

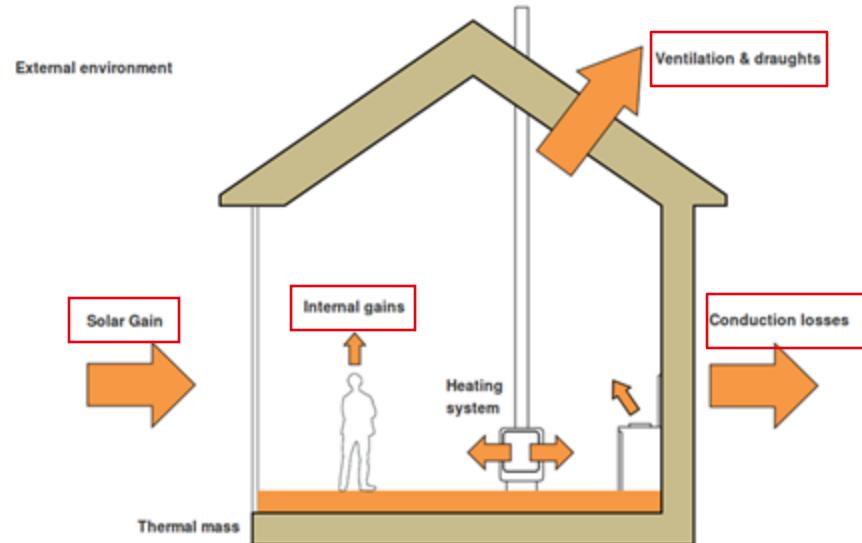
Project – Introduction to Part 1

Lecture ME 454

**Modeling and Optimization of Energy
Systems**

Prof. F. Maréchal

*Eduardo Pina, Cédric Terrier,
Sai Ravi, Lorenzo Aimone, Maxime Blanchouin,
Giulia Giacomini, Pedro Dias Gomes Marques*


23.09.2024

Hourly demand profiles

Estimation of heat gains/losses

$$\dot{Q}_{th}(t) = A_{th} \{ k_{th} (T_{int} - T_{ext}(t)) - k_{sun} \dot{q}_{pl}(t) - f_{el} \dot{Q}_{el}(t) \} + \text{Conduction & Ventilation}$$

Solar gain Internal gains

Calculation of building properties

Estimation of
heat
gains/losses

$$\dot{Q}_{th}(t) = A_{th} \{ k_{th} (T_{int} - T_{ext}(t)) - k_{sun} i(t) - \dot{q}_{pl}(t) \} - f_{el} \dot{Q}_{el}(t)$$

Conduction & Ventilation

Solar gain

Internal gains

thermal losses
and ventilation
coefficient

solar radiation
coefficient

Unknown

Outline Part 1

Identification of typical heat and electricity demand per building

Task 1: Estimation of heat gains

Task 2: Calculation of building envelope properties

Task 3: Calculation of the hourly demand

Task 4: Analysis on impact of renovation

Task 5: Clustering of typical days

Unknowns

- Heat transfer coefficients
 - k_{th} : thermal losses of the building
 - k_{sun} : thermal gains by radiation
- Thermal load of building
 - $\dot{Q}_{th} = f(k_{th}, k_{sun}, T_{int}, T_{ext}, \dot{q}_{people}, \dot{Q}_{elec})$

Equations

- Yearly heating demand
 - Hourly heating demand
 - Switching the heating system on
- Mean heat gains
 - Switching off the heating system

Attention: Properly identify the conditions when the heating system is on/off

Implement Newton-Raphson to numerically solve for k_{th}, k_{sun}

Yearly heating (equation 1)

- Hourly heating demand :

$$Q_{\text{th}}(t) = \Delta t \{ A_{\text{th}} \cdot (k_{\text{th}} \cdot (T_{\text{int}} - T_{\text{ext}}(t)) - k_{\text{sun}} \cdot \dot{i}(t) - \dot{q}_{\text{people}}(t)) - f_{\text{el}} \cdot \dot{Q}_{\text{el}}(t) \} \quad (1.3)$$

$\forall t, \quad \text{if } T_{\text{ext}} \leq T_{\text{cut-off}}$

if $Q_{\text{th}} \leq 0$, cooling

if $Q_{\text{th}} \geq 0$, heating

- Keep only the positive values, remember, we are designing a heating system :

$$Q_{\text{th}}^+(t) = \begin{cases} Q_{\text{th}}(t), & \text{if } Q_{\text{th}}(t) \geq 0. \\ 0, & \text{otherwise.} \end{cases} \quad (1.4)$$

You only may need heating during the time people are in the building, which is only from Mondays to Fridays and between 7AM and 9 PM.

- You will have 8760 hourly entries (zero and/or non-zero). Add them all together to get the yearly demand :

$$Q_{\text{th},\text{year}}^+ = \sum_{p=1}^{N_p} Q_{\text{th}}^+(t) \quad (1.5)$$

Table 1.1: EPFL Buildings				
Building	Construction period ^a	Heated surface A_{th} [m ²]	Annual heat demand Q_{th} [kWh]	Annual electricity demand Q_{el} [kWh]
BC	2	17480	418,491	1,603,596
CO	2	11901	477,008	943,653
BP	2	10442	457,861	691,031
BS	2	10267	509,183	350,860
TCV	2	6095	318,209	2,067,675
IN	2	24073	1,260,041	1,889,430
GC	1	26586	1,465,755	1,978,129
CE	1	16655	1,003,313	1,200,598
ODY	2	4092	253,199	81,410
MA	1	14018	889,271	5,531,370
GR	1	9997	649,081	813,804
ME	2	17151	1,126,830	3,118,001
CM	1	18663	1,251,411	1,354,652
AA + SG	2	18389	1,306,603	1,231,934
			413,651	
			1,447,090	
			94,326	
			1,608,750	
			2,832,408	
			2,411,721	
			4,717,985	
			4,433,829	
			3,898,106	
low temperature demand				

- For this equation to work, you will need to compute the mean heat gains (solar, people and electric) of the values **only when** the outside temperature is between 15°C and 17°C ($16^{\circ}\text{C} \pm 1^{\circ}\text{C}$).

$$0 = A_{\text{th}} \cdot (k_{\text{th}} \cdot (T_{\text{int}} - T_{\text{cut}}) - k_{\text{sun}} \cdot \dot{i}_{\text{mean}} - \dot{q}_{\text{people,mean}}) - f_{\text{el}} \cdot \dot{Q}_{\text{el,mean}} \quad (1.6)$$

- This will give you the second equation to solve for.

Solving the equation

To find the k-values of each building we will use such that $F(x) = 0$, we will use the Newton-Raphson method.

Newton's method for a multivariable problem next iteration is defined as :

$$\mathbf{X}_{k+1} = \mathbf{X}_k - [J^{-1}(\mathbf{f}(\mathbf{X}_k)) \cdot \mathbf{f}(\mathbf{X})]$$

It is up to you to choose the initial value of \mathbf{X}_0 and do the code implementation.

Remember, the Jacobian is defined as :

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

Debugging

- Verify that your implementation of Newton-Raphson works with a simple equation.
- Check units and signs.
- Use different starting values.
- Print or save your iterations to understand how your code is performing.

Outline Part 1

Identification of typical heat and electricity demand per building

Task 1: Estimation of heat gains

Task 2: Calculation of building envelope properties

Task 3: Calculation of the hourly demand

Task 4: Analysis on impact of renovation

Task 5: Clustering of typical days

Calculation of the hourly profiles

$$\dot{Q}_{th}(t) = A_{th} \{ k_{th} (T_{int} - T_{ext}(t)) - k_{sun} i(t) - \dot{q}_{pl}(t) \} - f_{el} \dot{Q}_{el}(t)$$

Everything on the right-hand side is now known !

Outline Part 1

Identification of typical heat and electricity demand per building

Task 1: Estimation of heat gains

Task 2: Calculation of building envelope properties

Task 3: Calculation of the hourly demand

Task 4: Analysis on impact of renovation

Task 5: Clustering of typical days

- Discussion of the impact of renovation on the building heating demand.
- In which direction is it beneficial to vary the heat transfer coefficients ?
- How can k_{th} be varied ? What about k_{sun} ?
- Reminding that $k_{th} = \underbrace{U_{env} + \dot{m}_{air} \cdot c_{p,air}}_{\text{Conduction + Ventilation}}$ is there some limit on k_{th} value ?

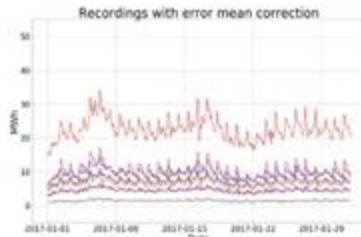
Conduction + Ventilation

- Propose a brief quantitative analysis and present insightful graphical results.

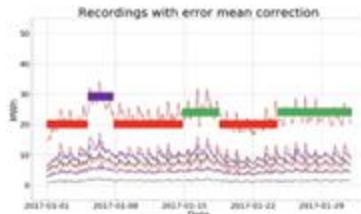
Outline Part 1

Identification of typical heat and electricity demand per building

Task 1: Estimation of heat gains

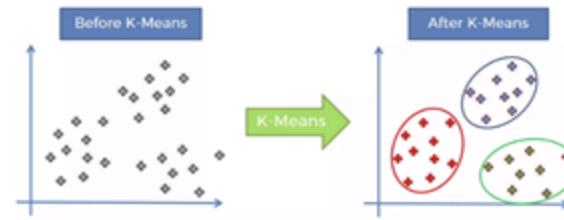

Task 2: Calculation of building envelope properties

Task 3: Calculation of the hourly demand


Task 4: Analysis on impact of renovation

Task 5: Clustering of typical days

Context


Hourly data is computationally heavy

Define typical days
- how many ?
- which accuracy ?

Objective

- Clustering the weather data
- Try different methods and evaluate their accuracy
 - monthly approach: 1 typical day per month ?
 - seasonal approach: 1 typical day per season ?
 - k-means approach ? k-medoids ?

For your information

Workshop Just do git

25 septembre 18h15
CM 1 221

Pensez à prendre vos
membres de groupe de
projet avec ;)

