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 Real compression deviates from ideal process

 Characterized by an isentropic 
and a volumetric efficiency

Real Compression Process
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Over- & Under-Compression in Fixed Volume 
Ratio Compressors 
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 Experimental scroll compressor data with 

 Scaled theoretical efficiency
overpredicted at high

 Correction to account for
effect of leakage on 
isentropic efficiency

Comparison to Measured Data
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 Heat pumps need to be able to operate under varying conditions

 Changing temperature levels in evaporator and condenser imply 
varying pressure ratios across compressor

 Changing heating and cooling power at constant temperature levels 
implies changing mass-flow / volumetric flow delivered by compressor

 Ideal positive displacement compressor should be able to change 
installed volume ratio and volume flow

Varying Compressor Operating Conditions
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 Introduction of slide vane allows adaptation of:

• Installed volume ratio

• Suction volume

• Intermediate injection

Flexibility with Screw Compressors
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 Use single stage compressor with intermediate injection port to avoid 
investment of two compressors

 Intermediate injection of cold liquid 
cools down compressor working
chamber and reduces exhaust 
temperature

 Cycle approaches two stage cycle 
performance with less cost

Intermediate Injection
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 Scroll compressors can also be designed with economizer ports

 Injection ports located in fixed scroll

 Injection occurs into closed compression 
chambers after compression initiated

Injected Scroll Compressor
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Heat Pump Systems

Introduction to 
Turbocompressors

Prof. J. Schiffmann



Compressor Classification
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Compressor types

Positive displacement Dynamic

Centrifugal AxialReciprocating Rotary

Lobe

Liquid ring

Screw

Vane

ScrollSingle acting piston

Double acting piston

Membrane



 Composed of bladed rotating part (rotor) exchanging work with fluid and 
stationary bladed part to direct flow (stator)

• Compressor rotor blade row adds energy to fluid by increasing its swirl and 
kinetic energy

• Stator blade row converts kinetic energy into pressure rise
 Stage (rotor & stator) is smallest functional entity of turbocompressor

Working Principle
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https://www.man-es.com/process-industry/products/compressors/axial



 Same underlying physical phenomena used across wide range of 
applications and power levels

Wide Range of Applications
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Cooling fan < Ø25mm, 0.5W Steam turbine, 1.77GW

www.ebmpapst.com www.edf.fr

Francis turbine, 1GW

www.bjreview.com



 Axial
• Flow parallel to axis of rotation

 Radial
• Main flow perpendicular to axis

 Diagonal
• Leading or trailing edge neither radial nor axial

 Mixed
• Leading edge axial, trailing radial

Classification Along Flow Direction
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 Turbochargers

Applications
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 Aircraft engines / gas turbine engines

Applications
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 Refrigeration compressors

Applications
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Axial Turbocompressor Stage
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Radial Turbocompressor Stage
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 Stage (rotor & stator) is smallest functional entity of turbocompressor

 Inducer accelerates fluid into compressor

 Rotor transfers energy from shaft to fluid

 Stator (diffuser) converts kinetic energy 
out of impeller into pressure increase

 Volute/collector collects flow at discharge

Compressor Stage
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 Multiple stages (axial and radial) can be used used when required 
pressure ratio cannot be achieved with one stage

Multistage Compressor
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 Characterized by 

• Rotating body

• Control volume

• Control surface

• Inlet flow

• Discharge flow

• Torque

Principle of Turbomachinery
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 Total torque and angular momentum

 Total torque acting on system (friction, gravity, torque)

 Rate of change of angular momentum in system

Torque on Fluid Control Volume I
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 Total torque and angular momentum

 Assume no surface forces on system, stationary conditions, no body 
forces

Torque on Fluid Control Volume II
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 Total torque on system

 Applied to turbomachinery,
assuming homogenous flow

 Change in swirl requires/generates
torque

Torque on Fluid Control Volume  Applied to 
Turbomachinery
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 Change of angular momentum 
about compressor axis between 
discharge and inlet requires torque

 Specific shaft work

Euler Turbomachinery Equation
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 Specific shaft work

 Euler turbomachinery equation is:
• Universally applicable 
• Determines work from changes between mean conditions at inlet and outlet
• No knowledge on inner workings required

Euler Turbomachinery Equation
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 Work is determined by the change in circumferential component of 
absolute velocity  change in swirl

 Change in swirl and flow guidance is achieved by sufficiently closely 
spaced blades

 Mastery of velocity magnitude and direction 
is key in turbomachinery design

Insights from Euler Equation
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 Velocity triangle connects relative to 
absolute measurements

 Trigonometry yields

Velocity Triangles
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 Velocity triangles yields alternative form of Euler equation which 
identifies work provided by

• Change in kinetic energy of absolute flow through rotor
 Positive in compressors
 Negative in turbines

• Change in kinetic energy of relative flow in rotor
 Limited diffusion in compressor
 Unlimited acceleration in turbines

• Centrifugal effect

Energy Transformation in Turbomachinery
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 Turbine
• Blades accelerate relative 

flow  nozzle-like

Turbine vs. Compressor
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 Compressor
• Blades decelerate relative 

flow  diffuser



 Axial machine

 Radial machine

 Comparison

Axial vs. Radial Compressor
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 Nealy 50% of work due to 
centrifugal effect
 Radial compressor stage 

can replace 3-4 axial stages

Axial

Radial



Link Between Euler and Thermodynamics
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 Energy balance for open system

 Neglecting gravity, assuming adiabatic operation

 Total enthalpy  fictive thermodynamic state variable

Total and Static Conditions
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 Adiabatic work process
• Compressor with no heat transfer

 Diabatic work process
• Cooled/heated compressor

 Adiabatic flow process
• Non-rotating components such as inducer, diffuser,…

 Diabatic flow process
• Stationary components such as HEX

Specific Cases
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 Constant area pipe flow

 Diffuser

 Nozzle

Typical Adiabatic Flow Processes
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 Turbine

 Compressor

Typical Adiabatic Work Processes
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 Coupling Euler equation with thermodynamic states (          )

 Rearranging…

 Coupling with velocity triangles

Definition of Rothalpy
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Turbocompressor in h-s-Diagram
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 So far looked at velocity triangles and 
link to thermodynamics

 Often, only total conditions, area and 
mass flow are known

 Mass flow and velocity linked through static property, which depend on 
velocity for given total condition

 How to translate mass flow into flow velocity?

Mass Flow and Flow Velocity
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 Perfect gas assumption

 Ratio of total to static states only function of Mach number

Dimensionless Mass Flow Equation I
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Replace static with total states

 Knowledge of mass-flow, area A, and 
total conditions (P0, T0) allows 
calculating Mach number

 Requires numerical approach

Dimensionless Mass Flow Equation II
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 Turbomachinery applications span across wide range of power and 
applications

 All turbomachinery governed by same principle  Euler equation

 Mastering velocity triangles is key to induce change in swirl

 Link between Euler equation and thermodynamics yields pressure ratio, 
representation of losses

 Velocity across area for given mass-flow and total conditions needs to 
be found iteratively

Summary
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 Comprehension questions

 A diffuser problem

 Axial flow air compressor

Exercises W9
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