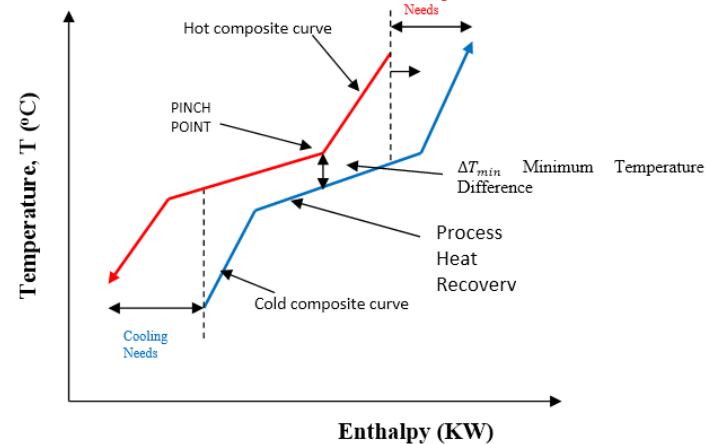


Heat Pumps Systems

Heat Exchangers: Introduction


**Prof. J. Schiffmann
K. Jacoby**

- Identify common types of heat exchangers, including their typical applications, advantages, and limitations.
- Explain fundamental heat transfer mechanisms (conduction, convection, and radiation) relevant to heat exchanger analysis.
- Calculate the overall heat transfer coefficient (U) for specified heat exchanger applications.
- Design and evaluate heat exchanger performance based on given operational requirements.

Application of Heat Exchangers (HEX)

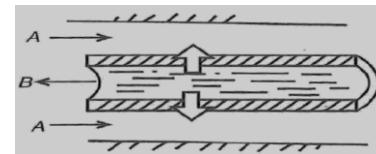
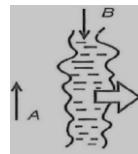
Heat Exchanger Definition:

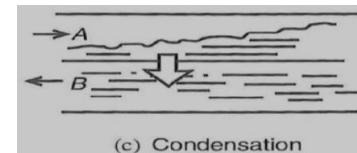
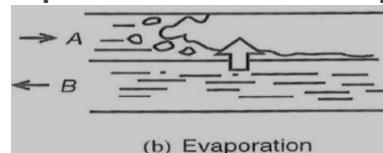
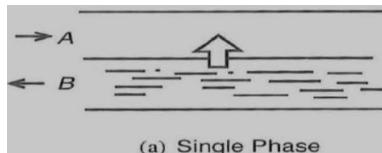
Devices designed to transfer thermal energy between two or more fluids at different temperatures.

Application:

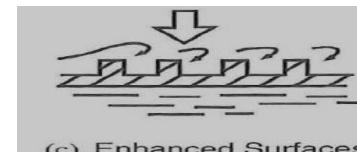
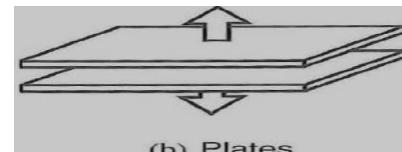
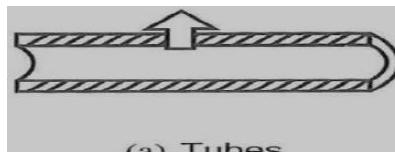
Chemical / Petroleum

Food / Pharmaceutical

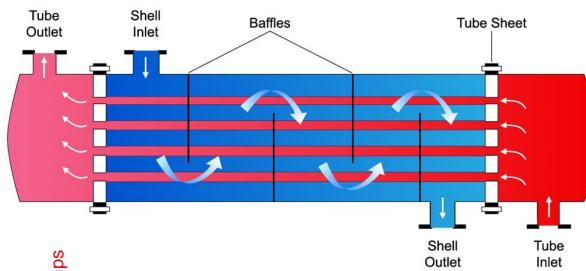


Domestic Housing




Classification of HEX

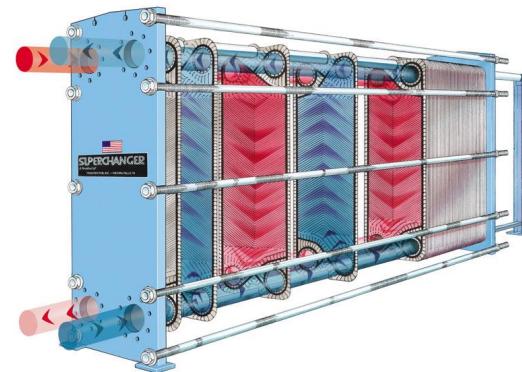
1. Fluid Interaction:




Direct contact vs. Indirect contact

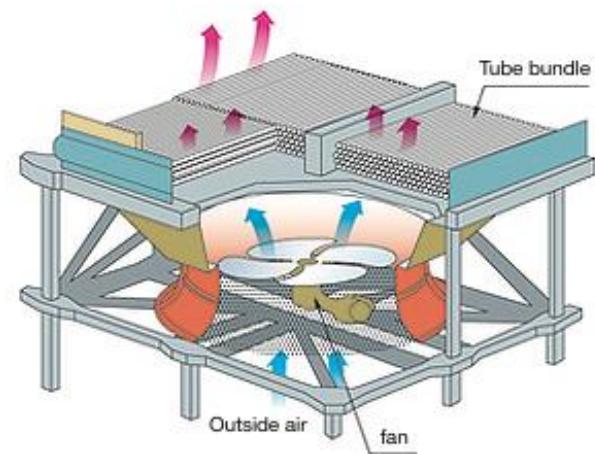
2. Fluid Phases: Single-phase vs. Multi-phase



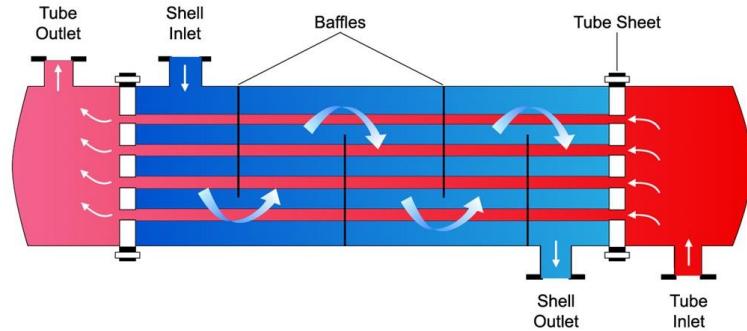
3. Geometry and Construction: Shell-and-tube, plate, finned-tube, or other specialized geometries



Legend: Fluid, Heat


1) Shell and Tube

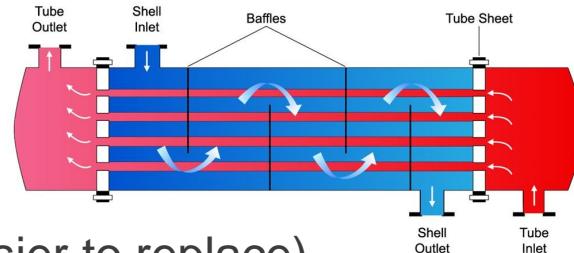
2) Plate



3) Air-Cooled (open)

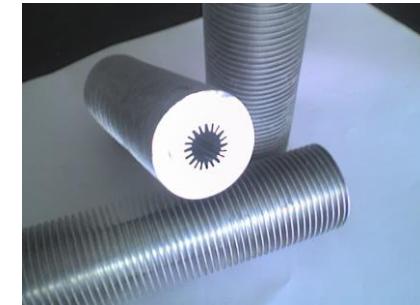
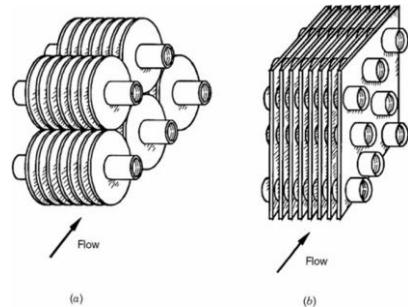
Types of HEX: Shell and Tube

- Composed of a bundle of tubes enclosed in a cylindrical shell
- One fluid flows through the tubes (tube side), the other flows over the tubes within the shell (shell side)
- Baffles direct flow and enhance heat transfer by promoting turbulence
- Tube sheets hold the tubes and separate the fluids


Types of HEX: Shell and Tube

Characteristics:

- Most common HEX in chemical/process industries
- Easy to access and clean (especially with removable tube bundles)
- Handles high pressures and temperatures
- Not suitable for low flow rates
- Established and reliable manufacturing
- Straightforward material selection
- Standardized, well-documented design

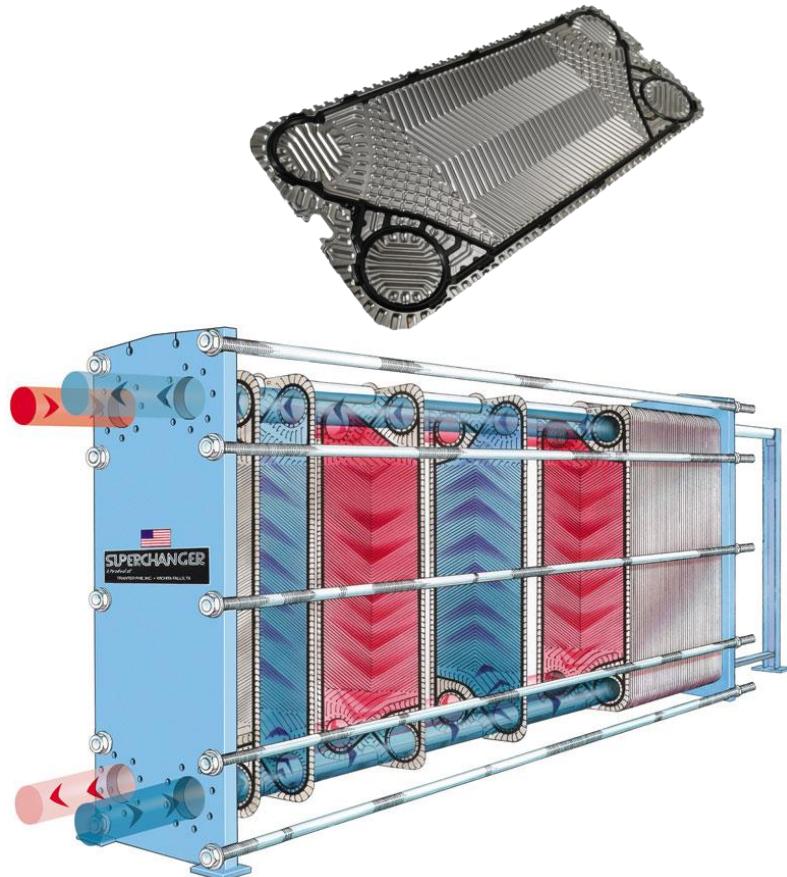


Types of HEX: Shell and Tube

Design Considerations:

- Corrosion: More corrosive fluid in tube side (easier to replace)
- Fouling: Higher fouling fluid in tube side (higher velocity → less fouling; easier to clean)
- Temperature: Hottest fluid in tube side (lower heat loss; reduced safety and insulation costs)
- Pressure: Higher pressure fluid in tube side (easier to handle wall thickness)
- Pressure Drop: Low ΔP fluid in tube side (higher heat transfer at same ΔP)
- Viscosity: Higher viscosity fluid in shell side ($Re > 200$, promotes turbulence → better heat transfer)
- Flow Rate: Lower flow rate fluid in shell side

External and Internal Fins:

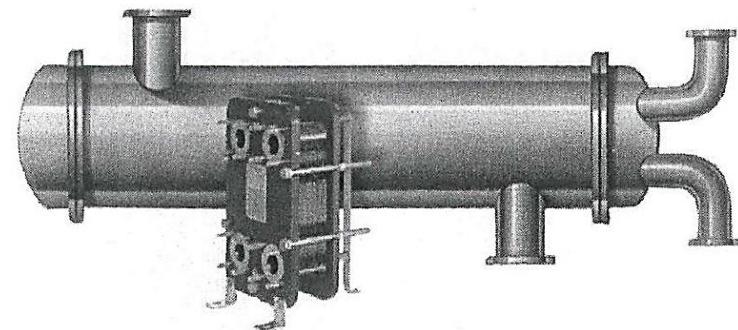
Advantages:


- Increases surface area
- Increases swirl / turbulence
- Enhances heat transfer

Disadvantages:

- Higher pressure drop
- Cleaning difficulty
- Higher cost

Types of HEX: Plate Heat Exchangers


- Thin metal plates stacked to form parallel flow channels
- Fluids flow in alternating channels (hot, cold, hot, cold...)
- Corrugated plate surfaces create turbulence and boost heat transfer
- Gaskets (removable) or brazing (permanent) seal the channels and control fluid flow

Types of HEX: Plate Heat Exchangers

Characteristics:

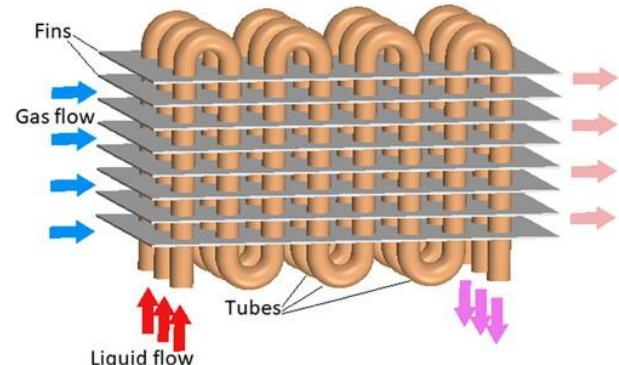
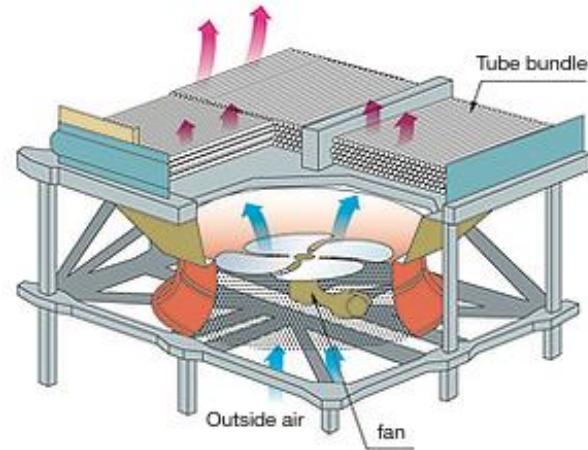
- Compact, high-performance design
- Small footprint
- Very high surface area density ($>700 \text{ m}^2/\text{m}^3$, shell and tube $\approx 100 \text{ m}^2/\text{m}^3$)
- Flexible sizing for thermal duty (easy to add /remove plates)
- Easy to clean – ideal for food/pharma applications
- Allows close temperature approach (counter-current flow)
- High heat transfer efficiency: turbulence + thin flow paths

Types of HEX : Plate Heat Exchangers

Gasketed Plate:

- Plates not permanently bonded
- Max ~180°C, 16–30 bar
- Not suitable for aggressive solvents
- Gaskets direct flow and allow disassembly

Brazed Plate:



- Plates permanently bonded (no gaskets)
- More compact, non-serviceable
- Suitable for clean fluids and high pressure

Types of HEX: Shell and Tube vs Plated

Types of HEX: Air-Cooled (Open)

- Open System: Uses ambient air (no separate fluid loop).
- Forced or Natural Convection: via fans/blowers (forced draft) or buoyancy (natural draft).
- Finned Tubes: Extended surface area compensates for air's lower heat transfer coefficient.
- Comparison to Shell & Tube/Plate:
 - No closed coolant circuit
 - Dust exposure risk
 - Larger footprint

Advantages:

- Saves water
- Uses ambient air (readily available, lack of other options)
- No flow cross-contamination
- Lower maintenance (no fouling or chemical treatment)
- Lower capital cost

Disadvantages:

- Lower thermal efficiency (air has low conductivity, density, and heat capacity)
- Requires more space
- Noisy (high acoustic emissions)
- Climate sensitive: High temperatures or dust reduce performance and increase maintenance.

Types of HEX: Air-Cooled (Open)

Applications:

- HPS:

- Industrial Cooling:

- Transportation:

[17,18,19,3,21]

Heat Pumps Systems

Heat Exchangers: Heat Transfer

**Prof. J. Schiffmann
K. Jacoby**

Conduction:

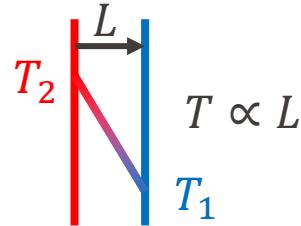
- Heat transfer mechanism within solids or a stationary liquids
- Heat transferred by molecular scale energy diffusion

Convection:

- Heat transfer between a moving fluid and a surface
- Coupling between fluid motion and fluid conduction

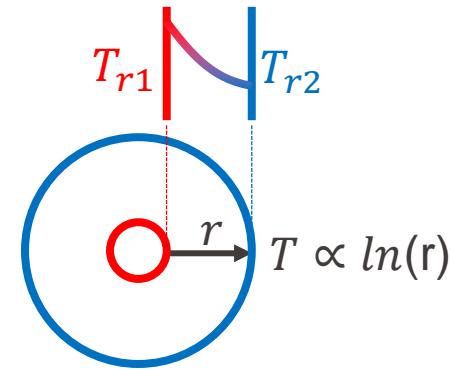
Radiation:

- Heat transfer via electromagnetic radiation
- No medium required (→ vacuum, space)


Heat Transfer - Conduction

- Governed by Fourier's law:

$$Q = -kA\nabla T = UA\Delta T \quad \text{where } UA = \frac{1}{R_{cond}}$$


Planar Wall:

$$R_{cond} = \frac{L}{kA}$$

Radial Wall:

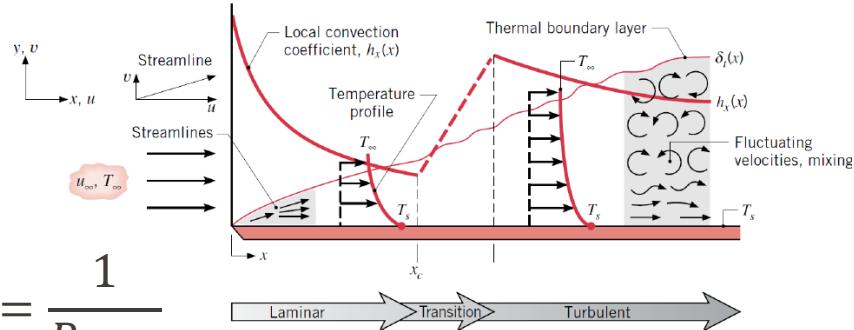
$$R_{cond-cyl} = \frac{\ln(\frac{r_2}{r_1})}{2\pi L k}$$

- Typical values for conductivity

	k[W/mK]
Gases	0.01 – 0.2
Liquids	0.1 - 1
Solids	1 - 450

	k[W/mK]
Insulating Materials	0.025-0.173
Steel	50
Aluminium	220
Copper	395

Heat Transfer - Convection


- Governed by Newton's law:

$$Q = hA(T_s - T_\infty) = UA\Delta T \quad \text{where } UA = \frac{1}{R_{conv}}$$

Planar Wall:

$$R_{conv} = \frac{1}{hA}$$

- Convection Classification:

Radial Wall:

$$R_{conv-cyl} = \frac{1}{h2\pi rL}$$

Driving Mechanism

Natural (free)

Forced

Flow Regime	
Laminar	Turbulent
Air rising near wall	Chimney flow at high T
Slow flow in a pipe	Fan-driven air over heater

- **Forced Convection:** Driven by external forces (e.g. fans, pumps), fluid motion is imposed.

$$\text{Nu} = \frac{hx}{k_f} = \frac{\text{convection}}{\text{conduction}} = f(Re, Pr) \quad \text{where} \quad Re = \frac{vx}{\nu} = \frac{\text{inertial forces}}{\text{viscous forces}}$$

- Fluid properties condensed into *Pr*-number:

$$\text{Pr} = \frac{\nu}{\alpha} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}} \quad \text{where} \quad \alpha = \frac{k}{\rho c_p} = \frac{\text{conduction}}{\text{energy storage}}$$

- **Natural (Free) Convection:** Driven by buoyancy forces arising from temperature-induced density differences. Fluid motion occurs naturally due to gravity acting on these density gradients.

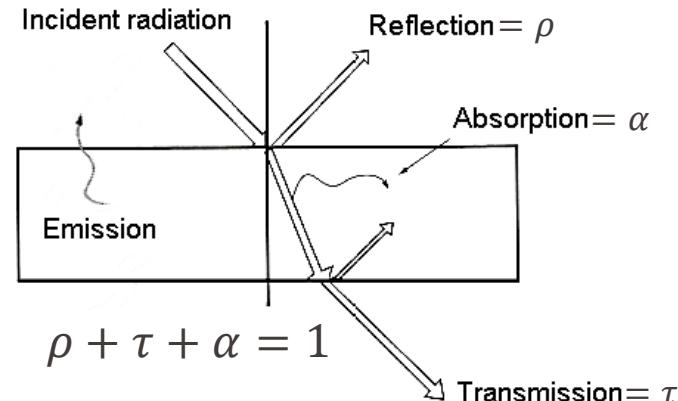
$$Nu = \frac{hx}{k_f} = f(Gr, Pr) \quad \text{where} \quad Gr = \frac{x^3 g \beta \Delta T}{\nu^2} = \frac{\text{buoyancy forces}}{\text{viscous forces}}$$

- Fluid properties condensed into *Pr*-number:

$$Pr = \frac{\nu}{\alpha} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}} \quad \text{where} \quad \alpha = \frac{k}{\rho c_p} = \frac{\text{conduction}}{\text{energy storage}}$$

- Forced Convection: Plate, turbulent

$$\overline{Nu_x} = 0.664 Re_x^{1/2} Pr^{1/3}$$


- Forced Convection: Cylinder, external, turbulent (Churchill-Bernstein)

$$\overline{Nu_D} = 0.3 + \frac{0.62 Re_D^{1/2} Pr^{1/3}}{[1 + (0.4/Pr)^{2/3}]^{1/4}} \left[1 + \left(\frac{Re_D}{282000} \right)^{5/8} \right]^{4/5}$$

- Empirical correlations only valid within designed operating conditions (Re, Pr) and geometry limits.
- Typical uncertainty in h : $\pm 30\%$.
- Convection coefficients are the bottleneck in HEX design.

- Governed by the Stefan-Boltzmann law:

$$Q = A\epsilon\sigma T^4, \text{ where } \sigma = 5.67 * 10^{-8} \left[\frac{W}{m^2 K^4} \right]$$

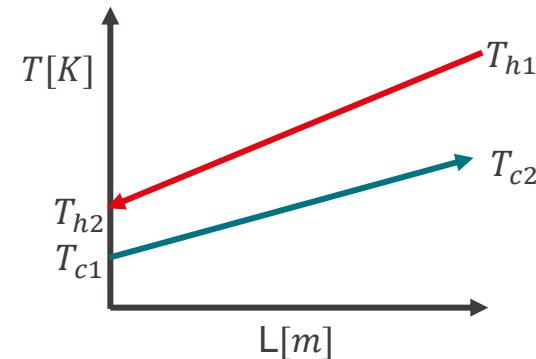


- Kirchhoff's Law: at thermal equilibrium $\epsilon_\lambda(T, \theta, \phi) = \alpha_\lambda(T, \theta, \phi)$
- Blackbody: Perfect absorber and emitter.
- Emissivity ($0 < \epsilon \leq 1$): Measure of emissive power of real surfaces (non-blackbody) relative to blackbody ($\epsilon = 1$).
$$e_{non-black} = \epsilon e_b = \epsilon \sigma T^4$$
- Emissivity depends on: surface shape, material properties, surface finish, and orientation.

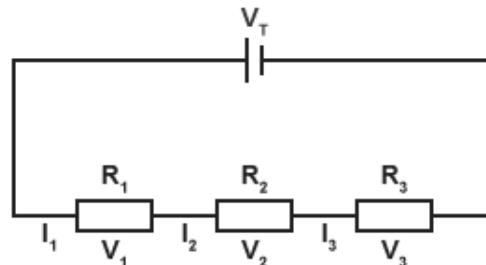
- **Fouling:** Buildup of unwanted materials on heat transfer surfaces that reduces efficiency and increases pressure drop.
- Major issue in heat exchanger performance

Common fouling types:

- Scaling (e.g., calcium carbonate deposits)
- Corrosion (metal oxide layers)
- Biological (biofilms in cooling water)
- Particulate (suspended solids)
- Chemical (reaction byproducts)

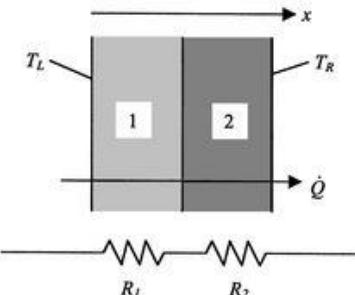

- Overall heat transfer coefficient U : represents the heat exchanger's ability to transfer heat per unit area per unit temperature difference.

$$\dot{Q} = UA\Delta T_{lm} = \frac{\Delta T_{lm}}{R_{tot}}$$


- Logarithmic mean temperature difference:

$$\Delta T_{lm}(\text{counter flow}) = \frac{T_{h2} - T_{c1} - T_{h1} + T_{c2}}{\ln \left(\frac{T_{h2} - T_{c1}}{T_{h1} - T_{c2}} \right)}$$

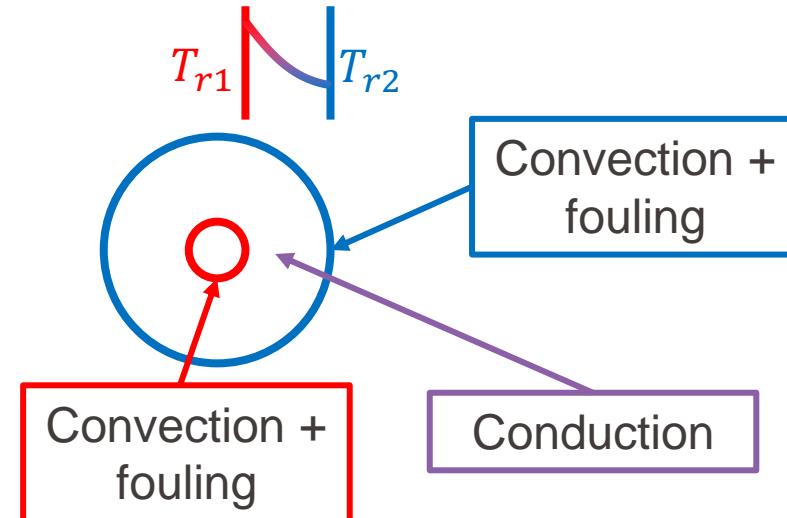
- If $T_{h2} - T_{c1} = T_{h1} - T_{c2}$ then $\Delta T_{lm} = T_{h1} - T_{c2}$


- Electrical Circuit:

$$I = \frac{\Delta V}{R}$$

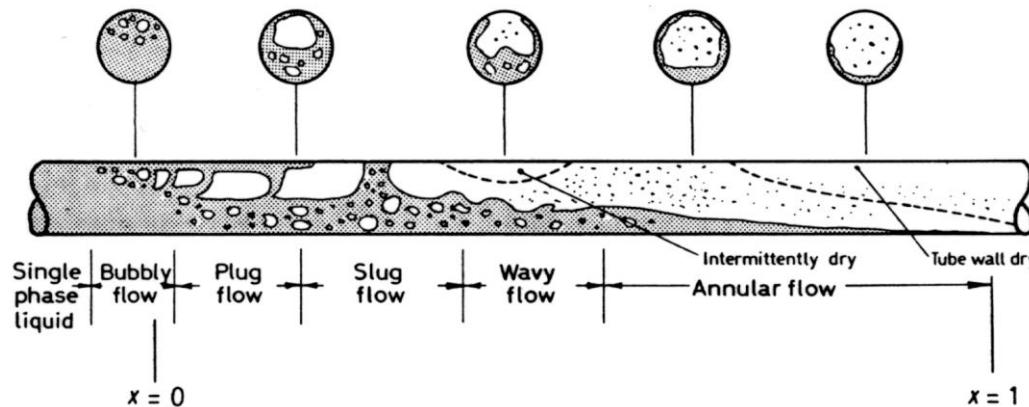
$$R = R_1 + R_2 + R_3$$

- Thermal Circuit:


$$\dot{Q} = \frac{\Delta T}{R_{tot}}$$

$$R_{tot} = R_1 + R_2$$

	Electrical Circuits	Thermal Circuits
Driving Force	Voltage difference ΔV [V]	Temperature Difference ΔT [K]
What Flows	Electric current I [A]	Heat Rate \dot{Q} [W]
Opposition to Flow	Resistance R [Ω]	Thermal Resistance R_{tot} [K/W]


- Pipe Flow

$$\dot{Q} = UA\Delta T_{lm} = \frac{\Delta T_{lm}}{R_{tot}}$$

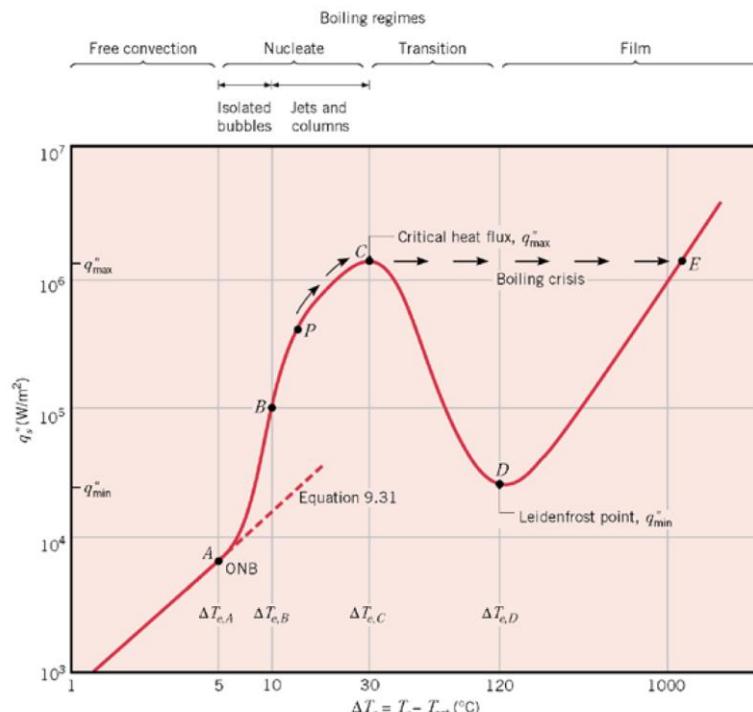
$$\frac{1}{R_{tot}} = \sum \frac{1}{R} = \frac{1}{R_{\text{conv,h}}} + \frac{1}{R_{\text{foul,h}}} + \frac{1}{R_{\text{cond}}} + \frac{1}{R_{\text{foul,c}}} + \frac{1}{R_{\text{conv,c}}}$$

- R_{tot} is dominated by largest resistance (i.e., lowest heat transfer coefficient).
- Assumption: steady state, no phase change, constant properties

- $x = 0$: Single-phase liquid enters; heating initiates bubble formation.
- **Bubbly → Plug/Slug flow**: Bubbles grow, coalesce, and form vapor slugs.
- **Wavy flow**: Vapor dominates core; liquid intermittently wets wall.
- **Annular flow**: Thin liquid film on walls, central vapor core.
- **Near $x = 1$** : Wall intermittently or fully dry.

Heat Transfer – 2 Phase: Flow Pattern

Upflow

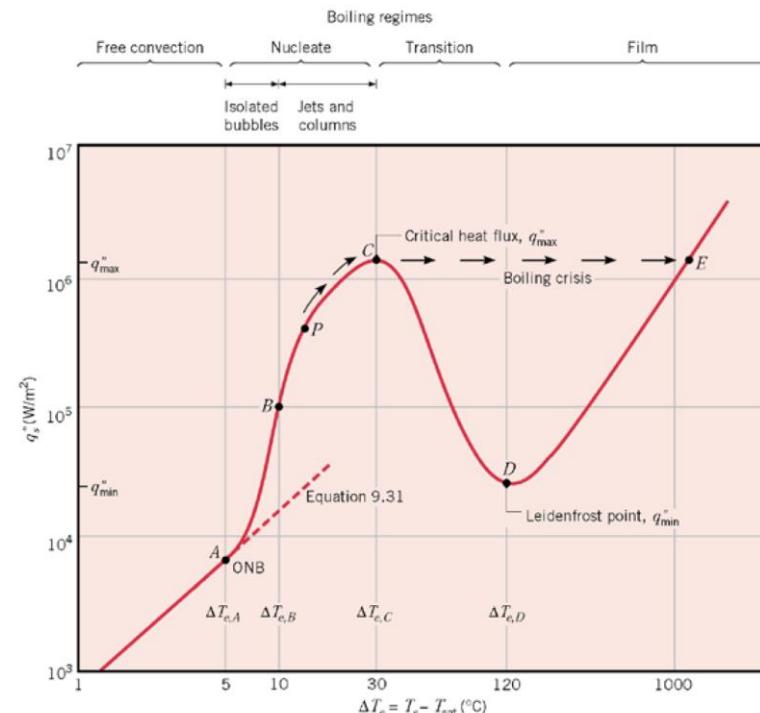


ME-459 Heat Pumps Systems

$\text{CO}_2, T = -25^\circ\text{C}; G = 200 \text{ kg m}^{-2} \text{ s}^{-1}$

D. Schmid, B. Verlaart, P. Petagna, R. Revellin, J. Schiffmann. **Flow Pattern Observations and flow pattern map for adiabatic two-phase flow of carbon-dioxide in vertical upward and downward direction**. Experimental Thermal and Fluid Sciences, vol. 131, 110526, 2022.

Heat Transfer – 2 Phase: Boiling Crisis



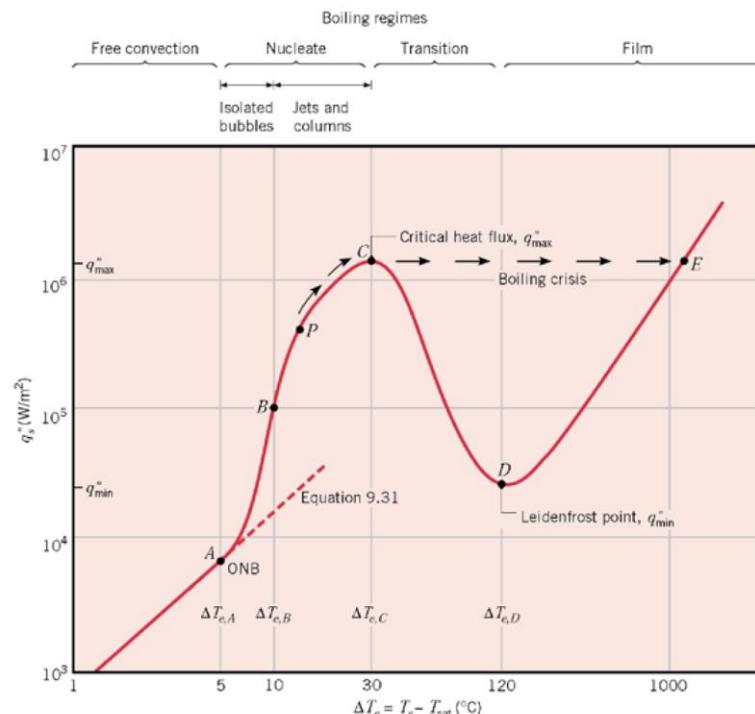
$$q_s'' = h(T_s - T_{sat}) = h\Delta T_e$$

T_s = surface T , T_{sat} = saturation T , ΔT_e = excess T

- A: Onset of nucleate boiling
- A->C: Nucleate boiling
- C: Critical heat flux (q''_{max})
- C->D: Transition boiling
- D: Leidenfrost point (q''_{min})
- D->E: Film boiling

Heat Transfer – 2 Phase: Boiling Crisis

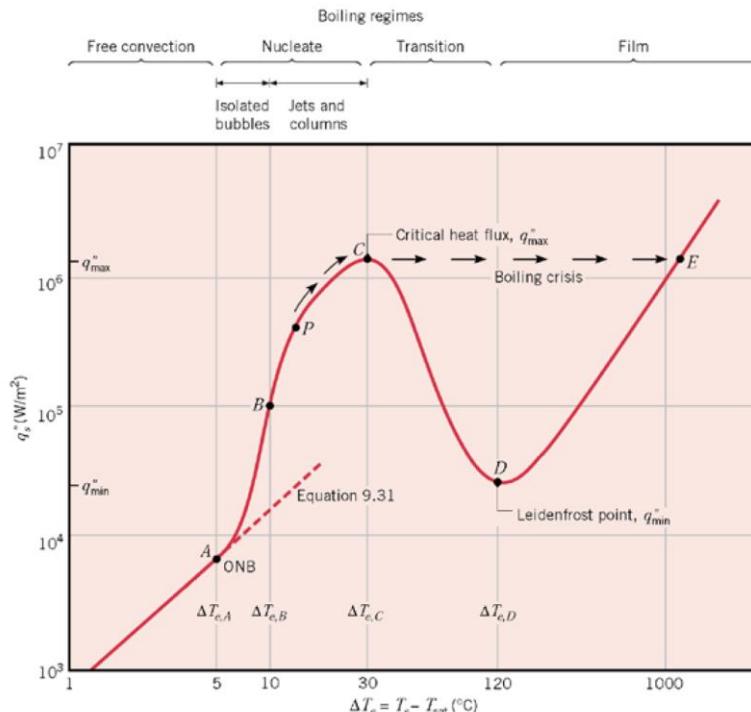
$$q_s'' = h(T_s - T_{\text{sat}}) = h\Delta T_e$$


T_s = surface T , T_{sat} = saturation T , ΔT_e = excess T

Nucleate Boiling:

- Liquid contacts the hot surface.
- Bubbles form, grow, and depart.
- Phase change efficiently removes heat (via latent heat).
- Surface is well-wetted, and heat transfer is very high.

Heat Transfer – 2 Phase: Boiling Crisis


$$q_s'' = h(T_s - T_{\text{sat}}) = h\Delta T_e$$

T_s = surface T , T_{sat} = saturation T , ΔT_e = excess T

Critical Heat Flux:

- Heat input becomes so intense that bubbles form too fast to detach or be replaced by liquid.
- Bubbles coalesce into a vapor film that blankets the surface.
- Liquid can no longer reach the surface.

Heat Transfer – 2 Phase: Boiling Crisis

$$q_s'' = h(T_s - T_{\text{sat}}) = h\Delta T_e$$

T_s = surface T , T_{sat} = saturation T , ΔT_e = excess T

Beyond Critical Heat Flux:

- A vapor film forms with much lower thermal conductivity than liquid.
- The surface becomes insulated \rightarrow surface temperature spikes \rightarrow heat transfer drops.
- This is the boiling crisis: risk of overheating and thermal failure/burnout.

Heat Pumps Systems

Heat Exchangers: Design

**Prof. J. Schiffmann
K. Jacoby**

Step 1: Define Problem Bounds

- Establish specifications (size, pressure losses, cost)
- Calculate energy balance (load)
- Estimate unspecified flow rates or temperatures
- Collect thermophysical properties

Step 1: Define Problem Bounds

- Estimate overall heat transfer coefficient U (literature)
- Estimate the heat transfer area required

Step 2: Estimate Heat Transfer Coefficients / Performance

HEX Design Steps: Shell and Tube

Step 1: Define Problem Bounds

Step 2: Estimate Heat Transfer
Coefficients / Performance

Step 3: Initial Sizing

- Decide number of passes within HEX
- Decide tube size and material
- Decide number of baffles
- Assign fluid to shell or tube side

- Calculate number of tubes
- Calculate shell diameter

HEX Design Steps: Shell and Tube

Step 1: Define Problem Bounds

Step 2: Estimate Heat Transfer
Coefficients / Performance

Step 3: Initial Sizing

Step 4: Calculate Heat Transfer
Coefficients

- Calculate tube side heat transfer coefficient
- Calculate shell side heat transfer coefficient
- Calculate remaining thermal resistances
- Calculate overall heat transfer coefficient

If $0\% < \frac{U_{\text{calc}} - U_{\text{ass}}}{U_{\text{ass}}} < 30\% \rightarrow \text{Step 2}$

Step 1: Define Problem Bounds

Step 2: Estimate Heat Transfer
Coefficients / Performance

Step 3: Initial Sizing

Step 4: Calculate Heat Transfer
Coefficients

Step 5: Evaluate Against
Specification

- Calculate tube and shell side pressure drop

$$\Delta P = 8j_f \left(\frac{l}{d}\right) \left(\frac{\rho u^2}{2}\right) \left(\frac{\mu}{\mu_w}\right)^{-m}$$

- Calculate HEX cost

If $P_{drop-calc} > P_{drop-spec}$ \rightarrow Step 2

If $Cost_{calc} > Cost_{spec}$ \rightarrow Step 2

Accept Design !!

- Identify common types of heat exchangers, including their typical applications, advantages, and limitations.
- Explain fundamental heat transfer mechanisms (conduction, convection, and radiation) relevant to heat exchanger analysis.
- Calculate the overall heat transfer coefficient (U) for specified heat exchanger applications.
- Design and evaluate heat exchanger performance based on given operational requirements.

- A Heat Transfer Textbook (<https://ahtt.mit.edu/>)
- VDI Heat Atlas (<https://link.springer.com/referencework/10.1007/978-3-540-77877-6>)
- Chemical Engineering Design
(<https://www.sciencedirect.com/book/9780080966595/chemical-engineering-design>)

- Transcritical Heat Pumps
- Ejectors in Heat Pumps

- Theory questions / Exam style multiple choice
- Heat CO_2
- Designing a counter flow shell and tube heat exchanger

1. <https://edu.epfl.ch/coursebook/en/heat-and-mass-transfer-ME-341>
2. Collier and Thome, Convective boiling and condensation. Oxford press 1994
3. Roetzel, Wilfried, and Bernhard Spang. 'C1 Thermal Design of Heat Exchangers'. *VDI Heat Atlas*, Springer, 2010, pp. 31–66. Springer Link, https://doi.org/10.1007/978-3-540-77877-6_4.
4. Hyll, Caroline. *Infrared Emissance of Paper: Method Development, Measurements and Application*. Diss. KTH Royal Institute of Technology, 2012.
5. https://www.apiste-global.com/files/user/201809071744_1-294x250.jpg
6. https://www.tandfonline.com/cms/asset/eb6e5ea4-8036-4c2f-ab18-551df237dc53/uhte_a_2295081_f0001_c.jpg
7. [www.process-heating.com articles/86243-maintaining-a-plate-heat-exchanger?v=preview.jpg](http://www.process-heating.com/articles/86243-maintaining-a-plate-heat-exchanger?v=preview.jpg)
8. https://pokornyindustries.b-cdn.net/product-main/20230529133138_segment%20deskov%C3%A9%20v%C3%BDm%C4%9Bn%C3%ADku%20P1060348.png?width=896&height=597&aspect_ratio=3:2
9. Bergman, T. L., Lavine, A. S., Incropera, F. P. & DeWitt, D. P., *Fundamentals of Heat and Mass Transfer*, 8th ed. (John Wiley & Sons, 2020). Chapter 17 "Heat Transfer by Convection," p. 408.
10. <https://www.zwimerquipment.com/wp-content/uploads/2018/12/Plate-Heat-Exchanger.jpg>
11. <https://www.waermeerpumpen.info/luftwaermeerpumpe/luft-wasser>
12. <https://www.bronswerk.com/hubs/Images/Shell%20and%20tube%20heat%20exchangers%20otos/2.03%20-%20design%20optimization%20shell%20and%20tube%20heat%20exchangers/2.03%20-%20design%20optimization%20shell%20%26%20tube%20heat%20exchangers%20foto%2003.jpg>
13. https://heat-exchanger-world.com/wp-content/uploads/sites/19/2022/02/heat_exchanger_main_image_baher.jpg
14. <https://www.forain.net/wp-content/uploads/2019/11/4-Dicembre.jpg>
15. <https://www.tempoco.it/blog/en/5909/fouling-in-heat-recovery-heat-exchangers/>
16. <https://techtransengineers.com/blog/brazed-vs-gasketed-plate-heat-exchanger/>
17. <https://www.waermeerpumpen.info/luftwaermeerpumpe/luft-wasser>
18. <https://suisse.zero-c.com/fr/references/>
19. <https://www.columnrads.co.uk/pub/media/wysiwyg/choosing-a-radiator-2.jpg>
20. https://www.researchgate.net/figure/Figure-1-The-Composite-Curves_fig1-352766217
21. https://www.ebaymotorsblog.com/motors/blog/wp-content/uploads/2020/12/removing_radiator_fan-2000-600x400-740x480.jpg
22. <https://www.bbc.co.uk/bitesize/guides/zqxb4qf/revision/6>
23. <https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node118.html>
24. <https://tubingchina.com/wp-content/uploads/2020/05/integral-Finned-Tubes-1.jpg>
25. <https://www.lordofintube.com/UploadFiles/Imago/2015120904472416.jpg>
26. <https://www.sciencedirect.com/science/article/pii/S1364032120307565>