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▪ High exhaust temperatures damage lubricant / working fluid / compressor

▪ Compressor must run dry → sufficient superheat at inlet

▪ Often primary objective is to reduce compressor exhaust temperature to 
enable high temperature lifts

▪ Expansion valve requires liquid fluid → vapor bubbles create resistance

▪ Heat pumps rarely run at nominal condition → wide operating range

Practical Aspects for Cycle Implementationc
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▪ Improvements can be achieved by improving individual component  
performance or by implementing more advanced thermodynamic cycles

• Subcooling after condenser

• Multistage compression with intercooling

• Splitting expansion process

• Cascades

Practical Cycle Improvements
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Heat Pump Systems

Working Fluids

Prof. J. Schiffmann



▪ Heat pumps make use of condensation and evaporation of working 
fluids to approach Carnot cycle

▪ Fluid selection has major 
impact on cycle  and 
component design

Role of Working Fluid & Selection
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▪ Working fluid selection has important effect of cycle design 

• Design pressure ratio

• Latent heat

• Slope of saturation line

• Slope of isentropic lines

• Density

• Thermophysical properties

Working Fluid Selection
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▪ Other aspects

• Ozone depletion potential (ODP)

• Global warming potential (GWP)

• Compatibility with oil

• Chemical stability

• Toxicity

• Flammability

• Cost …

Working Fluid Selection (cont.)
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Class Measured @ 60°C 101.3kPa

High flammability 3 LFL < 0.1kg/m3 | HOC ≥ 19MJ/kg

Flammable 2 LFL > 0.1kg/m3 & HOC < 19MJ/kg

Low flammability 2L LFL > 0.1kg/m3 & HOC < 19MJ/kg, & BV ≤ 10 cm/s

No flammability 1 No flame propagation

LFL: Lower flammability limit

HOC: Heat of combustion
BV: burning velocity

S. Solomon, The discovery of the Antarctic ozon hole, Nature, Vol. 575, 2019, pp. 46-47



▪ Generation I (1830-1930)

• Whatever worked, solvents and other volatile fluids (SO2, HCOOCH3, NH3, 
CH3Cl,…)

• Mostly flammable, toxic or highly reactive → accidents

• Leakage prevent domestic refrigerators to replace iceboxes

• Hence, drive for new suitable fluids → shift to fluorochemicals

History of Working Fluids
M

E
-4

5
9

 H
e
a
t 

P
u
m

p
s
 S

y
s
te

m
s

9

1930 20101990
GEN I GEN II GEN III GEN IV



▪ Generation II (1930-1990)

• Fluids with no toxicity and flammability with suitable boiling points drive shift 
to fluorochemicals

• Systematic search limits fluids to combinations of C, N, O, S, H, F, Cl, Br

• Chlorofluorocarbons (CFC, R12)

• Hydrochlorofluorocarbons (HCFC, R22) with less chlorine

• Discovery of ozone hole and link to CFC in 1985 
→ drive for new fluids with no ODP

History of Working Fluids
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▪ Generation III (1990-2010)

• Ratification of Montreal protocol (1989)

▪ Phase out of CFC by 1996 and transitional shift to HCFC

▪ Stepwise phase-out of HCFC: 2004 (65%), 2010 (25%), 2015 (10%), 2020 (0.5%)

• Replacement of HCFC with HFC (hydrofluorocarbons)

• New issue → global warming potential (GWP) 
→ drive for low GWP fluids

History of Working Fluids
M

E
-4

5
9

 H
e
a
t 

P
u
m

p
s
 S

y
s
te

m
s

11

1930 20101990

Fluid GWP

R23 14’800

R404a 3’922

R134a 1’430

R32 675

GEN I GEN II GEN III GEN IV



▪ Generation IV (2010-?)

• Kyoto protocol (1997), F-Gas regulation (2014)

▪ Reduce greenhouse gas emissions

▪ Bans the use of fluids with high GWP

• Replacement of HFC with HFO (Hydrofluoroolefins)

• HFO are chemically unstable in atmosphere → low GWP

• New issue → Per- and poly-fluoroalkyl substances (PFAS), “forever chemicals”

• Future? → Most likely natural fluids (ammonia, propane, butane, water, CO2)

History of Working Fluids
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▪ Analysis of limitations due to working fluids suggests trade-off between 
system performance and volume

• Single stage cycle

• Evaporation at -20°C

• Condensation at 40°C

• Compressor efficiency = 1

• Fluid model via extended 
corresponding states (ECS)

Working Fluid Selection (cont.)
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P. A. Domanski et al., A thermodynamic analysis of refrigerants: Performance limits of the 

vapor compression cycle, International Journal of Refrigeration, Vol. 38, 2014, pp 71-79



▪ Alternative studies suggest ideal fluid is a function of reduced 
evaporation pressure

• Performance drops sharply 
for higher pressures due to 
saturation dome

Working Fluid Selection (cont.)
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vapor compression cycles, International Journal of Refrigeration, Vol. 109, 2020 pp 92-104



▪ State of fluids can be represented 
by a surface in P, T, v

▪ State function needs experimental 
identification for each fluid 
individually

▪ Surfaces represent different states 
and two-phase transitions

Thermodynamic States of Fluids
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▪ Definition of vapor quality

▪ State under saturation line

States under Saturation Line
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▪ Ideal gas follows simple equation of state

▪ Enthalpy

▪ Entropy

Equation of State for Ideal Gas
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▪ Measured with compressibility factor 

Real Gas Effects
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▪ Measured compressibility 
factors for different fluids
collapse to same curves

▪ Compressibility factor 
can be used for estimation 
of properties

▪ Better laws needed for 
higher accuracy

Compressibility Factor Z
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https://engineering.byu.edu/



▪ Van der Waals cubic equation of state

• Zero slope at critical point

• Unstable states (IG)

• Metastable states (JI & GF) → spinodal line

• Plateau JF defined such that areas FGH = HIJ

▪ Work in reversible cycle with one T source:

Equation of State (EOS)
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https://math24.net/van-der-waals-equation.html

Finite molecule volume

Pressure from 

interactions



▪ More accurate cubic equation of state

Evolution of Equation of State (EOS)
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EOS u w

Van der Waals (1873) 0 0

Redlich-Kwong (1949) 1 0

Soave-Redlich-Kwong (1972) 1 0

Peng-Robinson (1976) 2 -1

• Significant increase in accuracy 

compared to van der Waals

• Good results for gas phase, poor for 

liquid, satisfactory for enthalpy and 

entropy departure functions

• Increased accuracy around critical point

• Better for liquid and gas than SRK



▪ For Peng-Robinson

with

Equation of State (EOS)
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▪ Departure (from ideal gas) functions to calculate other states

▪ Peng-Robinson EOS requires minimal measurements of sample fluid

• Critical pressure & temperature, vapor pressure, heat capacity, liquid density

• Ideal for use in R&D for new working fluids

How to Calculate Other States?
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▪ Comparison between Peng-Robinson & experimental data for 
HFO R1234yf

▪ Deviations

• Density: 14%

• Enthalpy: 0.7%

• Entropy: 0.5%

• cv: 5%

• cp: 5%

Performance of Peng-Robinson EOS
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Source: Chemours lecture for PCHP



▪ State-of-the-art is Refprop from 
NIST and Coolprop with more 
sophisticated equations of state
corrected with measurements

▪ Helmholtz-explicit EOS

▪ PC-SAFT

More Sophisticated Models for Fluid Properties
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▪ Classification of single component fluids: R (M)XYZ(q)

• Number of C → X+1 

• Number of H → Y-1

• Number of F → Z

• M → unsaturated fluid

• q → defines molecular arrangement

Nomenclature
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• Examples

▪ R134a: CH2F-CF3

▪ R114: CF2Cl-CF2Cl

▪ R22: CHClF2

▪ R290: CH3-CH2-CH3



▪ Behavior represented in p-x & T-x diagrams

• Surfaces for saturated liquid and vapor 
delimiting volume of two-phase region

▪ Non-azeotropic (zeotropic) blends

• Mixture yields temperature glide 
during phase change →can be beneficial

• Risk of distillation, issues when leakage,
challenging when maintenance and 
end of life, poorer heat transfer coefficients

▪ Azeotropic blends

• Mixture yields no temperature glide

Multi-component blends
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https://chem.libretexts.org



▪ Non-azeotropic blends → R400

• R32, R125, R134a → R407

• Different compositions noted with 
upper case letter (R407C)

▪ Azeotropic blends → R500

• R134a, R1234yf → R513

▪ Inorganic working fluids

• R700 + molecular weight

Nomenclature (cont.)
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▪ R717: NH3

▪ R718: H2O

▪ R744: CO2
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