’000 K

• A fraud suspicion weighs heavily on the works of Taleyarkhan and Xu with 
negative consequences on the research funding

• Nevertheless, research remains active in the field with the use of acetone  
and giant sonoluminescencing bubbles (centimetric scale)

Cavitation induced luminescence
Sonoluminescence



Cavitation & Interface Phenomena: Chap 3.3 6th & 8th Semester Fall 2024 EPFL - LMH - M. FarhatPage 30

Luminescence and nuclear fusion
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Luminescence and nuclear fusion
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Luminescence and nuclear fusion
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Luminescence induced by a collapsing bubble

-400 ns -300 ns -200 ns -100 ns

0 ns 100 ns 200 ns 300 ns

Bubble

Shock wave

1 mm

Rebound

Pressure build-up

Luminescence

Evidence of light emission at the final stage of the collapse of a highly
spherical bubble (10 million frames per second, 50 ns exposure time)
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Collapse induced Luminescence

Visualization of luminescence emitted at
the final collapse stage of a single cavitation
bubble at various ζ. The luminescent flash is
visible in the middle frame and followed by
the rebound. The inter-frame time is 100
ns, the exposure time is 50 ns and the black
bar shows the 1 mm scale. The bubble
energy is the same in all cases (E0 ~27 mJ)
and ζ varied by adjusting the driving
pressure, from top to bottom, as ∆p = 98,
78, 58, 48, 28 and 18 kPa, yielding
maximum bubble radii of R0 ~ 4.1, 4.3, 4.8,
5.1, 6.1 and 7.1mm. These bubbles were
imaged at normal gravity.

• Effect of bubble deformation on luminescence emission
• Threshold for luminescence ~ Weak jet limit (ζ~10-3)
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Collapse induced Luminescence

• Experimental setup for luminescence measurements
• Light spectrum: 

• Spectrometer & Light grating lens
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Collapse induced Luminescence

• Calibration
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The luminescence spectrum is well approximated by the blackbody model and since the bubble
temperature cannot be directly measured, a fitted blackbody provides a reasonable estimation
for it. The effective blackbody temperature and energy of luminescence can be inferred by fitting
the spectra with a Plankian function of the form:

Where λ is the wavelength, h and kB are the Planck and Boltzmann constants respectively, c is the 
speed of light, A is a constant prefactor determined from calibration,
Tlum is the blackbody temperature, and I stands for the product of the luminescence pulse 
duration and the projected emitting surface. 

Collapse induced Luminescence

• Temperature estimation – Blackbody radiation assumption
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Collapse induced Luminescence

• Temperature estimation at different gravity levels

Wavelength [nm]

Single cavitation bubble luminescence spectra at three different gravity levels for the 
same laser pulse energy (R0=3 mm) and static pressure of the water (p0 = 81 kPa). 
Each spectrum is measured at a single bubble collapse.
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Energy and temperature

• Luminescence energy decreases with ζ
• Temperature saturation (no clear influence of ζ)

Collapse induced Luminescence

Single cavitation bubble luminescence
(a) relative energy Elum /E0 and
(b) blackbody temperature Tlum vs ζ. 

E0 is the maximum potential energy of the bubble.
Each data point represents a single bubble
measurement. Colors indicate the driving pressures
and symbols indicate different levels of gravity. The
error bars indicate the uncertainty of the best-fit
estimate of the blackbody temperature.

• Effect of bubble deformation on luminescence energy and temperature
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• Time resolved luminescence (measured by a fast photodiode)
• Triggered by the passage of the collapse shock wave (Hydrophone)
• 10-20 ns pulse duration
• Single and multiple pulses (?)

Collapse induced Luminescence

Waterfall plots of the luminescence signals measured by the
photodetector for different driving pressures and potential
energy E0~22mJ (normal gravity):

Each plot contains 20 signals. The scaling shown in (a) is the
same in all plots. t=0 µs corresponds to the instant at which
the hydrophone detects the collapse shock.

∆p [kPa] R0 [mm] ζ [-]

(a) 98 3.8 7.8x10-4

(b) 78 4.0 9.0x10-4

(c) 68 4.2 9.9x10-4

(d) 58 4.5 1.1x10-

(e) 48 4.7 1.3x10-3

(f) 38 5.1 1.6x10-3
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Initial question: 
Energy budget: Where does the energy of a collapsing bubble go ?

• Microjet
• Shock waves
• Luminescence
• Rebound

Shock waves

Rebound Micro-jet

Thermal effects
(Luminescence)
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• Energy of shockwave, rebound, luminescence and micro-jetting as functions of  the 
anisotropy and stand-off parameters : 
– Broad parameter space (max bubble radius, driving pressure, solid and free 

neighboring surfaces, different gravity levels, …)

– Luminescence energy negligible compared to the other energy channels

Energy budget for a laser induced bubble 
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