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Radial Compressor Geometry

= Typical geometric features
 Impeller tip width ratio

0.02 < by/ry < 0.2

Relative impeller tip clearance

E!:p,"bi < {]{]5

Number of blades
12 < Npjpdes < 32

Axial length
L/rq = 0.35

Inlet diameter ratio
0.3 < rogfrg < 0.7

Blade angles
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Ba = —40°
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=F7L Typical Compressor Map

= Map limited towards lower mass flows by surge and towards higher
mass by choke
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=P7L Compressor at Choke

= Choke defines upper mass flow for each speed line

* Reducing back pressure increases velocity until it reaches the speed of
sound in smallest passage

Further reduction in back pressure yields no increase in mass flow

Speed line is vertical after choking has occurred

Choking can occur at inlet, impeller, or diffuser

Higher speeds shift choke to higher mass flows until inlet is choked

Throat usually near impeller inlet or diffuser inlet
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Compressor at Surge

= Surge line marks the low flow limit of region of stable operation

» Caused by increase in loading as mass flow is reduced (lower mass flow -
increased incidence - increased loading = separation)

* Depends on compressor itself & system configuration

= |Instability can have several forms

« Rotating Stall: separation in blade rows which jumps from one blade to next
- mass flow nearly constant with small high-frequency pressure fluctuations

» Mild Surge: Pulsations in mass flow and pressure without backflow

» Deep Surge: Strong periodic backflow through compressor with large
pressure and mass flow variations - should be avoided
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=PFL  Design Process of Turbomachinery

= Design of turbocompressor is interdisciplinary task
« Aerodynamics
* Mechanical stress
* Dynamics
* Thermal

= Flow in turbomachinery is highly complex
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=L 3D-CPDI

= Mesh of 30 million nodes
- 15h computational time for one operating
point = computational resources

= Not well suited for design

B ME-459 Heat Pumps Systems



=L 3D-CPFDII

B ME-459 Heat Pumps Systems

= Great for visualizing detailed flow
features and analysis

Pressure on pressure side larger than
on suction side

CR 3% )
Main blade passage Splitter blade passge

L " e 1 5
Pressure side Suction side

Main blade Splitter blade Main blade
o N N Q° N N
[ ee—————— L —

Relative Mach Number

Accumulation of low momentum fluid close
to suction side - jet-wake pattern
- mixing losses into diffuser
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3D-CFDIi

= Great for visualizing detailed flow
features and analysis

1.818e+05
1.2126+05

W mA-3 KA-1]

Trailing edge mixing into diffuser

Entropy production rate highest in tip
gap and on surfaces - skin friction

Trajectories of main (red streamlines)
and splitter blade (blue streamlines)
tip leakage vortices
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1D - Meanline Model *

= Modeling along flow direction, component by component

= Based on velocity triangles, mass- & Volute b,
energy conservation, h-s-diagram < 5y
§5
b4
= Representation of losses through b ‘
empirical correlations v
B
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- 1D

= Proven Empirical Loss Correlations

Skin Friction J- Inducer
Incidence  ~
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1D - Meanline Model

= Further effects

 Slip = flow does not follow blade angle
—> causes a decrease in work input

cs _ 1/co8Pa,

_ 0.7

« Aerodynamic blockage
Bi — AEH'/AEEUIH

» Surge in vaneless diffuser

Xperit — f(M-’-l-: b-i,/r-’-l-: T5/;T4:]

B

w

Real with slip
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1D - Meanline Model

PR, n;s, surge, choke| = f (1, Nyot, Po1, To1, Fluid, Geom)

Thrust force contours
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= Fast compressor map prediction - great for design
= No capturing of 3D flow patterns

Isentropic efficiency contours
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=PrL Comparison CFD - Meanline Model

= Excellent overall (out-in) agreement between
experimental data, CFD, and meanline-model
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=F7L Comparison CFD - Meanline Model !

= Inconsistency between meanline model, CFD & experiments at
component level Impeller pressure ratio

Pressure measurements
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Blockage [-]
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= Correction of aerodynamic blockage factors, slip, and losses based on
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Calibrated Meanline Model

= Good agreement at a component level

and overall

= Meanline models are very efficient
but may need calibration
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=PFL  Design Process of Turbomachinery

= |terative combination of increasingly complex models
» 0OD: Overall dimensions — based on empirical performance maps
» 1D: Detalls of inlet and exhaust areas - meanline model

 2D: Definition of blade geometry
» 3D: Assessment of detailed flow patterns [ op _ ]
= Accurate starting point (OD) key for [ 1D ]
efficient design process
* Requires design maps —Y L

( 1 ( Mechanical/Thermal
Stress Analysis
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Dimensional Analysis

= Parameters influencing compressor performance

PR, 1;s, surge, choke| = f (1ir, Nyot, Po1, To1, Fluid, Geom)

= Using dimensional analysis

(A mis] = f (001, My, Re, Fluid, Geom) .
4

| Mu4 — ~——— Machine Mach number
an1

5 )
" po D32
_ hos — ho

2
Uy

Flow coefficient

— )\ Work input coefficient
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Compressor Design Maps
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= Specific speed and diameter alternative set of dimensionless parameters
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- Updated Compressor Design Maps
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= Experimentally validated tool used to generate surrogate model

Uniform
Monte Carlo
sampling

________________________________________

Range of geometry
Thermodynamic
inlet conditions
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Updated Design Maps
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= Updated model for reduced scale compressors deviates from literature
= New model includes additional design variables - more information

New Cordier line
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Impact of Updated Design Maps )

= Compared to classical tools new model yields more design information
= Data driven tool improves starting point and bypasses 1D design loop
= New tool is 1’500 x faster than meanline model with similar accuracy
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Turbocompressor Design

= Design of radial compressor is iterative process

= Involves aerodynamic, mechanical, and thermal aspects

»| oD
= Design starts with “first guess” and evolves ‘
by engaging increasingly complex models v

= Research efforts
* Improve meanline models

— 2D
* Increase speed of high-fidelity models \ b ‘
« Surge prediction v

R : . ( ) Mechanical/Thermal
Behavior of turbomachinery at small scale 3D [ Stress Analysis ]
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Historic Evolution of COP Trends ”

Introduction of scroll compressor

COPy = b

COP,,

Source: heat pump test center WPZ

1995 2000 2005 2010 2015
Years

= Since introduction of scroll compressors, COP has been rising slowly
= Key question: can another step-change be achieved and if so, how?



=P7L Key Challenges

Water In Water Out

= Assessment of losses in heat pump cycles
« Compression 50%

Compression
Stage 2

Throttling 2

~ Economizer- Separator

+ Expansion 30% )
° Heat tl’anSfeI’ 20% : %@ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i Q g;rgzqession

= Possible ways to reduce losses @ Evaporatr
 Increase compressor efficiency ‘—‘
* Use oil-free technology
* Implement multistage cycles

Throttling 1

AirIN

Air OUT

= Potential enabler
» Turbocompressors on oil-free bearings

B ME-459 Heat Pumps Systems
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=F*L Compressor Technology Selection

= Positive displacement machines preferred for small capacity, dynamic
compressors traditionally for high capacities
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Turbocompressor Scaling Analysis

= Downscaling power increases Ng,; and decreases size
» Constant tip speeds — no mechanical issues

= Aerodynamic challenges

* Increased friction due
to lower Re-number
and higher roughness

* Larger relative
tip-clearance

* Non-adiabatic operation

= Bearings
* Need to support high
speed and high lifetime

100

a1
o
T

w
o
T

Diameter [mm]
N
o

10

TEvap: 5°C, Teong= 35°C, R134a

~

— 1000

500

300

1200

71100

10°

Compressor power [kW]

33

NRot [krpm]



=F7L  High Speed Bearing Classes

= Rolling element bearings

= Magnetic bearings

Courtesy of Mecos Traxler AG

= Fluid film bearings

Excentricity

gal Force

Centrifus

B ME-459 Heat Pumps Systems

Lower Pressure Zone Higher Pressure Zone
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Rolling Element Bearings

= Standardized and robust technology

= Needs controlled lubrication

= Offers little damping

= Limited lifetime at high speeds (inertial forces)

Squeeze film lubrication

35
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Magnetic Bearings

= No mechanical contact

= Work in vacuum

= Requires no lubrication

= Needs probes and controller
= Expensive and bulky

= Requires catcher bearings

Radial bearings

Catcher bearing

evolution.skf.com
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=P7L " Fluid Film Bearings "

= Compressible and incompressible lubricants
= Externally pressurized or dynamic

= Very simple geometry - ease of downscaling
= No wear after liftoff

= Low mechanical losses
= No cycle contamination
= L ow specific load capacity and damping
= Rotordynamic stability issues AN \

Damping
Force

Excentricit

Centrifugal Force ™=

B ME-459 Heat Pumps Systems

Lower Pressure Zone | Higher Pressure Zone
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Dynamic Gas Lubricated Bearings

= Herringbone groove journal bearings
 Rigid bearing bushings with v-shaped grooves
 Tight clearances
» Perfect alignment required
 Accurate rotor position - low tip clearances possible
 Very high stability threshold
« Enhanced grooves suggested to improve performance

T7NY/NN N VN T
5 3 A

RS B i
” "A““.— dyfeton R

Battig, P. K., Wagner, P. H., and Schiffmann, J. A. (March 18, 2022). "Experimental Investigation of
Enhanced Grooves for Herringbone Grooved Journal Bearings." ASME. J. Tribol. September 2022;
144(9): 091801.
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=" Dynamic Gas Lubricated Bearings ”

i )
Y/ a :
Y s &

7|
. . ’ QF Leading
= Foil bearings N/ I

» Soft support structure makes outer fluid film " /S"%"B if Axial Feed Line

surface compliant &\\ | // Traiing Edge

« Tolerant to misalignment and thermal gradients 4;// Top Foi

Bump Foil

* Friction between foils generates external damping

» Rotor needs large orbits to generate damping
—> large tip clearances - large losses

 Highly non-linear behavior
* Prone to unstable behavior

» Repeatable and reproducible manufacturing
challenging

» 3D-printable

B ME-459 Heat Pumps Systems

Shalash, K., and Schiffmann, J. "Experimental Assessment of a 3D-Printed Stainless
Steel Gas Foil Bearing." ASME. J. Tribol. August 2020; 142(8): 081802.
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Dynamic Gas Lubricated Bearings

= Tilting pad bearings
« Composed of several pads, each with tilting degree of freedom

Tilting avoids cross-coupled stiffness = ultra-high stability

Lower load capacity

Expensive & time-consuming manufacturing

Complex dynamic behavior

https://www.bearingsplus.com https://www.bearingsplus.com
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=PFL  Proof of Concept
Single Stage Compressor

= Experimental demonstration of small-scale turbocompressor
* 20 mm impeller, 210 krpm, 2 kW, II 3.3, ;5.7 0.8

Oil-free, R134a-lubricated bearings

Herringbone grooved journal bearings

Increased specific power compared to scroll (x10)

500’000 stop & go

B ME-459 Heat Pumps Systems




=P Proof of Concept Comparison

= Turbocompressor achieves higher peak efficiency than positive
displacement compressor and improves off-design operation

0.8

—— Scroll
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Isentropic Efficiency [-]
o
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o
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a

A L

1.5 2 2.5 3 3.5
Pressure ratio [-]
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=F7L  Twin Stage Heat Pump Compressor

= Experimental investigation of twin stage turbocompressor for high
temperature lift heat pumps
* Both impellers on same rotor, 180 krpm, 6 kW
 Oil-free, R134a-lubricated bearings

Gas bearing
aeration Mator Motor

cooling

2

2n stage impeller nit paits have been modified randomly

1%t stage volute \

Compressor seals

2m stage inlet

1%t stage impeller

et

2n stage volute

Gas bearing Gas bearing
aeration aeration

15t stage inlet ~——__

B ME-459 Heat Pumps Systems

EPFL-Thesis 6764, Jean-Baptiste Carré, Experimental investigation of domestic heat
pumps equipped with a twin-stage oil-free radial compressor
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=F7L  Twin Stage Heat Pump Compressor

o u‘ RS

= Air-water heat pump

= Twin-sage cycle with open flash tank
= Challenging flash tank design

= Competitive performance a A-7W35

EPFL-Thesis 6764, Jean-Baptiste Carré, [l W) (
Experimental investigation of domestic &
heat pumps equipped with a twin-stage
oil-free radial compressor

B ME-459 Heat Pumps Systems
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Twin Stage Heat Pump Compressor
Experimental Challenges

= Thrust forces & surge
« Compressor surge perturbs the complete cycle

« Compressor by-pass required for hot

Condenser

start & stop to avoid compressor surge

A 4

Compressor 2

Flash tank

Expander 2
« Additional safety for compressor ¥

o o

o
(o] o
Expander 1

Compressor 1

A 4

Evaporator
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Twin Stage Heat Pump Compressor
Experimental Challenges

= Cycle pollution

» Cycle contamination caused by heat exchanger
and valve manufacturing process or polluted
working fluid

 Pollution may lead to bearing failure

46
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Twin Stage Heat Pump Compressor
Experimental Challenges

= Compressor map matching
» Energy balance across economizer driven by mass-flow-ratio

« Accurate compressor matching required to achieve stable economizer
pressure

 Additional control degree of freedom needed

Sun, Q., Ji, C., Fang, J., Li, C., Zhang, X., Optimization Design of
IGV Profile in Centrifugal Compressor, Mathematical Problems in
Engineering, 2017, 8437325, 9 pages, 2017
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=PFL  Potential of Oilfree Turbocompressors on COP

4t
Turbocompressor
35¢ *  Multi-stage
- Oilfree
o
8 3
2.5 Scroll compressor
Single stage
Oil lubricated
Source: heat pump test center WPZ

1995 2000 2005 2010 2015
Years

= Key question: can another step-change be achieved and if so, how?
= With multi-stage heat pump cycles driven by oilfree turbocompressors

B ME-459 Heat Pumps Systems
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Summary of Challenges of Reduced-Scale
Turbomachinery

Gas lubricated bearings require small clearances to achieve stable
operation - manufacturing cost - industrialization challenging

Low bearing clearances require clean working fluids

Reduced scale compressors efficiency suffers from Re-number effects,
Increased relative surface roughness and large tip clearances

Reduced scale turbomachinery more sensitive to heat fluxes

Leakage between stages is increased due to scaling effects
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Outiook W12

= Heat exchanger design
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Exercises Wil

= Comprehension questions
= Centrifugal compressor analysis

= Flow through a turbine runner

57
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