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Heat Exchangers: Introduction



▪ Identify common types of heat exchangers, including their typical 
applications, advantages, and limitations. 

▪ Explain fundamental heat transfer mechanisms (conduction, 
convection, and radiation) relevant to heat exchanger analysis. 

▪ Calculate the overall heat transfer coefficient (U) for specified heat 
exchanger applications. 

▪ Design and evaluate heat exchanger performance based on given 
operational requirements. 

Learning Outcomes
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Heat Exchanger Definition:

Devices designed to transfer thermal

energy between two or more fluids at 

different temperatures.

Application:

Application of Heat Exchangers (HEX)
3

Chemical / Petroleum Food / Pharmaceutical Domestic Housing
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1. Fluid Interaction:

Direct contact vs. Indirect contact

2. Fluid Phases: Single-phase vs. Multi-phase

3. Geometry and Construction: Shell-and-tube, plate, finned-tube, or 
other specialized geometries

Classification of HEX
4
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HeatFluid,Legend:



1) Shell and Tube

Types of HEX
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2) Plate 3) Air-Cooled (open)



Types of HEX: Shell and Tube
6

▪ Composed of a bundle of tubes 
enclosed in a cylindrical shell

▪ One fluid flows through the tubes 
(tube side), the other flows over 
the tubes within the shell (shell 
side)

▪ Baffles direct flow and enhance 
heat transfer by promoting 
turbulence

▪ Tube sheets hold the tubes and 
separate the fluids
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Characteristics:

▪ Most common HEX in chemical/process industries

▪ Easy to access and clean (especially with removable tube bundles)

▪ Handles high pressures and temperatures

▪ Not suitable for low flow rates

▪ Established and reliable manufacturing

▪ Straightforward material selection

▪ Standardized, well-documented design

Types of HEX: Shell and Tube
7
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Design Considerations:

▪ Corrosion: More corrosive fluid in tube side (easier to replace)

▪ Fouling: Higher fouling fluid in tube side (higher velocity → less fouling; 
easier to clean)

▪ Temperature: Hottest fluid in tube side (lower heat loss; reduced safety and 
insulation costs)

▪ Pressure: Higher pressure fluid in tube side (easier to handle wall thickness)

▪ Pressure Drop: Low Δ𝑃 fluid in tube side (higher heat transfer at same ΔP)

▪ Viscosity: Higher viscosity fluid in shell side (Re > 200, promotes turbulence 
→ better heat transfer)

▪ Flow Rate: Lower flow rate fluid in shell side

Types of HEX: Shell and Tube
8
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External and Internal Fins:

Types of HEX: Shell and Tube - Enhanced Designs
9
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▪ Increases surface area

▪ Increases swirl / turbulence

▪ Enhances heat transfer

Disadvantages:

▪ Higher pressure drop

▪ Cleaning difficulty

▪ Higher cost



▪ Thin metal plates stacked to 
form parallel flow channels

▪ Fluids flow in alternating 
channels (hot, cold, hot, cold...)

▪ Corrugated plate surfaces create 
turbulence and boost heat 
transfer

▪ Gaskets (removable) or brazing 
(permanent) seal the channels 
and control fluid flow

Types of HEX: Plate Heat Exchangers
10
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Characteristics:

▪ Compact, high-performance 

design

▪ Small footprint

▪ Very high surface area 

density (>700 m²/m³, shell and tube ≈ 100 m²/m³)

▪ Flexible sizing for thermal duty (easy to add /remove plates)

▪ Easy to clean – ideal for food/pharma applications

▪ Allows close temperature approach (counter-current flow)

▪ High heat transfer efficiency: turbulence + thin flow paths

Types of HEX: Plate Heat Exchangers
11
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Gasketed Plate:

▪ Plates not permanently bonded

▪ Max ~180°C, 16–30 bar

▪ Not suitable for aggressive 
solvents

▪ Gaskets direct flow and allow 
disassembly

Types of HEX : Plate Heat Exchangers
12

Brazed Plate:

▪ Plates permanently bonded 
(no gaskets)

▪ More compact, non-
serviceable

▪ Suitable for clean fluids and 
high pressure
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Types of HEX: Shell and Tube vs Plated
13
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▪ Open System: Uses ambient air (no 
separate fluid loop).

▪ Forced or Natural Convection: via 
fans/blowers (forced draft) or buoyancy 
(natural draft).

▪ Finned Tubes: Extended surface area 
compensates for air’s lower heat 
transfer coefficient.

▪ Comparison to Shell & Tube/Plate:

• No closed coolant circuit

• Dust exposure risk

• Larger footprint

Types of HEX: Air-Cooled (Open)
14
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Advantages:

▪ Saves water

▪ Uses ambient air (readily 
available, lack of other 
options) 

▪ No flow 
cross‐contamination 

▪ Lower maintenance (no 
fouling or chemical 
treatment)

▪ Lower capital cost 

Types of HEX: Air-Cooled (Open)
15

Disadvantages:

▪ Lower thermal efficiency 
(air has low conductivity, 
density, and heat capacity)

▪ Requires more space

▪ Noisy (high acoustic 
emissions)

▪ Climate sensitive: High 
temperatures or dust 
reduce performance and 
increase maintenance.
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Applications:

▪ HPS:

▪ Industrial Cooling:

Types of HEX: Air-Cooled (Open)
16
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▪ Transportation:
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Conduction:

▪ Heat transfer mechanism within solids or a stationary liquids

▪ Heat transferred by molecular scale energy diffusion

Convection:

▪ Heat transfer between a moving fluid and a surface

▪ Coupling between fluid motion and fluid conduction 

Radiation:

▪ Heat transfer via electromagnetic radiation

▪ No medium required (→ vacuum, space)

Heat Transfer
18
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▪ Governed by Fourier’s law:

▪ Typical values for conductivity

Heat Transfer - Conduction
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k[W/mK]

Gases 0.01 – 0.2

Liquids 0.1 - 1

Solids 1 - 450

k[W/mK]

Insulating Materials 0.025-0.173

Steel 50

Aluminium 220

Copper 395

𝑄 = −𝑘𝐴∇𝑇 = 𝑈𝐴∆𝑇 𝑤ℎ𝑒𝑟𝑒 𝑈𝐴 =
1

𝑅𝑐𝑜𝑛𝑑

𝑅𝑐𝑜𝑛𝑑 =
𝐿

𝑘𝐴
𝑅𝑐𝑜𝑛𝑑−𝑐𝑦𝑙 =

ln(
𝑟2
𝑟1
)

2𝜋𝐿𝑘

Planar Wall: Radial Wall:

𝑇 ∝ 𝐿
𝑇2

𝑇1

𝐿

𝑟

𝑇𝑟1 𝑇𝑟2

𝑇 ∝ 𝑙𝑛(r)



Flow Regime

Laminar Turbulent

Driving 

Mechanism

Natural (free) Air rising near wall Chimney flow at high T

Forced Slow flow in a pipe Fan-driven air over 

heater

▪ Governed by Newton’s law:

▪ Convection Classification:

Heat Transfer - Convection
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𝑄 = ℎ𝐴 𝑇𝑠 − 𝑇∞ = 𝑈𝐴∆𝑇 𝑤ℎ𝑒𝑟𝑒 𝑈𝐴 =
1

𝑅𝑐𝑜𝑛𝑣

𝑅𝑐𝑜𝑛𝑣 =
1

ℎ𝐴

Planar Wall:

𝑅𝑐𝑜𝑛𝑣−𝑐𝑦𝑙 =
1

ℎ2𝜋𝑟𝐿

Radial Wall:



▪ Forced Convection: Driven by external forces (e.g. fans, pumps), fluid 
motion is imposed.

Heat Transfer –Convection: Forced
21

Nu =
ℎ𝑥

𝑘𝑓
=
convection

conduction
= 𝑓 𝑅𝑒, 𝑃𝑟 where 𝑅𝑒 =

𝑣𝑥

𝜈
=
inertial forces

viscous forces
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▪ Fluid properties condensed into Pr-number:

Pr =
𝜈

𝛼
=
momentum diffusivity

thermal diffusivity
where 𝛼 =

𝑘

𝜌𝑐𝑝
=

conduction

energy storage



▪ Natural (Free) Convection: Driven by buoyancy forces arising from 
temperature-induced density differences. Fluid motion occurs naturally 
due to gravity acting on these density gradients.

Heat Transfer –Convection: Natural
22

Nu =
ℎ𝑥

𝑘𝑓
= 𝑓 𝐺𝑟, 𝑃𝑟 where 𝐺𝑟 =

𝑥3𝑔𝛽Δ𝑇

𝜈2
=
buoyancy forces

viscous forces
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Pr =
𝜈

𝛼
=
momentum diffusivity

thermal diffusivity
where 𝛼 =

𝑘

𝜌𝑐𝑝
=

conduction

energy storage

▪ Fluid properties condensed into Pr-number:



▪ Forced Convection: Plate, turbulent

▪ Forced Convection: Cylinder, external, turbulent (Churchill-Bernstein)

▪ Empirical correlations only valid within designed operating conditions 
(Re, Pr) and geometry limits.

▪ Typical uncertainty in h: ±30[%].

▪ Convection coefficients are the bottleneck in HEX design.

Heat Transfer –Convection: Correlations
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▪ Governed by the Stefan-Boltzmann law:

▪ Kirchhoff’s Law: at thermal equilibrium 𝜖𝜆(𝑇, 𝜃, 𝜙) = 𝛼𝜆(𝑇, 𝜃, 𝜙)

▪ Blackbody: Perfect absorber and emitter.

▪ Emissivity ( 0 < 𝜖 ≤ 1): Measure of emissive power of real surfaces 
(non-blackbody) relative to blackbody (𝜖 = 1).

▪ Emissivity depends on: surface shape, material properties, surface 
finish, and orientation.

Heat Transfer - Radiation
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𝑄 = 𝐴𝜖𝜎𝑇4, 𝑤ℎ𝑒𝑟𝑒 𝜎 = 5.67 ∗ 10−8
𝑊

𝑚2𝐾4

= 𝜌

= 𝜏

= 𝛼

𝜌 + 𝜏 + 𝛼 = 1

𝑒𝑛𝑜𝑛−𝑏𝑙𝑎𝑐𝑘 = 𝜖𝑒𝑏 = 𝜖𝜎𝑇4



▪ Fouling: Buildup of unwanted materials on heat transfer surfaces that 
reduces efficiency and increases pressure drop.

▪ Major issue in heat exchanger performance

Common fouling types:

▪ Scaling (e.g., calcium carbonate deposits)

▪ Corrosion (metal oxide layers)

▪ Biological (biofilms in cooling water)

▪ Particulate (suspended solids)

▪ Chemical (reaction byproducts)

Heat Transfer – Fouling
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▪ Overall heat transfer coefficient U: represents the heat exchanger’s 
ability to transfer heat per unit area per unit temperature difference.

▪ Logarithmic mean temperature difference:

▪ If 𝑇ℎ2 − 𝑇𝑐1 = 𝑇ℎ1 − 𝑇𝑐2 then Δ𝑇𝑙𝑚 = 𝑇ℎ1 − 𝑇𝑐2

Heat Transfer –Overall Heat Transfer Coefficient
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Δ𝑇𝑙𝑚(counter flow) =
𝑇ℎ2 − 𝑇𝑐1 − 𝑇ℎ1 + 𝑇𝑐2

ln
𝑇ℎ2 − 𝑇𝑐1
𝑇ℎ1 − 𝑇𝑐2

𝑇[𝐾]

L[𝑚]

𝑇ℎ1

𝑇𝑐2
𝑇ℎ2
𝑇𝑐1

ሶ𝑄 = 𝑈𝐴Δ𝑇𝑙𝑚 =
Δ𝑇𝑙𝑚
𝑅𝑡𝑜𝑡



▪ Electrical Circuit:

▪ Thermal Circuit:

Heat Transfer – Thermal Resistance
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Electrical Circuits Thermal Circuits

Driving Force Voltage difference ΔV [V] Temperature Difference ΔT[K] 

What Flows Electric current I [A] Heat Rate ሶQ [W]

Opposition to Flow Resistance R [Ω] Thermal Resistance R𝑡𝑜𝑡 [K/W]

𝑅 = 𝑅1 + 𝑅2 + 𝑅3

𝐼 =
Δ𝑉

𝑅

𝑅𝑡𝑜𝑡 = 𝑅1 + 𝑅2

ሶ𝑄 =
Δ𝑇

𝑅𝑡𝑜𝑡



▪ Pipe Flow

▪ 𝑅𝑡𝑜𝑡 is dominated by largest resistance (i.e., lowest heat transfer 
coefficient).

▪ Assumption: steady state, no phase change, constant properties

Heat Transfer – Thermal Resistance
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1

𝑅𝑡𝑜𝑡
=෍

1

𝑅
=

1

𝑅conv,h
+

1

𝑅foul,h
+

1

𝑅cond
+

1

𝑅foul,c
+

1

𝑅conv,c

ሶ𝑄 = 𝑈𝐴Δ𝑇𝑙𝑚 =
Δ𝑇𝑙𝑚
𝑅𝑡𝑜𝑡

𝑇𝑟1 𝑇𝑟2

Convection + 

fouling
Conduction

Convection + 

fouling



▪ x = 0: Single-phase liquid enters; heating initiates bubble formation.

▪ Bubbly → Plug/Slug flow: Bubbles grow, coalesce, and form vapor slugs.

▪ Wavy flow: Vapor dominates core; liquid intermittently wets wall.

▪ Annular flow: Thin liquid film on walls, central vapor core.

▪ Near x = 1: Wall intermittently or fully dry.

Heat Transfer –2 Phase
29
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Heat Transfer –2 Phase: Flow Pattern
30
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D. Schmid, B. Verlaart, P. Petagna, R. Revellin, J. Schiffmann. Flow Pattern Observations and 
flow pattern map for adiabatic two-phase flow of carbon-dioxide in vertical upward and 
downward direction. Experimental Thermal and Fluid Sciences, vol. 131, 110526, 2022.
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▪ A: Onset of nucleate boiling

▪ A->C: Nucleate boiling

▪ C: Critical heat flux (𝑞"𝑚𝑎𝑥)

▪ C->D: Transition boiling

▪ D: Leidenfrost point (𝑞"𝑚𝑖𝑛)

▪ D->E: Film boiling

Heat Transfer –2 Phase: Boiling Crisis
31

𝑞𝑠" = ℎ(𝑇𝑠 − 𝑇𝑠𝑎𝑡) = ℎΔ𝑇𝑒
𝑇𝑠 = surface 𝑇, 𝑇𝑠𝑎𝑡 = saturation 𝑇, Δ𝑇𝑒 = excess 𝑇
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Heat Transfer –2 Phase: Boiling Crisis
32
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Nucleate Boiling:

▪ Liquid contacts the hot 
surface.

▪ Bubbles form, grow, and 
depart.

▪ Phase change efficiently 
removes heat (via latent heat).

▪ Surface is well-wetted, and 
heat transfer is very high.𝑞𝑠" = ℎ(𝑇𝑠 − 𝑇𝑠𝑎𝑡) = ℎΔ𝑇𝑒

𝑇𝑠 = surface 𝑇, 𝑇𝑠𝑎𝑡 = saturation 𝑇, Δ𝑇𝑒 = excess 𝑇



Heat Transfer –2 Phase: Boiling Crisis
33
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Critical Heat Flux:

▪ Heat input becomes so 
intense that bubbles form too 
fast to detach or be replaced 
by liquid.

▪ Bubbles coalesce into a vapor 
film that blankets the surface.

▪ Liquid can no longer reach the 
surface.

𝑞𝑠" = ℎ(𝑇𝑠 − 𝑇𝑠𝑎𝑡) = ℎΔ𝑇𝑒
𝑇𝑠 = surface 𝑇, 𝑇𝑠𝑎𝑡 = saturation 𝑇, Δ𝑇𝑒 = excess 𝑇



Heat Transfer –2 Phase: Boiling Crisis
34
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Beyond Critical Heat Flux:

▪ A vapor film forms with much 
lower thermal conductivity 
than liquid.

▪ The surface becomes 
insulated → surface 
temperature spikes → heat 
transfer drops.

▪ This is the boiling crisis: risk of 
overheat and thermal 
failure/burnout.𝑞𝑠" = ℎ(𝑇𝑠 − 𝑇𝑠𝑎𝑡) = ℎΔ𝑇𝑒

𝑇𝑠 = surface 𝑇, 𝑇𝑠𝑎𝑡 = saturation 𝑇, Δ𝑇𝑒 = excess 𝑇
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Step 1: Define Problem Bounds

HEX Design Steps: Shell and Tube
36

M
E

-4
5
9
 H

e
a
t 

P
u
m

p
s
 S

ys
te

m
s

▪ Establish specifications (size, 
pressure losses, cost)

▪ Calculate energy balance 
(load)

▪ Estimate unspecified flow rates 
or temperatures

▪ Collect thermophysical 
properties



Step 2: Estimate Heat Transfer 
Coefficients / Performance

HEX Design Steps: Shell and Tube
37
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▪ Estimate overall heat transfer 
coefficient U (literature)

▪ Estimate the heat transfer area 
required



Step 3: Initial Sizing

HEX Design Steps: Shell and Tube
38
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▪ Decide number of passes 
within HEX

▪ Decide tube size and material

▪ Decide number of baffles

▪ Assign fluid to shell or tube 
side

▪ Calculate number of tubes

▪ Calculate shell diameter



Step 4: Calculate Heat Transfer 
Coefficients

HEX Design Steps: Shell and Tube
39
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▪ Calculate tube side heat 
transfer coefficient

▪ Calculate shell side heat 
transfer coefficient

▪ Calculate remaining thermal 
resistances

▪ Calculate overall heat transfer 
coefficient

If 0% <
Ucalc−𝑈𝑎𝑠𝑠

𝑈𝑎𝑠𝑠
< 30% → Step 2



Step 5: Evaluate Against 
Specification

HEX Design Steps: Shell and Tube
40
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▪ Calculate tube and shell side 
pressure drop

▪ Calculate HEX cost

If 𝑃𝑑𝑟𝑜𝑝−𝑐𝑎𝑙𝑐 > 𝑃𝑑𝑟𝑜𝑝−𝑠𝑝𝑒𝑐 → Step 2

If 𝐶𝑜𝑠𝑡𝑐𝑎𝑙𝑐 > 𝐶𝑜𝑠𝑡𝑠𝑝𝑒𝑐 → Step 2

Accept Design !!

Δ𝑃 = 8𝑗𝑓
𝑙

𝑑

𝜌𝑢2

2

𝜇

𝜇𝑤

−𝑚



▪ Identify common types of heat exchangers, including their typical 
applications, advantages, and limitations. 

▪ Explain fundamental heat transfer mechanisms (conduction, 
convection, and radiation) relevant to heat exchanger analysis. 

▪ Calculate the overall heat transfer coefficient (U) for specified heat 
exchanger applications. 

▪ Design and evaluate heat exchanger performance based on given 
operational requirements. 

Content Summary
41
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▪ A Heat Transfer Textbook (https://ahtt.mit.edu/)

▪ VDI Heat Atlas (https://link.springer.com/referencework/10.1007/978-3-
540-77877-6)

▪ Chemical Engineering Design 
(https://www.sciencedirect.com/book/9780080966595/chemical-
engineering-design) 

Complimentary Literature
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https://ahtt.mit.edu/
https://link.springer.com/referencework/10.1007/978-3-540-77877-6
https://link.springer.com/referencework/10.1007/978-3-540-77877-6
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▪ Transcritical Heat Pumps
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▪ Theory questions / Exam style multiple choice

▪ Heat CO2

▪ Designing a counter flow shell and tube heat exchanger
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