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 New state variable entropy (S) defined through Clausius

 Entropy is a state property  Knowledge of two other state properties 
defines also entropy of state

Entropy Definition
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 Entropy change between two states results from

• Entropy transfer due to heat transfer  dependent on process and 
independent from work

• Entropy production through irreversibility  dependent on process, 
always > 0 due to 2nd law!

Entropy Change
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 Entropy can also be convected across 
system through mass fluxes

 Entropy balance for open system

Entropy Balance in Open Systems
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 1st law
• No energy produced only transformed
• Equivalence of work and heat

 2nd law
• No conservation of entropy, entropy can be produced
• Entropy transfer associated with heat transfer  can be positive or negative
• In open systems entropy is convected across system boundary through 

mass fluxes
• Irreversibility produces entropy
• Entropy production (irreversibility) corresponds to lost work
• Change of entropy in closed system is result of heat transfer and dissipation

Comments
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 Second law gives indication regarding quality of energy

 Heat delivered at certain temperature 
can only partially be transformed into 
work

 Work has higher quality than heat, but
1st law does not differentiate

Quality of Energy
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 Idea is to indicate maximum work of a system relative to ambient 
conditions (pressure P0 & temperature T0)

 All system that has a thermodynamic “tension” relative to ambient has 
ability to transform it into work via reversible process  exergy

 Exergy is a thermodynamic state variable

 Such approach ensures simultaneous satisfaction of 1st & 2nd law

Concept of Exergy
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 Transfer of exergy through convection across system boundary

 Definition of co-enthalpy in analogous way as for closed system and 
with definition of enthalpy

Exergy Balance in Open Systems
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Balance of heat exergy Balance of work
Balance of co-ethalpy

Exergy losses



 Opposed to energy balance, exergy analysis combines 1st and 2nd law 
into a new thermodynamic state

 Exergy analysis automatically merges energy balance with feasibility 
limits imposed by 2nd law

 Energy efficiency does not consider quality of energy  may lead to 
spurious values

 Exergy efficiency suggested to be more sound approach to assess 
quality of thermodynamic system

Conclusion
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Power Cycles and Heat Pumps

Introduction to 
Heat Pumps

Prof. J. Schiffmann



 Heat pump allows to gather heat at low temperature (cooling) and to 
reject it at higher temperature (heating)
 Can be used to provide cooling and/or heating
 Composed of compressor, condenser, expansion valve & evaporator

What is a Heat Pump?
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http://kameshalwar.blogspot.com/2017
/03/refigeration-and-air-conditioning-
brief.html

Compressor

Condenser

Evaporator

Expansion



 Bithermal thermodynamic cycle working in anti-clockwise direction
 Work is invested to drive the cycle, which absorbs and supplies heat at 

different temperatures

What is a Heat Pump Thermodynamically?
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Fig 13.18 Favrat Fig 13.22 Favrat

Heating heat pump cycle Cooling heat pump cycle



 Heat qh delivered at Th is the main objective 
 Circular integral in P-v or T-s increased by irreversibility corresponds to 

invested work or to heat balance
 Invested work corresponds to heat balance  1st law

 Entropy balance on the heating cycle

Heating Heat Pump Energy Balance
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Fig. 13.19 Favrat

≥ 0 according to 2nd law



 With heat delivered at constant temperatures (Ta & Th) for perfect cycle 
(r = 0) energy and entropy balance become:

 Using entropy balance and combining with energy balance, ideal 
performance metric can be expressed

Ideal Heating Heat Pump Effectiveness
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 Exergy balance over stationary system

 For heating heat pump cycles becomes

Exergy Approach
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 Heating effectiveness definition

 Link between Carnot factor and exergy efficiency in heating mode

Heating Heat Pump Effectiveness
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 Heating effectiveness
• Towards infinity for Th → Ta
• Towards 1 for Th → ∞
• Increases with Ta
• Is > 1

 Since heating effectiveness 
can take values on large range
metric can be disconcerting

 Heating effectiveness worthless
without indication of T levels

Heating Heat Pump Effectiveness
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 Circular integral in P-v or T-s increased by irreversibility corresponds to 
invested work or to heat balance
 Invested work corresponds to heat balance  1st law

 Entropy balance on the refrogeration cycle

Refrigeration Heat Pump Energy Balance
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Fig. 13.23 Favrat



 Cooling effectiveness definition

 Link between Carnot factor and exergy efficiency in cooling mode

Refrigeration Heat Pump Effectiveness
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 Cooling effectiveness
• Towards infinity for Tf → Ta
• Towards 0 for Tf → 0
• Decreases with Ta

 Since heating effectiveness 
can take values on large range
metric can be disconcerting

 Cooling effectiveness worthless
without indication of T levels

Refrigeration Heat Pump Effectiveness
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Power Cycles and Heat Pumps

Technical
Implementation of 

Heat Pumps

Prof. J. Schiffmann



 Typical cases of bi-thermal heat pump cycles
 Bi-thermal  transfer occurs with two different thermal sources 

involves pressure change within cycle

 Most common are cases b and d  one if thermal source is 
atmosphere

Typical Heat Pump Settings
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Fig 13.31 Favrat



 Reversed Stirling cycle
• Composed of two isothermal and two isochoric processes, with internal heat 

transfer
• Possible to realize as closed system with displacement

How Can Heat Pump Cycle Be Realized 
Thermodynamically?
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Fig 13.13 Favrat



 Reversed Ericsson cycle
• Composed of two isothermal and two isobaric processes, with internal heat 

transfer
• Possible to realize as closed system

How Can Heat Pump Cycle Be Realized 
Thermodynamically?
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Fig 13.15 Favrat



 Reversed Carnot cycle
• Composed of two isothermal and two isentropic processes, without internal 

heat transfer

• Possible to realize with a closed 
system without fluid transfer

How Can Heat Pump Cycle Be Realized 
Thermodynamically?
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 Isothermal compression and expansion are challenging to achieve 
technically  make use of working fluid evaporation and condensation

 Requires isentropic compression 
and expansion in two phase zone

Technical Challenges of Reversed Carnot Cycle
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 Humid compression challenging due to presence of liquid phase in 
working chambers

 Liquid in working chamber 
decreases lubricant effect

 Liquid in working chamber 
yields very high pressures  failure 

 Dry compression is preferred to 
protect compression machine from
destruction 

Technical Challenges of Reversed Carnot Cycle
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 Wet expansion through turbine or expander difficult and yields low 
power due to low share of vapor

 Expensive equipment for little return

 Energy transfer from expander to 
compressor challenging 
 regulation of expansion flow 

 Use of two phase expansion 
valve preferred solution 
 isenthalpic expansion

Technical Challenges of Reversed Carnot Cycle
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 Heat transfer in condenser and evaporator requires finite temperature 
difference

 Leads to a de-evaluation of heat

Technical Challenges of Reversed Carnot Cycle
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 Ideal thermodynamic cycles require
• Isothermal compression / expansion
• Wet compression / expansion
• Ideal heat transfer with thermal sources 
• Perfect insulation

 Realization of ideal thermodynamic cycles challenging from 
technological point of view

Technical Challenges

M
E-

45
9 

H
ea

t P
um

ps
 S

ys
te

m
s

31



 Typical layout of domestic-scale air-water heat pump

Typical Components in Heat Pumps
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Condenser

Evaporator

CompressorExpander

Compressor

Expander

Evaporator

Condenser
https://www.viessmann.de



 Compressor increases pressure from evaporation to condensation
 Various working principles
 Large capacity range

Compressor
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Compressor types

Positive displacement Dynamic

https://www.oreilly.com/
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 Condenser rejects heat and condenses working fluid
 Various types depending on power and fluids

Condenser
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www.alfalaval.com



 Expander reduces pressure from condensation to evaporation level
 Expander is throttle valve with variable orifice
 Controlled by working fluid temperature at 

evaporator discharge

Expander

M
E-

45
9 

H
ea

t P
um

ps
 S

ys
te

m
s

35

Compressor

Expander

Evaporator

Condenser
https://www.viessmann.de

https- en.wikipedia.org wiki Thermal_expansion_valve# 
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 Evaporator absorbs heat and evaporates working fluid

Evaporator
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EPFL-Thesis 6764, Jean-Baptiste Carré, 
Experimental investigation of domestic heat pumps 
equipped with a twin-stage oil-free radial compressor
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 Detailed performance analysis of heat pump based on vapor 
compression cycle

 Analysis of real heat pump based on single stage cycle

 Means to improve heat pump performance

 Analysis of two stage cycle with open flash tank economizer

Outlook for W5
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 Comprehension questions

 Thermodynamic analysis of an ideal vapor compression refrigeration 
cycle

 Thermodynamic analysis of an inverse Brayton cycle

Exercises W4
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