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Heating & Cooling in Historical Context
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 Heat through combustion is simple and cheap

 Artificial cooling is more challenging to achieve

 Industrial vapor compression heat pump cycles
only beginning of 20th century

 Today heat pumps are spread within various applications
ranging from domestic to industrial applications

http://www.carel-japan.com/high-efficiency-solutions/evaporative-cooling/

americanhistory.si.edu blog ice-harvesting-
electric-refrigeration



 27% or primary energy consumption relates to domestic HVAC
 Heat pumps play key role in reducing energy consumption and CO2

emissions

Domestic HVAC
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 Bithermal thermodynamic cycle working in anti-clockwise direction
 Work is invested to drive the cycle, which absorbs and supplies heat at 

different temperatures

What is a Heat Pump Thermodynamically?
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Fig 13.18 Favrat

Heating heat pump cycle



1. What is known?  Sketch with known properties

2. What is problem?  Define objectives of analysis

3. Define the system  Identify system boundaries and fluxes

Systematic Approach in Thermodynamics
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System A



1. What is known?  Sketch with known properties

2. What is problem?  Define objectives of analysis

3. Define the system  Identify system boundaries and fluxes

4. Define assumptions  Identify suitable simplifying assumptions

5. Thermodynamic analysis  Apply physical laws

6. Discussion  Critical analysis of results & assumptions

Systematic Approach in Thermodynamics (cont.)
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Heat Pump Systems

Prof. J. Schiffmann

Thermodynamics Crash Course
First Law for Closed Systems



 Energy is fundamental quantity in thermodynamics
 Energy can only be stored, transformed, or transferred
 Energy cannot be destroyed or produced
 In closed system, energy can only be transferred through work and heat

 Reference is system
• If work/heat is provided from surrounding to system W > 0, Q > 0
• If system provides work/heat to surrounding W < 0, Q < 0

Introduction
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 Consider closed system where piston moves from A to B

 Work depends on evolution of p vs. V 
 work depends on process details

 Surface under transformation line in 
pV-diagram represents work

 Work is no thermodynamic state property

Work
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 Consider closed and adiabatic system where piston moves from A to B

 Only possible energy transfer is via work

 Work on adiabatic system between fixed states
depends only on start and end states

 Total energy E is thermodynamic state property

Work
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 Total energy E includes all possible forms of energy in system
• Kinetic energy KE
• Potential energy PE
• Internal energy U

 All energy changes that are not kinetic or potential are summarized as 
internal energy

 Adiabatic work is transformed into kinetic, potential and internal energy

Total Energy E
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 Internal energy of fluid corresponds to kinetic energy related to 
molecular motion, chemical bonds, intramolecular forces

 Temperature plays important role

 No motion at absolute zero

Internal Energy U
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 Consider closed system where piston moves from A to B

 In non-adiabatic system, change of E cannot 
be solely explained by work

 Total energy change result of work and heat

Non-Adiabatic Transformation
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 In general process from A to B, energy is transferred to achieve 
 Energy transfer occurs across system boundary through

• Work W
• Heat Q

 First law becomes

 Change of total energy in system corresponds to net transfer of work 
and heat across system boundary

First Law in Closed System
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 Balance between end and start states

 Differential balance

 Power balance

where

Equivalent Formulations of First Law in Closed 
System
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 Like work, heat is not a thermodynamic state, depends on process

 Heat flux

 Heat transfer mechanisms: conduction and radiation

 Energy transfer from a body to a fluid referred to as convection, i.e. 
combined effects of conduction and bulk motion of fluid

Heat
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 Heat transfer mechanism in solids and liquids at rest
 Heat transferred by activity at molecular scale
 Governed by Fourier’s law

 Typical values for conductivity

Conduction
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[W/mK]

0.01 – 0.2Gases

0.1 - 1Liquids

1 - 450Solids



 Radiation
• No medium required ( vacuum, space)
• Governed by Boltzmann-equation

• Emissivity 
• Emissivity depends on surface shape, material properties, surface finish, 

orientation 

Radiation
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 Heat transfer activated by fluid motion at interface with solid 
 Coupling between fluid motion and fluid conduction 
 Challenging to calculate  correlations for specific configurations
 Governed by Newton’s law

 Laminar regime  low flux
 Turbulence enhances energy 

exchange between layers

Convection
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 Correlations for forced convection

 Correlations for natural convection

 Fluid properties condensed into Pr-number

Convection Correlations
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 Available correlations usually
not very accurate

 Heat transfer coefficient 
highly dependent on fluid,
mass-flux, geometry

Performance of Typical Correlations
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D. Schmid, B. Verlaat, P. Petagna, R. Revellin, J. Schiffmann. Heat transfer of flow boiling carbon dioxide 
in vertical upward direction. International Journal of Heat and Mass Transfer, vol. 196, 123246, 2022.
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Cycles



 Cyclic process returns to starting point periodically
 Energy balance of cycle

Cycle Characteristics
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 Cyclic process returns to starting point periodically
 Energy balance of cycle

 End corresponds to starting point

• In cycle, net heat corresponds to net work  true for all cycles

Cycle Characteristics
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 Power cycle absorbs heat from hot source,
transforms part of it into work, and delivers
remaining heat to cold source

 Power cycles operate in clockwise direction

 Energy balance

Power Cycles
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 Efficiency is ratio between yield and investment

 Due 1st law and                     thermal 
efficiency 

Power Cycle Efficiency
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 Steam locomotives 0.12
 Nuclear power station 0.3 – 0.34
 Coal plant 0.35 – 0.48
 Gas turbine engines 0.3 – 0.42
 Combined cycles 0.62
 Internal combustion engines 0.35
 Large diesel engines 0.58

Typical thermal efficiencies
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Heat Pump Systems

Prof. J. Schiffmann

Thermodynamics Crash Course
First Law for Open Systems



 Characterized by mass fluxes across system boundary
• Energy balance
• Mass balance

 Possible energy transfer
• Work
• Heat
• Convective contribution through

incoming and outgoing mass-flows

Open Systems
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 Mass balance

 Mass in control volume

where

Open Systems: Mass Balance
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 Mass balance

 Mass in control volume

where

 Mass flow

Open Systems: Mass Balance
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 Incoming and outgoing mass-flows
add and retrieve total energy from system

 Convective flow across system boundary
composed of internal, kinetic, and 
potential energy

Open Systems: Energy Balance
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 Transfer to mass across system boundary
requires work that is transferred to and 
from system

 Transfer power: 

 Expression for total work on system:

where         corresponds to work other than transfer work delivered to system

Open Systems: Transfer Power
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 Combining energy balance and expression for total work on system

Open Systems: Energy Balance
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 Combining energy balance and expression for total work on system

 With definition of enthalpy as a new state variable:

Open Systems: Energy Balance
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 Energy balance:

 Mass balance:

Open System Balances
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Specific internal  + transfer energy
Specific kinetic energy

Specific potential energyNet work
Net heat

Net convected power



 Mass balance
 Energy balance

Example: Helicopter Engine
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Heat Pump Systems
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Second Law



 Systems left on their own are subject to natural balancing processes 
until state of equilibrium is reached

 Spontaneous balancing processes only take place if there is a natural 
tension / imbalance / potential

 Examples of natural balancing processes
• Body at higher temperature naturally cools down until reaching ambient 

temperature
• Pressurized air bottle naturally leaks until ambient pressure is reached
• Suspended mass naturally falls to floor

Natural Systems: Observations
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 Natural balancing processes only in one direction

 Reversal is possible only by investing energy from outside system

 Problem: 1st law does not prevent reverse processes

 Description of observations requires additional law  2nd law

Natural Systems: Observations
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 Closed system contains two 
equivalent masses, one at 0°C,
one at 100°C

 1st law violates observed 
natural processes

Experiment
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 Closed system contains two 
equivalent masses, one at 0°C,
one at 100°C

 1st law violates observed 
natural processes

 2nd law prevents violation

Experiment
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 By Clausius (1854): There is no change of state whose only result is the 
transfer of heat from a body at a lower temperature to a body at a 
higher temperature

• Heat does not flow naturally from a low-temperature reservoir to a higher one

Formulations of 2nd Law
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 Kelvin-Planck (1848/1926): It is impossible to construct a device which, 
operating in a cycle, will produce no other effect than the extraction of 
heat from a reservoir and the performance of equivalent amount of work

• Power cycles requires hot and cold source

• Thermal efficiency < 1

Formulations of 2nd Law
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 System 1 composed of power cycle 
according to Kelvin-Planck

Equivalence of 2nd Law Formulations
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 System 1 composed of power cycle 
according to Kelvin-Planck
 System 2 transferring heat opposed 

to Clausius
 Heat rejected by power cycle flows

back to hot reservoir

Equivalence of 2nd Law Formulations
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 System 1 composed of power cycle 
according to Kelvin-Planck
 System 2 transferring heat opposed 

to Clausius
 Heat rejected by power cycle flows

back to hot reservoir
 Combined system 3 draws net heat 

and transform it into W 
without rejecting heat to cold reservoir
 violates Kelvin-Planck formulation

Equivalence of 2nd Law Formulations
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 System 1 composed of power cycle 
according to Kelvin-Planck
 System 2 transferring heat opposed 

to Clausius
 Heat rejected by power cycle flows

back to hot reservoir
 Combined system 3 draws net heat 

and transform it into W 
without rejecting heat to cold reservoir
 violates Kelvin-Planck formulation
 Violation of Kelvin-Planck requires 

violation of Clausius  equivalence

Equivalence of 2nd Law Formulations
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 Knowing 1st and 2nd law that indicate what is possible, we want to know 
what a perfect machine looks like

 A perfect machine is reversible

 A process is called reversible if a system can be returned to its initial 
state without causing any changes in the environment

 Processes that take place in one direction only, are irreversible
• Cooling of a cup of tea, emptying of a pressurized bottle, dissipation, falling 

mass, plastic deformation, spontaneous chemical reaction, mixing, …

Concept of Reversibility
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 Irreversibility is a dissipation of energy, a loss of potential work 
 engineers want to avoid them

 Reversible processes are hypothetical and represent processes 
without any losses

 Reversible processes are not possible practically, but they represent 
the limits of what is possible while satisfying 1st and 2nd law

 Reversible processes are useful as references to measure the 
thermodynamic performance of real processes

Concept of Reversibility
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 The thermal efficiency of an irreversible power cycle is always lower 
than that of a reversible cycle between the same thermal reservoirs

 All reversible power cycles between the same thermal reservoirs have 
the same thermal efficiency

 The efficiency of a reversible machine is independent of the process, 
the components, and the working fluid

Carnot Principles
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 Reversible power cycles between same thermal reservoirs have same 
thermal efficiency  efficiency only function of reservoir temperatures

 Definition of thermal efficiency

 Consequently

Thermal Efficiency
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 Reversible power cycles between same thermal reservoirs have same 
thermal efficiency  efficiency only function of reservoir temperatures

 Definition of thermal efficiency

 Consequently

Thermal Efficiency
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Kelvins approach: ratio of reversibly 
transferred heats equals ratio of 
reservoir  temperatures



 Through Kelvins definition of the function, thermal efficiency of 
reversible cycle expressed as:

 Carnot cycle is one famous reversible power cycle

 Thermal efficiency of reversible cycle is called Carnot-efficiency

 Carnot efficiency is reference for assessing performance of power 
cycles

Thermal Efficiency
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 Cycle composed of two reversible adiabatic and two reversible 
isothermal processes 

Carnot Cycle
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 Compression work

Carnot Cycle
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 Expansion work

Carnot Cycle
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 Net work

Carnot Cycle
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 Maximum thermal efficiency limited by
Carnot efficiency

 Carnot efficiency rises with temperature 
different between reservoirs

 Maximizing hot source temperature 
is key drive to improve thermal 
performance

Thermal Efficiency
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C = 0.74

C = 0.68



 Real life thermal efficiency always
lower than Carnot efficiency

Typical Thermal Efficiencies
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 Real life thermal efficiency always
lower than Carnot efficiency

 Limitations stem from irreversibility
and practical limitations

• Temperature drop required to transfer heat
• Friction, secondary flows
• Pressure gradient needed to transfer mass
• Limited temperature resistance of materials

Typical Thermal Efficiencies
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Combined cycle (gas 
turbine + steam turbine)

Gas turbine

Modern coal plant

Old coal plant
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 Thermodynamics crash course

• Entropy, entropy balance in closed/open systems

• Isentropic efficiencies

• Concept of exergy

• Exergy efficiency

Outlook for W3
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 Theory questions

 Reversible, adiabatic expansion

 Polytropic expansion

 Maximum reversible work output of a finite source

 Filling empty gas tank

 Reversible cycle efficiencies

Exercises W2
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