
Heat Pumps Systems

Prof. J. Schiffmann

Course Introduction



 Laboratory for Applied Mechanical Design (MechE)

 Small scale turbomachinery
• Heat pumps
• Power cycles
• Fuel cell blowers

 Gas lubricated bearings

 Automated design methodologies
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 W1: Societal drive, history of heat pumps, thermodynamic basis
 W2-3: Thermodynamics crash course
 W4: Thermodynamics of heat pump cycles
 W5: Performance analysis, single-stage & two-stage cycles
 W6: Cycle improvements 
 W7: Working fluids, introduction to compressors
 W8: Positive displacement compressor performance, screws, scroll
 W9-10: Turbocompressors
 W11: Heat exchangers
 W12: Absorption, supercritical, humid air + air-conditioning, acr
 W13: Absorption, supercritical, humid air + air-conditioning, acr
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 Organization

• Course at 9.15h followed by exercises

• Course, exercices and corrections on moodle

• Teaching assistants
 A. Jena, K. Jacoby, I. Soukhmane, A. Zervent

Course Organization
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Heat Pumps Systems

Prof. J. Schiffmann

Historical Background of Heat Pumps



 Heating and cooling are basic requirements to make living more 
comfortable

 Heat pumps are technical systems to provide heating and / or cooling 
by driving them with electrical / mechanical power

Social Needs
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Heating in Historical Context
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 Artificial and controlled use of fire was major
step towards improved comfort, food 
preparation and defense

 Heat through combustion is simple and cheap
 little motivation to do better

 Today we put a box around the fire and 
call it modern heating system manashsubhaditya.blogspot.com/2012/06/stone-

age-people-discovery-of-haunting.html



 Cooling is important for comfort in hot climate
 Goes back to 2’500 BC with Egyptians using evaporative cooling
 Used in middle east through “wind catchers”
 Used today for terrace cooling

Cooling in Historical Context
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http://www.carel-japan.com/high-efficiency-solutions/evaporative-cooling/ https://quilohome.com/evaporative-cooling-
ancient-world/

https://theplumber.com/the-pros-cons-of-
outdoor-misting-systems/



 Cooling is important for storing perishable food
 Ice harvesting and trade was important business branch until ~1900
 Natural ice was traded and distributed at intercontinental scale 
 Strong demand for cooling called for more efficient alternative

Cooling in Historical Context
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welt.de geschichte article145039745 Die-unerhoerte-Ladung-des-
Eiskoenigs-aus-Boston.html#cs-lazy-picture-placeholder-01c4eedaca.png

americanhistory.si.edu blog ice-harvesting-
electric-refrigeration

teachingwiththemes.com index.php 2018 07 11 how-
did-humans-survive-without-refrigerators ice-wagon 



 Artificial cooling was much more difficult to achieve
 Experiment by W. Cullen in 1755 (Edinburgh)

• Decrease pressure in vessel containing diethyl ether
• Pressure reduction leads to boiling, which absorbs 

heat from surroundings
• Water in thermal contact with vessel cooled down and 

turned into ice

 Experiment highlights two thermodynamic concepts
• Vapor pressure  liquid with own vapor at equilibrium 

is at saturation pressure  PSAT = f(T) 
• Latent heat is absorbed from surrounding required to boil

First Steps in Artificial Cooling
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https://en.wikipedia.org/wiki/William_Cullen



 To make Cullen’s experiment continuous, boiled vapor would have to be 
condensed and brougth back to original vessel
 Condensation requires rejection of latent heat at higher temperature
 J. Perkins patented such a system in 1835
 J. Hague realized Perkins’ idea using ether 

as a working fluid
• Machine has all components of modern 

refrigeration cycle: compressor, condenser,
expansion valve, evaporator

 First commercial ice-making plant in 
Australia in 1855

First Steps in Artificial Cooling
M

E-
45

9 
H

ea
t P

um
ps

 S
ys

te
m

s

11

http://kameshalwar.blogspot.com/2017/03/refigeration-and-air-conditioning-brief.html



 Heat pump allows to gather heat at low temperature (cooling) and to 
reject it at higher temperature (heating)
 Can be used to provide cooling and/or heating
 Composed of compressor, condenser, expansion valve & evaporator

Heat Pump Operation
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http://kameshalwar.blogspot.com/2017
/03/refigeration-and-air-conditioning-
brief.html

Compressor

Condenser

Evaporator

Expansion



 Evaporator absorbs heat from low temperature reservoir
 Condenser rejects heat to high temperature reservoir
 Compressor increases working fluid pressure by absorbing energy
 Expander decreases working fluid pressure

Typical Heat Pump Components
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 Typical cases of bi-thermal heat pump cycles
 Bi-thermal  transfer occurs with two different thermal sources 

involves pressure change within cycle

 Most common are cases b and d  one if thermal source is 
atmosphere

Typical Heat Pump Settings
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Fig 13.31 Favrat



 Industrialization of refrigeration driven by C. von Linde after 1875
 Most fundamental inventions made by 1900
 Raising business for compressor manufacturers in US and Europe

Developments of Artificial Cooling
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Sulzer piston compressor ~1905 Steam engine driven piston compressor ~1925



 Air-conditioning units extract heat from apartment and reject to ambient

Typical Applications Today: Cooling
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www.servicechampions.net blog the-basics-of-air-conditioner-preparation-
and-maintenance 

www.nydailynews.com news world ny-news-climate-change-air-conditioners-
20180704-story.jpg



 Fridges and freezers for food conservation or medical drug storage
 Heat is extracted from fridge and rejected to room

Typical Applications Today: Cooling
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www.danby.com/blog/fridge-cleaning-tips-give-fridge-spring-purge/

bcfocus.com/global-commercial-refrigerators-freezer-market-2020-industry-
status-carrier-commercial-refrigeration-frigoglass-haier-panasonic-dover-
corporation/



 Cooling for food storage

Typical Applications Today: Cooling
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suisse.zero-c.com/fr/references/



 Providing heating and cooling services in distric networks 

Typical Applications Today: Heating & Cooling
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www.friotherm.com/wp-content/uploads/2017/11/katri_vala_e012_uk.pdf



 Heat is extracted from ground
at low temperature and rejected
to house at higher temperature

 Alternatively, low temperature 
heat can be extracted from 
lake / river or from external air

Typical Applications Today: Domestic Heating
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www.researchgate.net/figure/Brine-water-heat-pump_fig2_309027046



 Low-temperature heat is 
extracted from from external air

Typical Applications Today: Air-Water Heat Pumps
M

E-
45

9 
H

ea
t P

um
ps

 S
ys

te
m

s

21

https://www.waermepumpen.info/luftwaermepumpe/luft-wasser



 Low-temperature heat is 
extracted from ground

Typical Applications Today: Water-Water Heat Pumps
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https://solarwissen.selfmade-energy.com



 Production of cold for comfort, preserving perishable goods and 
hygiene was key driver for vapor compression heat pumps

 Alternative technologies have been developed for cooling

 Vapor compression and 
mechanical vapor 
recompression type 
represent 95% of market 

Artificial Cooling Technologies Overview
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Driving energy

Electricity

Vapor 
compression 

Mechanical Vapor 
recompression 

Heat

Absorption

Thermal Vapor 
recompression 

Other

Magnetic

Thermoelectric



Heat Pumps Systems

Considerations on Energy for 
Domestic Heating

Prof. J. Schiffmann



 Population

Population, Energy Consumption, CO2
concentration
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 Population
 Energy

Population, Energy Consumption, CO2
concentration
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 Population
 Energy
 CO2 concentration in atmosphere

Population, Energy Consumption, CO2
concentration
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 50% of required cuts achieved by increasing conversion efficiency

Steps Towards Sustainable Energy Landscape
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User 
efficiency

Generation 
efficiency

Biofuels
Nuclear
CCS

Renewable

Source: IEA outlook



 80% non-renewables
 32% lost
 27% for domestic heating ventilation and air-con (HVAC)

Worldwide Energy Fluxes
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Domestic Heating: 
Comparison of Technology Combinations
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 Heat pumps play key role in reducing energy consumption and CO2
emissions

Domestic Heating: 
Comparison of Technology Combinations
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Heat Pump Systems

Prof. J. Schiffmann

Thermodynamics Crash Course
Introduction



 Evaporator absorbs heat from low temperature reservoir
 Condenser rejects heat to high temperature reservoir
 Compressor increases working fluid pressure by absorbing energy
 Expander decreases working fluid pressure

 Tool needed to describe these processes

Typical Heat Pump Components
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 Deals with transformation of energy from one form into another, 
transformation of fluid properties, systems to transform energy

 Thermodynamics is a tool that joins physics with mechanical 
engineering

 Thermodynamics is useful tool to assess achievement of efficiency, 
power, cost, and environmental objectives

Thermodynamics
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 Cooling and heating of rooms

 Humidity control

 Cooling of perishable goods

Thermodynamics at Home
M

E-
45

9 
H

ea
t P

um
ps

 S
ys

te
m

s

35



Thermodynamics in Transport
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GE90 (B-777)
• Fan diameter: 3.26 m
• Weight: 8.3 t
• Thrust: 569 kN

Raptor 3 (Space X)
• Diameter: 1.3 m
• Weight: 1.53 t
• Thrust: 2750 kN

Wärtsilä RT-flex96C
• Height: 13.5 m
• Weight: 2300 t
• 14 cylinders
• Power: 81.3 MW



Thermodynamics in Industry
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Nuclear power plant 
• Pressurized water reactor
• Several cycles

Gas turbine engine power station

Industry 
• Processes
• Pinch analysis



 Define system boundary 
 Identify interactions across 

boundary
• Work
• Heat
• Fluid fluxes

 Apply energy conservation
and mass conservation for
system

Thermodynamic System Approach
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 Define system boundary 
 Identify interactions across 

boundary
• Work
• Heat
• Fluid fluxes

 Apply energy conservation
and mass conservation for
system

Thermodynamic System
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System A



 Define system boundary 
 Identify interactions across 

boundary
• Work
• Heat
• Fluid fluxes

 Apply energy conservation
and mass conservation for
system

Thermodynamic System
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System B

System C



 Closed & open systems
• Closed: constant mass
• Open: mass fluxes across boundary

 Isolated systems
• No work, heat, or fluxes

 Adiabatic systems
• No heat transfer

Characterization of Thermodynamic Systems
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 Homogeneous & heterogeneous systems

Characterization of Thermodynamic Systems
M

E-
45

9 
H

ea
t P

um
ps

 S
ys

te
m

s

42

Flüssig-
keit

LiquidGas

Gas & Liquid



 Description of fluid’s properties in system via thermodynamic state 
properties

• Mass

• Volume

• Pressure

• Temperature

• Internal energy

• Enthalpy

• Entropy

Thermodynamic States
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Specific values (per unit mass)



 Transfer of work and heat into and from system change state of fluid

• Starting state in A, end state in B

• Different processes (trajectories) 
possible for same start & end states

• Different processes involve different 
sequences of heat and work transfer

• All thermodynamic states properties defined 
for a fixed state  independent of process

Thermodynamic States
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 Transfer of work and heat into and from system change state of fluid
• Starting state in A, end state in B
• Different processes (trajectories) 

possible for same start & end states
• Different processes involve different 

sequences of heat and work transfer
• All thermodynamic states defined 

for a fixed state  independent of process

 Definition of cycle
• Sequence of processes leads system 

back to initial state
• Process describes closed line

Thermodynamic States
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1. What is known?  Sketch with known properties

2. What is problem?  Define objectives of analysis

3. Define the system  Identify system boundaries and fluxes

4. Define assumptions  Identify suitable simplifying assumptions

5. Thermodynamic analysis  Apply physical laws

6. Discussion  Critical analysis of results & assumptions

Systematic Approach in Thermodynamics
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 Thermodynamics crash course

• 1st law for closed/open systems

• Cycle characteristics

• Formulation of 2nd law

• Carnot cycles, real-life limitations

Outlook for W2
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 Theory questions

 Reversed Brayton Cycle

 Rankine Cycle

Exercises W1
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